

Spintronics with low-symmetry materials

Online SPICE-SPIN+X Spintronics Seminar Oct. 25th, 2023

Fèlix Casanova Nanodevices group, CIC nanoGUNE San Sebastian, Basque Country (Spain)

San Sebastian

NANODEVICES GROUP @ CIC NANOGUNE

INTRODUCTION: MOORE'S LAW

 \mathcal{O}

48 Years of Microprocessor Trend Data

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2019 by K. Rupp

INTRODUCTION: POWER CONSUMPTION OF ICT

Andrea and Edler; Challenges 6, 117 (2015); N. Jones, Nature 561, 163 (2018)

INTRODUCTION: spintronics

 \checkmark New generation of spintronic devices that use **pure spin currents**

✓ Integration of memory and logic

 \checkmark High speed, low power operation at reduced scale

Some spin-based logic proposals:

Logic operation
OR{ A , D } AND{ AND }

Spin-based magnetologic

H. Dery et al., Nature 447, 573 (2007) H. Dery et al., IEEE Trans. Electr. Dev. 59, 259 (2012) All-spin logic

B. Behin-Aein et al., Nature Nano 5, 266 (2010)

Magneto-electric spin-orbit logic

S. Manipatruni et al., Nature 565, 35 (2019)

Spin current detection

Spin current generation

f.casanova@nanogune.eu

INTRODUCTION: spin Hall effect

Spin Seebeck effect

K. Uchida et al., Nature Mater. **9**, 894 (2010)

Spin Pumping

E. Saitoh et al., Appl. Phys. Lett. 88, 182509 (2006)

Spin Hall Magnetoresistance

H. Nakayama et al., Phys. Rev. Lett. 110, 206601 (2013)

Spin-orbit torques for MRAM

M. Miron et al., Nature **476**, 189 (2011) L. Lui et al., Science **336**, 555 (2012)

Spin-orbit readout for MESO

S. Manipatruni et al., Nature **565**, 35 (2019) V.T. Pham, FC et al., Nature Electron. **3**, 309 (2020) D. C. Vaz, FC et al., arXiv:2302.12162

INTRODUCTION: spin-orbit device for magnetic readout

 $R_{ISHE} = \frac{V_{ISHE}}{I_c^{app}}$

V.T. Pham, FC et al., Nature Electron. 3, 309 (2020)

9

INTRODUCTION: spin-orbit device for magnetic readout

✓ Weak spin-orbit coupling leads to long distance spin transport (λ_{SOM})

Elliott-Yafet dominates spin relaxation in Pt: $\lambda_{SOM} = cnt. \frac{1}{\rho_{Pt}}$

✓ **Strong** spin-orbit coupling leads to large spin Hall effect (θ_{SH})

In the intrinisc (moderately dirty) regime in Pt: $\theta_{SH} = cnt \times \rho_{Pt}$

Mutually exclusive properties in one material

Prototypical heavy metal (Pt) $\theta_{SH}\lambda_{SOM} = 0.2 - 0.4 \text{ nm}$

E. Sagasta, FC et al., Phys. Rev. B **94**, 060412(R) (2016)

Spin-to-charge conversion with low-symmetry materials

van der Waals heterostructures

INTRODUCTION: spintronics in graphene

- ☑ Long distance spin transport at RT
- ☑ Weak spin-orbit coupling

$\lambda_s \sim 2-30 \ \mu m$

N. Tombros et al., Nature **448**, 571 (2007) B. Dlubak et al., Nature Phys. **8**, 557 (2012) M.V. Kamalakar et al., Nature Comms. **6**, 6766 (2015) J. Ingla-Aynés et al., Nano Lett. **16**, 4825 (2016) M. Drögeler et al., Nano Lett. **16**, 3533 (2016)

10/25/2023

Enhanced spin-orbit coupling in graphene

- Hydrogenation

- Atomic decoration

- Spin-orbit proximity

M. Gmitra et al., Phys. Rev. Lett. 110, 246602 (2013)
C. Weeks et al. Phys. Rev. X 1, 021001 (2011)
M. Gmitra et al., Phys. Rev. B 93, 155104 (2016)

INTRODUCTION: spin-orbit proximity in graphene

✓ Strong SOC
 ✓ Breaking inversion symmetry

Imprinted in graphene by proximity $\overbrace{\tau_{s,l}^{-1} \propto \tau_{p}}^{\tau_{s,l}^{-1} \propto \tau_{p}}$

WEAK ANTILOCALIZATION

M. Gmitra et al., Phys. Rev. B **93**, 155104 (2016) J. H. Garcia et al., Chem. Soc. Rev. **47**, 3359 (2018)

Z. Wang et al., Nature Comms. 6, 8339 (2015)
B. Yang et al., 2D Mater. 3, 031012 (2016)
T. Wakamura et al., Phys. Rev. Lett. 120, 106802 (2018)
S. Zihlmann et al., Phys. Rev. B 97, 075434 (2018)

> ANISOTROPIC SPIN RELAXATION

T. S. Ghiasi *et al.*, Nano Lett. **17**, 7528 (2017) L.A. Benitez *et al.*, Nature Phys. **14**, 303 (2018)

> SPIN HALL EFFECT

C. K. Safeer *et al.*, Nano Lett. **19**, 1074 (2019) L.A. Benitez *et al.*, Nature Mater. **19**, 170 (2020)

RASHBA-EDELSTEIN EFFECT

T. S. Ghiasi *et al.*, Nano Lett. **19**, 8758 (2019) L.A. Benitez *et al.*, Nature Mater. **19**, 170 (2020)

J. H. Garcia et al., Nano Lett. 17, 5078 (2017)

> SPIN HALL EFFECT induced by valley-Zeeman coupling?

C. K. Safeer, FC et al., Nano Lett. 19, 1074 (2019)

Precession = $s \times -B_x$

C. K. Safeer, FC et al., Nano Lett. 19, 1074 (2019)

Precession = $-s \times B_x$

C. K. Safeer, FC et al., Nano Lett. 19, 1074 (2019)

1.0

Co

Au

➤ MoS₂

graphene/MoS₂

$$\theta_{SH}^{TMD/gr} \lambda_{TMD/gr}^{eff} = \underline{13.5 \text{ nm}} \text{ at } 10 \text{ K}$$
$$= \underline{1.4 \text{ nm}} \text{ at } 300 \text{ K}$$

 Combination of long spin transport and large SHE in the same material

C. K. Safeer, FC et al., Nano Lett. 19, 1074 (2019)

graphene/WSe₂

 $\theta_{SH}^{TMD/gr} \lambda_{TMD/gr}^{eff} = 40 \text{ nm} \text{ at } 100 \text{ K and } -5 \text{ V}$

- Gate tunability of the SHE
- Largest efficiency reported

F. Herling, FC et al., APL Mater. 8, 071103 (2020)

RASHBA-EDELSTEIN EFFECT: reminder

 \checkmark Systems (typically 2D) with broken inversion symmetry

Direct effect (REE)

Inverse effect (IREE)

Spin current detection

Spin current generation

RASHBA-EDELSTEIN EFFECT: proximitized graphene

> RASHBA-EDELSTEIN EFFECT induced by Rashba coupling?

Experimentally observed:

T. S. Ghiasi *et al.*, Nano Lett. **19**, 8758 (2019) L.A. Benitez *et al.*, Nature Mater. **19**, 170 (2020) Theoretically predicted:

M. Offidani et al., Phys. Rev. Lett. **119**, 196801 (2017) J. H. Garcia et al., Chem. Soc. Rev. **47**, 3359 (2018)

Theoretical calculation in twisted Gr/WSe₂ heterostructures:

Lee et al., Phys, Rev. B 106, 165420 (2022)

SPIN-TO-CHARGE CONVERSION: z-spins

Precession = $-s \times B_x$

✓ SHE in proximitized graphene

SPIN-TO-CHARGE CONVERSION: x-spins

 \checkmark REE in proximitized graphene

SPIN-TO-CHARGE CONVERSION: y-spins

✓ Unconventional REE in proximitized graphene

WSe₂ single crystal

First stamp

H.Yang, FC et al., submitted

2000

(Counts) 1500

Flake 2

1000 **DHS**

500

n

90

60

H.Yang, FC et al., submitted

- All 3 signals are gate tunable
- Both REE and UREE signals change sign at CNP

H.Yang, FC et al., submitted

H.Yang, FC et al., submitted

 B_x (mT)

- Twist angle tunes Rashba angle
- Excellent agreement with theory

Theory: Lee et al., Phys, Rev. B **106**, 165420 (2022) Experiment: H. Yang, FC et al., submitted

Chiral Tellurium crystals

CHIRAL COMPOUNDS IN NATURE

TELLURIUM: fabrication of nanowires

TELLURIUM: structural characterization

TELLURIUM: handedness identification

TELLURIUM: spin texture

TELLURIUM: unconventional Rashba-Edelstein effect

F. Calavalle et al., Nat. Mater. 21, 526 (2022)

10/25/2023

40

TELLURIUM: unconventional Rashba-Edelstein effect

- Resistance depends on the relative alignment between I_z and B
- Unidirectional Magnetoresistance / Bilinear Magnetoresistance / Magnetochiral anisotropy / Non-reciprocal transport

$$R = R_0(1 + \alpha B^2 + \eta j B)$$

10/25/2023

TELLURIUM: UMR quantification

$$\eta = \frac{R_{diff}}{R_0 j B}$$

Material	Spin Texture	Туре	η (cm² A ⁻¹ T ⁻¹)	
Tellurium	Radial	Chiral material	4 x 10 ⁻⁶	Our work
Ge (111)	Helical	Rashba surface	4.2 x 10 ⁻⁷	Phys. Rev. Lett. 124, 027201 (2020)
BiTeBr	Helical	Polar semiconductor	3 x 10 ⁻⁸	Nat. Phys. 13, 578-583 (2017)
SrTiO3	Helical	Rashba surface	4.2 x 10 ⁻⁸	Phys. Rev. Lett. 120, 266802 (2018)
α- GeTe	Helical	Rashba surface and bulk	7.1 x 10 ⁻¹⁰	Nat. Commun. 12, 540 (2021)
Bi ₂ Se ₃	Helical	Topological insulator	5.9 x 10 ⁻¹¹	Nat. Phys. 14, 495-499 (2018)
WTe ₂	Helical	Topological semimetal	1 x 10 ⁻¹³	Nat. Commun. 10, 1290 (2019)
CoPt	Helical	Rashba bulk	5.9 x 10 ⁻¹⁴	Phys. Rev. B 107, 094410 (2023)

Spin-orbit proximity in van der Waals heterostructures

Largest and gate-tunable spin-to-charge efficency

Low symmetry materials provide new spintronic phenomena

Twistronics meets spintronics

Tellurium as a playground for chiral spintronics

ACKNOWLEDGMENTS

ICN2 (Barcelona)

M. Vila J.H. Garcia S. Roche

Charles U. (Prague)

P. Nemec J. Kimák E. Schmoranzerová

DIPC (San Sebastian)

F. de Juan

Martin-Luther U. (Halle)

A. Johansson I. Mertig

U. Minnesota

S. Lee T. Low

