THz Magnetism of Antiferromagnets

Alexey V. Kimel Ultrafast Spectroscopy of Correlated Materials, **Radboud University, Nijmegen, The Netherlands**

Magnetism –

the strongest quantum mechanical phenomenon

4	≠ ≠ 🔶 🗩		L. Néel: "Antiferromagnets – interesting, but useless."	
$S_z = \pm \hbar/2$	E_{ex} =-J $\mathbf{S}_{i}\mathbf{S}_{j}$	L. Néel		
Spin (1922)	Exchange interacti (1926)	on Antiferromagne (1930)	etism	-
Ferromagnet (J>0)			Antiferromagnet	
	$S_1 S_2 \qquad S_{n-1} S_n$		$S_1 S_2$ $S_{n-1} S_n$	n ,
Macrospin approximation			$\mathbf{M} = 0$	
	$\mathbf{M} = -\gamma \frac{\sum S_i}{V} \neq 0$	MH ≠ 0	$\mathbf{L} = -\gamma \frac{\sum (\mathbf{S}_{2i-1} - \mathbf{S}_{2i})}{V}$	$\mathbf{LH}=0$

Ferromagnets

(well understood and used in data storage)

Non-zero magnetization M≠0 Controlled by magnetic fields

Ferromagnets

(well understood and used in data storage)

Non-zero magnetization M≠0 Controlled by magnetic fields

Antiferromagnets

(far less explored, 1000 times faster)

No net magnetization M=0 Insensitive to magnetic fields

L. Néel: "Antiferromagnets – interesting, but useless."

- How to detect?
- How to control?
- How to control ultrafast?

Antiferromagnets

(far less explored, 1000 times faster)

No net magnetization M=0 Insensitive to magnetic fields

L. Néel: "Antiferromagnets – interesting, but useless."

Symmetry in physics of antiferromagnets in thermodynamic equilibrium

I. A. Dzyaloshinskii

A. S. Borovik-Romanov

E. A. Turov

Symmetry in physics of antiferromagnets in thermodynamic equilibrium

I. A. Dzyaloshinskii

A. S. Borovik-Romanov

E. A. Turov

altermagnet!

Thermodynamic Theory of "Weak" Ferromagnetism In Antiferromagnetic Substances

I. E. DZIALOSHINSKII Physical Problems Institute, Academy of Sciences, U.S.S.R.

$$M = M_{1} + M_{2} + M_{3} + M_{4}$$

$$M_{x} = DL_{y}$$

$$M_{y} = -DL_{x}$$

$$M_{z} = 0$$

D shows the strength of the Dzyaloshinskii-Moriya interaction!

Antiferromagnetic Hall effect in hematite α -Fe₂O₃

К. В. Vlasov et al., *Sov. Phys. Solid State* **22**, 967 (1980). К. В. Vlasov et al., *Физика металлов и металловедение* **42**,513-517 (1976).

Hall vs Faraday effect

Hall vs Faraday effect

 D_k –electric displacement E_{I} – electric field ε_{kl} – permittivity $\varepsilon_{kl} = \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{xy} \\ \varepsilon_{yx} & \varepsilon_{yy} \end{bmatrix}$ $\mathbf{M} \neq 0 \qquad \varepsilon_{kl}^{(a)} = -\varepsilon_{lk}^{(a)} \neq 0$ $\varepsilon_{kl}^{(a)} = \chi_{klm}^{(H)} H_m + \chi_{klm}^{(M)} M_m + \chi_{klm}^{(L)} L_m$ antiferrodia- and paraferromagnetic magnetic magnetic

The magneto-optical Faraday effect

Antiferromagnetic and ferromagnetic Faraday effect in yttrium orthoferrite YFeO₃

B. B. Krichevtsov, K. M. Mukimov, R. V. Pisarev, and M. M. Ruvinshteĭn (Submitted 25 August 1981)

Pis'ma Zh. Eksp. Teor. Fiz. 34, No. 7, 399-402 (5 October 1981)

Dzyaloshinskii-Moriya interaction and weak-ferromagnetism

 $M_z = DL_x$

dia- and para- ferro- antiferromagnetic magnetic magnetic

Antiferromagnetic and ferromagnetic Faraday effect in yttrium orthoferrite YFeO₃

B. B. Krichevtsov, K. M. Mukimov, R. V. Pisarev, and M. M. Ruvinshtein

(Submitted 25 August 1981)

Pis'ma Zh. Eksp. Teor. Fiz. 34, No. 7, 399-402 (5 October 1981)

Dzyaloshinskii-Moriya interaction and weak-ferromagnetism

 $M_z = DL_x$

dia- and para- ferro- antiferromagnetic magnetic magnetic

The existence of antiferromagnetic Faraday

effect, however, presupposes the existence of nonequivalent magnetic sublattices, since the antiferromagnetic component of the Faraday effect vanishes in the equivalent sublattices.

Faraday effect in antiferromagnetic Cr₂O₃

$$M = M_1 + M_2 + M_3 + M_4$$

 $L = M_1 - M_2 + M_3 - M_4$

$$\varepsilon_{xy}^{(a)} = \chi^{(H)} H_z + \chi_{xyzz}^{LE} E_z L_z$$

Radboud University

See also:

B B Krichevtsov et al, *Spontaneous non-reciprocal reflection of light from antiferromagnetic Cr2O3*, J. Phys.: Condens. Matter 5, 8233 (1993). J. Wang, Ch. Binek, *Dispersion of Electric-Field-Induced Faraday Effect in Magnetoelectric Cr2O3*, Phys. Rev. Appl. 5, 031001 (2016). The talk of T. Jungwirth

- How to detect?
- How to control?
- How to control ultrafast?

Antiferromagnets

(far less explored, 1000 times faster)

No net magnetization M=0 Insensitive to magnetic fields

L. Néel: "Antiferromagnets – interesting, but useless."

THz antiferromagnetism

terra incognita of modern science

- **M**≠0
- Nonlinear spin dynamics (1+1>2)
- New channels of spin-lattice interaction
- Macrospin approximation fails

THz antiferromagnetism

terra incognita of modern science

• **M**≠0

- Nonlinear spin dynamics (1+1>2)
- New channels of spin-lattice interaction
- Macrospin approximation fails

Magnetic field as a stimulus for spins in antiferromagnets

If
$$\mathbf{H}(t) \neq \mathbf{0}$$
, $\frac{\partial}{\partial t} \left[\frac{\partial \mathbf{l}}{\partial t} \times \mathbf{l} \right] = \gamma \frac{\partial H(t)}{\partial t} + \gamma^2 H_E[\mathbf{m} \times \mathbf{H}(t)]$

• While spins in antiferromagnets are not sensitive to magnetic field **H**, they can be controlled by $\frac{\partial \mathbf{H}(t)}{\partial t}$.

• Coherent spin oscillations in antiferromagnets induce **m**.

Краткие сообщения по физике № 12 1981

НОВЫЕ НЕЛИНЕЙНЫЕ ДИНАМИЧЕСКИЕ ЭФФЕКТЫ В АНТИФЕРРОМАГНЕТИКАХ

А. К. Звездин, А. А. Мухин

УДК 538.27

Показано, что в легкоплоскостных антиферромагнетиках при быстром нарастании (спаде) внешнего поля, перпендикулярного легкой плоскости, происходит вращение вектора антиферромагнетизма в этой плоскости вокруг поля. Определены условия реализации данного явления.

A. K. Zvezdin, JETP 29, 553 (1979).
A. F. Andreev, V. I. Marchenko, Sov. Phys. Uspekhi 23 21 (1980).

V.G. Baryakhtar, B. A. Ivanov, M. V. Chetkin, *Sov. Phys. Usp.* **28** 563 (1985).

T. Satoh et al, *Phys. Rev. Lett.* **105**, 077402 (2010). T. Kampfrath et al, *Nature Photonics* **5**, 31 (2011).

A. V. Kimel et at, Physics Reports 852, 1 (2020).

See the talks of E. Rongione and J. Bakker

THz antiferromagnetism

terra incognita of modern science

• **M**≠0

- Nonlinear spin dynamics (1+1>2)
- New channels of spin-lattice interaction
- Macrospin approximation fails

Iron borate FeBO₃

- antiferromagnets with weak ferromagnetism

THz excitation of spin resonances in FeBO₃

E. A. Mashkovich et al, Phys. Rev. Lett. **123**, 157202 (2019).

Double pulse excitation of FeBO₃

Double pulse excitation of FeBO₃

Nonlinear 2D THz spectroscopy of FeBO₃

Terahertz field-driven magnon upconversion in an antiferromagnet

Zhuquan Zhang^{1†}, Frank Y. Gao^{2†}, Yu-Che Chien¹, Zi-Jie Liu¹, Jonathan B. Curtis³, Eric R. Sung¹, Xiaoxuan Ma⁴, Wei Ren⁴, Shixun Cao^{4*}, Prineha Narang³, Alexander von Hoegen⁵, Edoardo Baldini^{2*}, and Keith A. Nelson^{1*}

arXiv:2207.07103

THz antiferromagnetism

terra incognita of modern science

- **M**≠0
- Nonlinear spin dynamics (1+1>2)
- New channels of spin-lattice interaction
- Macrospin approximation fails

Response of antiferromagnetic spins in CoF₂ to THz magnetic fields

Double-pulse THz excitation of CoF₂

E. Mashkovich et al Science 374,1608 (2021).

2D THz spectroscopy of CoF₂

Spin-lattice Fermi resonance in CoF₂

Spin-lattice Fermi resonance in CoF₂

THz antiferromagnetism

terra incognita of modern science

- **M**≠0
- Nonlinear spin dynamics (1+1>2)
- New channels of spin-lattice interaction
- Macrospin approximation fails

Two-magnon excitation in antiferromagnet

Linear polarizations

change perspective

Two-magnon excitation in antiferromagnetic RbMnF₃

Conclusions and Outlook

Acknowledgements

T. Blank, T. Metzger, T. Gareev, D. Khusyainov, D. Afanasiev, J. Mentink, F. Formisano, K. Grishunin, E. Mashkovich

B. A. Ivanov, M. I. Katsnelson

A. Fedyanin A. Kalashnikova A. K. Zvezdin

S. Kovalev, J.-Ch. Deinert

R. Dubrovin, R. V. Pisarev

> VICI NWO-Klein

MSCA - ITN COMRAD ERC-AG SPARTACUS

A High Quality, Open Access Journal

Open for submissions now!

Editor-in-Chief: Elke Arenholz, PhD

nature partner journals

Scope: high-quality research that advances the understanding and application of spin electronics or spintronics.

Topics Include

- Material properties and phenomena relevant for spintronics: spin-dependent electronic structure, magnetic structure, atomic structure, proximity effects;
- Device architectures and their fabrication: theory, modeling, simulations; patterning, lithography, self-assembly; device integration; nano- and microscale confined structures;
- Synthesis and characterization of materials for spintronics: metals, semiconductors, insulators; ferromagnets, antiferromagnets, non-magnetic materials; 2D materials, thin films, multilayers

Spintronics research is cross-disciplinary in nature and npj Spintronics will showcase results in this field across disciplines.

Content Types

- Research articles
- Reviews
- Comments
- Perspectives

Open for

submissions now!

npj spintronics

Send enquiries to: npjspintronics@nature.com Follow us on Twitter: @Nature_NPJ vww.nature.com/npjspintronics/