SPIN-ORBIT COUPLING: AN ENDLESS SOURCE OF EXOTIC MAGNETISM IN 2D MAGNETS

Silvia Picozzi

Consiglio Nazionale delle Ricerche CNR-SPIN, Chieti (IT)

OUTLINE:

• Introduction: *Spin-orbit coupling*

• Focus on: "Rashba Physics" in Ferroelectrics Exotic Spin texture in 2D magnets Multiferroicity in 2D magnets

MODEM

(MOdelling and Design of functional Materials)

https://sites.google.com/site/silviapicozzi/

Silvia Picozzi (CNR-SPIN)

SPICE-SPIN+X Online Seminar

CROSS-COUPLING IN MULTIFUNCTIONAL FERROICS

erroelectricit

PASHBA FERROF'

Our expertise: **study** *intertwined* phenomena

Skypmon⁵

Topolog

Nagneti

erro

SPIN-ORBIT COUPLING

.... a <u>small</u> interaction leading to rich physics

Relativistic interaction linking spin and orbital momenta (i.e. spin space and real space)

$$\underbrace{\frac{\mu_B}{2mcr} \frac{dV(r)}{dr}}_{\xi} \vec{\sigma} \cdot \left(\vec{r} \times \vec{p}\right) = \xi \vec{\sigma} \cdot \vec{L}$$

Silvia Picozzi (CNR-SPIN)

SPICE-SPIN+X Online Seminar

THE RASHBA EFFECT

(on the occasion of Rashba's 95th birthday) EDITORIAL Published: 09 December 2022

95th Birthday of Emmanuel Rashba

Journal of Experimental and Theoretical Physics 135, 387 (2022)

2022 Oliver E. Buckley Condensed Matter Physics Prize Recipient Emmanuel I. Rashba Harvard University

Citation:

"For pioneering research on spin-orbit coupling in crystals, particularly the foundational discovery of chiral spin-orbit interactions, which continue to enable new developments in spin transport and topological materials."

Silvia Picozzi (CNR-SPIN)

SPICE-SPIN+X Online Seminar

SYMMETRY PROPERTIES IN BAND STRUCTURE : SPACE/TIME INVERSION

Time reversal symmetry: $\overline{\varepsilon_{k\uparrow}} = \varepsilon_{-k\downarrow}$

(Space) inversion symmetry: $\epsilon_{k\uparrow} = \epsilon_{-k\uparrow}$

WHAT IS THE RASHBA EFFECT ?

SOC effect: particle in electric field E experiences internal effective magnetic field B_{eff} ∝ v x E in its moving frame <u>NB</u>: E could be external (i.e. 2DEG), or "effective" (as in FE)

Silvia Picozzi (CNR-SPIN)

SPICE-SPIN+X Online Seminar

KEY CONCEPT & MAIN MESSAGE

(S. Picozzi, Frontiers in Physics 2, 10 (2013)

Permanent and switchable P, controllable via E

FERROELECTRICITY

SPIN-ORBIT COUPLING

Relativistic interaction linking spin and lattice

RASHBA EFFECT

SPIN TEXTURE: LINKED to P (via SOC)→ CONTROL and SWITCH via E in a permanent (non volat.) way

a) Rashba (P_{up})

b) Rashba (P_{dw})

SPIN-ORBIT COUPLING: AN ENDLESS SOURCE OF EXOTIC MAGNETISM IN 2D MAGNETS

OUTLINE:

• Introduction: Spin-orbit coupling

• Focus on: "Rashba Physics" in Ferroelectrics

Exotic Spin texture in 2D magnets

Multiferroicity in 2D magnets

THE FLAT-LAND

- ✓ One−atom-thick (or *few-atoms-thick*) systems
- Layers held together by (weak) Van der Waals forces
- Extended range of properties and functionalities
- Properties of 2D materials different from 3D counterparts

.... and you can play LEGO with 2D-materials !!

Silvia Picozzi (CNR-SPIN)

SPICE-SPIN+X Online Seminar

2D MAGNETS: A RICH PLAYGROUND

CHALLENGES IN 2D MAGNETS & MERMIN WAGNER THEOREM

- Need to increase Curie temperature T_C
- > Need to improve air-stability & scalability

Need for improved understanding/modelling

"At any non-zero temperature, a **one- or two-dimensional isotropic** spin **Heisenberg** model with **finite-range exchange interaction** can be neither ferromagnetic nor antiferromagnetic."

N.D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1996)

🖙 2D magnetism relies on Anisotropic effects 🖙 Spin-orbit Coupling

BACKGROUND ON NiX₂ (X = Cl, Br, I): 3D vs 2D (ML)

MONOLAYER STRUCTURE

- ✓ Triangular lattice
- ✓ Edge-Shared octahedra:
 - small trigonal compression

Régnault et al, J. Physique (1982)

☞ COMPLEX MAGNETISM!

ELECTRON FILLING

- Ni 3p⁶ 3d⁸ 4s²
- Cl 3s² 3p⁵
- Br 4s² 4p⁵

• | 55² 5p⁵

Chlorine Halogen Bromine Halogen 53 53 1 Iodine Halogen

CI

MAGNETIC MOMENTS

- Localized moments on TM (high spin)
- Sizeable (positive) moment on halogen

FRUSTRATION IN MAGNETS: TRIANGLE

Spins on a triangular lattice with AFM coupling

FRUSTRATION IN MAGNETS: SPIN-CHAIN

 ✓ Simplest case: Frustrated spin chains with the nearest-neighbour FM J₁ and next-nearest-neighbour AFM interactions J₂.

EXCHANGE COUPLING CONSTANTS

Let's start with *Heisenberg Hamiltonian* (no SOC)

$$\mathcal{H} = -\frac{1}{2} \sum_{\substack{i,j\\i\neq j}} \vec{J(r_{ij})} \hat{\vec{S}}_i \cdot \hat{\vec{S}}_j$$

- Magnetic interaction strength varies with the ligand
- Longer ranged
 interaction in Nil2 (5p)
 than in NiCl2 (3p)

Large exchange
 frustration J₃/J₁
 (increases with ligand)
 EXPECTED NON COLLINEARITY !!!

....NOT ONLY HEISENBERG

INTERSITE EXCHANGE-COUPLING MATRIX

isotropic Antisymmetric (Traceless) Symmetric $H = -\frac{1}{2} \sum_{i,j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + \sum_{i,j} D_{ij} \mathbf{S}_i \times \mathbf{S}_j + \sum_{i,j} \mathbf{S}_i \Gamma_{ij} \mathbf{S}_j$

Heisenberg DM Anisotropic exchange

INTERSITE EXCHANGE-COUPLING MATRIX

NiX2: ANISOTROPIC EXCHANGE AND SINGLE-ION ANISOTROPY

$$\mathcal{H} = \mathcal{H}_{ex} + \mathcal{H}_{si} = \frac{1}{2} \sum_{i,j} S_i \cdot \mathcal{J}_{ij} \cdot S_j + \sum_i S_i \cdot \mathcal{A}_{ii} \cdot S_i$$

(Inter-site) Symmetric Anisotropic Exchange matrix (in meV)

-5.1	0	0
0	-5.1	0
0	0	-5.1

NiCl₂

NiBr₂

Symmetry-allowed exchange tensor

 Anisotropies in 1st NN interaction in Nil₂: anisotropic diagonal and large off-diagonal.
 SOC of ligand: important!

FROM EXCHANGE CONSTANTS TO THE SPIN-TEXTURE

MULTISCALE APPROACH Plug DFT values into MonteCarlo simulations
 access to: 1) Larger (space) scales
 2) Finite temperatures

Silvia Picozzi (CNR-SPIN)

SPICE-SPIN+X Online Seminar

NON-COLLINEARITY IN NiBr2

Results of MonteCarlo simulations (24X24)

> Helical phase

Single-q state along $q_3 = (-2\delta, \delta) \bowtie$ SPIN HELIX

Nil2: EXOTIC NON-COPLANAR SPIN-ORDER !!!

Silvia Picozzi (CNR-SPIN)

SPICE-SPIN+X Online Seminar

WHAT IS A MAGNETIC SKYRMION ?

Particle-like nanometre-sized **spin texture** of **topological** origin (*Bogdanov*, 1989)

TOPOLOGICAL CHARGE

- Topological state
 without B field
- ✓ First example in 2D magnets
- Not driven by
 Dzyaloshinskii Moriya

WHAT HAPPENS UNDER MAGNETIC FIELD?

Silvia Picozzi (CNR-SPIN)

SPICE-SPIN+X Online Seminar

May 3rd 2023

N

WHAT HAPPENS UNDER MAGNETIC FIELD?

D. Amoroso, P. Barone and SP, Nature Communications 11, 5784 (2020)

Phase Diagram of **B/J**_{iso} vs **Temperature**

ROLE OF ANISOTROPIC EXCHANGE IN EXOTIC MAGNETISM

- Two eigenvectors in the
 Ni-I-Ni plane
- One along I-I ligands
- One along Ni-Ni

■ Third eigenvector ⊥ to the Ni-I-Ni-I plaquette

TOTAL ENERGIES OF SELECTED SPIN CONFIGURATIONS

- Superscript ± : chiral partners of the given spin texture, related by a reflection with respect to the xy plane
- Single-q spin configurations generated by MC simulations artificially tuning the two-site anisotropy term.

Energy degeneracy between Antiskyrmion and Spin-Helix !

Silvia Picozzi (CNR-SPIN)

SPICE-SPIN+X Online Seminar

SPIN-ORBIT COUPLING: AN ENDLESS SOURCE OF EXOTIC MAGNETISM IN 2D MAGNETS

OUTLINE:

• Introduction: Spin-orbit coupling

• Focus on: "Rashba Physics" in Ferroelectrics

Exotic Spin texture in 2D magnets

Multiferroicity in 2D magnets

HOW THE HYPE ON (ELECTRONIC) MULTIFERROICS STARTED ...

T.Kimura & al., Nature 425, 55 (03); S.W.Cheong & M.Mostovoy, Nature Mater. 6, 13 (07)

Silvia Picozzi (CNR-SPIN)

SPICE-SPIN+X Online Seminar

Can Multi-Ferroicity

Evidence for a single-layer van der Waals multiferroic

<u>Qian Song, Connor A. Occhialini, Emre Ergeçen, Batyr Ilyas, Danila Amoroso, Paolo Barone, Jesse</u> Kapeghian, Kenji Watanabe, Takashi Taniguchi, Antia S. Botana, Silvia Picozzi, Nuh Gedik & Riccardo Comin

Nature 602, 601–605 (2022) Cite this article

OPTICAL CHARACTERIZATION OF FEW-LAYERS Nil2

state!

offset vertically for clarity.

SPIN-INDUCED FERROELECTRICITY: SPIN CURRENT MODEL

Spin cycloid (spins in a plane containing e_{12})

(atsura, Nagaosa, Balatsky (PRL 2005,

$$\boldsymbol{P}_{12} = \boldsymbol{e}_{12} \times (\boldsymbol{S}_1 \times \boldsymbol{S}_2)$$

 $-e_{12}$: spiral propagation vector

Ρ

S

P⊥q

MAGNETOELECTRICTENSOR (DFT)

$$\begin{pmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{pmatrix} = \begin{pmatrix} 20 & 0 & 32 \\ 0 & 348 & -520 \\ 0 & 25 & 0 \end{pmatrix}$$

Units: 10⁻⁵ e Ang Large "non-KNB" terms!

Silvia Picozzi (CNR-SPIN)

SPICE-SPIN+X Online Seminar

We now have a 2D multiferroic!

2d-Materials LEGO

Thanks for your attention

FERROELECTRIC

FERROMAGN

GRA-PHENE