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OUTLINE:

• Introduction: Spin-orbit coupling
• Focus on: “Rashba Physics”  in Ferroelectrics

Exotic Spin texture in 2D magnets
Multiferroicity in 2D magnets



METHODS

•Density Functional 
Theory

… but also:
•Symmetry analysis
•Model Hamiltonian

MATERIALS

•Oxides

•Organics, hybrid
• Interfaces/surfaces
• 2D magnets

FOCUS

•Electronic 
Structure
Theory

•Understanding
Underlying
Microscopic 
Mechanisms

✓ Optimization
✓ Materials Design

LOCATION
& PEOPLE

https://sites.google.com/site/silviapicozzi/

MODEM 
(MOdelling and Design of functional Materials)



CROSS-COUPLING IN MULTIFUNCTIONAL FERROICS

Our expertise: study intertwined phenomena



Spin-Orbit Coupling in Solids
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Relativistic interaction linking spin and orbital 
momenta (i.e. spin space and real space)
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s…. a small interaction
leading to rich physics ....



THE RASHBA EFFECT 

(on the occasion of 
Rashba’s 95th birthday)



Time reversal symmetry:    k = -k

(Space) inversion symmetry:    k = -k

SYMMETRY PROPERTIES IN BAND STRUCTURE : 
SPACE/TIME INVERSION 

WITH time-reversal 
and WITH inversion 

symmetry

k = -k = k

WITHOUT time-
reversal symmetry

WITH inversion

k = -k  k

WITH time-reversal 

WITHOUT inversion 
symmetry: 

k = -k  k

a) No spin splitting b) Zeeman splitting

B

c) Rashba splitting

E



SOC effect: particle in electric field E experiences internal effective 
magnetic field Beff  v x E in its moving frame 

NB: E could be external (i.e. 2DEG), or “effective” (as in FE)

Beff couples with the electron spin 
in the Hamiltonian through the Rashba term: 

NB: The conventional Rashba term is linear in k

WHAT IS THE RASHBA EFFECT ?

E

E = Ez

S

v = ___
ħk

m*

E. Rashba, Sov. Phys. 
Solid State 2, 1109 (1960)



FERROELECTRICITY

Permanent and 
switchable P, 

controllable via E

SPIN-ORBIT 
COUPLING

Relativistic inte-
raction linking 
spin and lattice

KEY CONCEPT & 
MAIN MESSAGE

(S. Picozzi, Frontiers 
in Physics 2, 10 (2013) 

SPIN TEXTURE: 
LINKED to P (via 

SOC)→ CONTROL
and SWITCH via 
E in a permanent 
(non volat.) way

RASHBA EFFECT
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SPIN-ORBIT COUPLING: 
AN ENDLESS SOURCE OF EXOTIC 
MAGNETISM IN 2D MAGNETS
OUTLINE:

• Introduction: Spin-orbit coupling

• Focus on: “Rashba Physics”  in Ferroelectrics

Exotic Spin texture in 2D magnets

Multiferroicity in 2D magnets



THE FLAT-LAND

✓ One–atom-thick (or few-atoms-thick) systems
✓ Layers held together by (weak) Van der Waals forces 
✓ Extended range of properties and functionalities
✓ Properties of 2D materials different from 3D counterparts

…. and you can play LEGO 
with 2D-materials !!

VAN DER 
WAALS 

HETERO-
STRUCTURES



2D MAGNETS: A RICH PLAYGROUND 



☞ 2D magnetism relies on Anisotropic effects   ☞ Spin-orbit Coupling

CHALLENGES IN 2D MAGNETS & MERMIN WAGNER THEOREM

”At any non-zero temperature, a one- or two-dimensional
isotropic spin Heisenberg model with finite-range exchange

interaction can be neither ferromagnetic nor antiferromagnetic.”

N.D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1996)

➢ Need to increase Curie temperature TC 

➢ Need to improve air-stability & scalability

➢ Need for improved understanding/modelling



BACKGROUND ON NiX2 (X = Cl, Br, I): 3D vs 2D (ML)

Régnault et al,J. Physique (1982)

K0=(0.027,0.027,1.5)

ELECTRON FILLING

• Ni 3p6 3d8 4s2

• Cl 3s2 3p5

• Br 4s2 4p5

• I 5s2 5p5

S
O

C

☞COMPLEX 
MAGNETISM!

MONOLAYER STRUCTURE
✓ Triangular lattice
✓ Edge-Shared octahedra:

- small trigonal compression

MAGNETIC MOMENTS
• Localized moments on TM 

(high spin)
• Sizeable (positive) moment on 

halogen
t2g

eg high spin
S = 1 M = 2μB

CRYSTAL FIELD SPLITTING: Ni d8

3D layered
Van der Waals

crystal



Spins on a triangular lattice with AFM coupling

What about 
the third 
spin ????

FRUSTRATION IN MAGNETS: TRIANGLE

Frustrated AFM Ising AFM Heisenberg



J2 > |J1 | / 2

J2 > 0

J1 < 0

✓ Simplest case: Frustrated spin chains 
with the nearest-neighbour FM J1 and 
next-nearest-neighbour AFM
interactions J2 . 

✓ Spin chain with isotropic (Heisenberg) 
H = Σn[J1 Sn · Sn+1 + J2 Sn · Sn+2]. 
for J2 /|J1 | > 1/4 its classical      
ground  state is a magnetic    
spiral. 

FRUSTRATION IN MAGNETS: SPIN-CHAIN

✓ Chain of Ising spins σn = ±1, with energy 
H = Σn[J1 σnσn+1 + J2 σnσn+2] 
has up–up–down–down ground state for 

J2 /|J1 | > 1/2.

J2 > 0

J1 < 0

J2 > 0

J1 < 0J2 > |J1 | / 4



Strong FM J1
(∼ -7 meV)

Negligible J2

EXCHANGE COUPLING CONSTANTS

FM

FM

AFM

✓ Magnetic interaction 
strength varies with the 
ligand

✓ Longer ranged 
interaction in NiI2 (5p) 
than in NiCl2 (3p)

☞ Large exchange 
frustration J3/J1 
(increases with ligand) 

☞ EXPECTED NON-
COLLINEARITY !!!

Strong AFM J3
(∼ 6 meV)

Let’s start with Heisenberg Hamiltonian (no SOC)



H = - — ∑i,j Jij Si ∙ Sj H = - — ∑i,j Si
T Jij Sj ,    Jij∈ℝ

3x3

J = — Tr(J) 𝕀3  ⊕ — (J – JT) ⊕— (J + JT  - — Tr(J) 𝕀3 )

Isotropic Antisymmetric (Traceless) Symmetric

H = - — ∑i,j Jij Si ∙ Sj + ∑i,j Dij Si x Sj +   ∑i,j Si Gij Sj

Heisenberg Dzyaloshinskii-Moriya Anisotropic exchange

Antisymmetric 3x3 matrix mapped in 3d DM vector
(J – JT )ij

μν = ∑ Dij,λ ελμν (via Levi-Civita tensor ελμν)

….NOT ONLY HEISENBERG          EXCHANGE MATRIX 
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isotropic Antisymmetric (Traceless) Symmetric

H = - — ∑i,j Jij Si ∙ Sj + ∑i,j Dij Si x Sj +   ∑i,j Si Gij Sj

Heisenberg DM Anisotropic exchange

INTERSITE EXCHANGE-COUPLING MATRIX 

1
2

J1 < 0

rij

Dij

rij

Dij

rij

Dij



isotropic Antisymmetric (Traceless) Symmetric

H = - — ∑i,j Jij Si ∙ Sj + ∑i,j Dij Si x Sj +   ∑i,j Si Gij Sj

Heisenberg DM  Anisotropic exchange

INTERSITE EXCHANGE-COUPLING MATRIX 

1
2

✓ DM and Anisotropic exchange: SOC-driven
✓ Moriya superexchange theory:  DM ∝Z2 and Anisotropic xc G∝Z4 

✓ Anisotropic exchange: sometimes «Two-site anisotropy»  
☞ Diagonalize symmetric matrix + obtain

principal axes along which spins align
✓ In our case: DM=0 (Inv symmetric) 

Gij has by symmetry the following form



NiX2: ANISOTROPIC EXCHANGE AND SINGLE-ION ANISOTROPY

Symmetry-allowed
exchange tensor

✓ Anisotropies in 1st NN interaction in NiI2 : anisotropic diagonal 

and large off-diagonal.   ☞ SOC of ligand: important! 

(Inter-site) Symmetric Anisotropic Exchange 
matrix (in meV)

-5.1 0 0

0 -5.1 0

0 0 -5.1

-6.0 0 0

0 -5.8 -0.1

0 -0.1 -5.9

-8.0 0 0

0 -5.6 -1.4

0 -1.4 -7.3

NiCl2 NiBr2 NiI2



FROM EXCHANGE CONSTANTS TO THE SPIN-TEXTURE

SPIN-TEXTURE 
REPRESENTATION

• Black arrows: in-plane
spins (localized on ions)

• Color scale: Sz (out-of-
plane spins)

Exchange Coupling Tensor Single-Ion Anisotropy (SIA)

Plug DFT values into MonteCarlo simulations
☞ access to: 1) Larger (space) scales

2) Finite temperatures

(Real-space) 
SPIN TEXTURE

Magnetic vortex

MULTISCALE 
APPROACH



NON-COLLINEARITY IN NiBr2
Color scale:
Sz (out-of-

plane spins)

Zoom of 
Helical
phase

Results of 
MonteCarlo
simulations

(24x24)

Single-q state along q3 = (−2δ, δ) ☞ SPIN HELIX

+1

0

-1

Specific
heat



NiI2: EXOTIC NON-COPLANAR SPIN-ORDER !!!



WHAT IS A MAGNETIC SKYRMION ?

Different handedness (or rotational sense): 
Counterlockwise vs clockwise

P
h

a
se

d
ia

g
ra

m
Particle-like nanometre-sized spin texture of topological origin (Bogdanov, 1989)

Antiskyrmion:
change of

rotational sense
for two high 

symmetry
directions

TOPOLOGICAL CHARGE (discrete approx.)
➢ (Classical) Spins mi on atomic sites

➢Topological charge Q = S qi

Triple-scalar 
product

(or scalar spin-
chirality)

= m1 ∙ (m2 × m3 ) 

Smooth
mapping
S2 ⬄ R2 



TOPOLOGICAL CHARGE

✓ Topological state 
without B field

✓ First example in 2D 
magnets

✓ Not driven by 
Dzyaloshinskii-
Moriya

☞ |Q|=2 Higher-order
antiskyrmion!

Spin-structure
factor S(q)

Topological
charge |Q| 
per magnetic
unit cell

Topological
Susceptibility
𝛘q∼ <Q2>-<Q>2

Spin 
Chirality
Map



WHAT HAPPENS UNDER MAGNETIC FIELD?



WHAT HAPPENS UNDER MAGNETIC FIELD?

|Q|=2 skyrmion |Q|=1 skyrmion FM (|Q|=0)
☞ Sharp 

topological transition to 
«conventional» 
(Q=1) skyrmion!

Topological charge

Magnetization
Q
=2

Q=1 Q=0

Phase Diagram of B/Jiso vs Temperature

D. Amoroso, P. Barone and SP, Nature Communications  11, 5784 (2020)



ROLE OF ANISOTROPIC EXCHANGE IN EXOTIC MAGNETISM

Diagonalize
☞ Two eigenvectors in the   

Ni-I-Ni plane
- One along I-I ligands
- One along Ni-Ni

☞ Third eigenvector
⊥ to the Ni-I-Ni-I plaquette

☞ IMPORTANT !
Combined with three-fold
symmetry, anisotropic
term drives NON 
COPLANARITY required
for net and unique
SPIN-CHIRALITY

Roughly ≈ Ni

Ni

I

I



TOTAL ENERGIES OF SELECTED SPIN CONFIGURATIONS

• Superscript ± : chiral partners of the given spin texture,
related by a reflection with respect to the xy plane

• Single-q spin configurations generated by MC
simulations artificially tuning the two-site anisotropy
term.

Energy degeneracy between Antiskyrmion and Spin-Helix !



SPIN-ORBIT COUPLING: 
AN ENDLESS SOURCE OF EXOTIC 
MAGNETISM IN 2D MAGNETS 

OUTLINE:

• Introduction: Spin-orbit coupling

• Focus on: “Rashba Physics”  in Ferroelectrics

Exotic Spin texture in 2D magnets

Multiferroicity in 2D magnets



☞ Right 
handed

HOW THE HYPE ON (ELECTRONIC) MULTIFERROICS STARTED …

Spin
spiral

TN

Ortho-TbMnO3

Left 
handed

q

Left 
handed

q

T.Kimura & al., Nature 425, 55 (03); 
S.W.Cheong & M.Mostovoy, Nature Mater. 6, 13 (07)

P

P



Can Multi-
Ferroicity 

persist down 
to the 

ultimate 
monolayer 

limit ?



Optical image 
NiI2 samples 
grown on hBN

Temperature-
dependent 
polarized 
microscopy 

d.Temperature-dependent,
birefringence-induced polarization
rotation θ(T) in monodomain regions.
e.Temperature-dependent ED-SHG.
Data normalized to value at 5 K and
offset vertically for clarity.

OPTICAL CHARACTERIZATION OF FEW-LAYERS NiI2

Spin-helix:
likely spin 

ground 
state!



SPIN-INDUCED FERROELECTRICITY: SPIN CURRENT MODEL

q P

e12

S1 S2
P12 = e12 × (S1 × S2)

Katsura, Nagaosa, Balatsky (PRL 2005)

q

Spin cycloid (spins in a plane containing e12)

Spin helix (spins rotate in a plane ⊥ e12)

P ⊥ q

P = 0 according to KNB, since e12 ∥ (S1 × S2)

“GENERALIZED” KNB MODEL

Multiferroicity in spin helices, due to “non-KNB” coupling (MnI2 – PRL Xiang (2011)

0 0 0

0 0 C

0 –C 0

Magnetoelectric tensor
KNB: special case

e12: spiral propagation vector



MAGNETOELECTRIC TENSOR  (DFT)

Units: 10-5 e Ang

Large “non-KNB” 
terms!
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Ferroelectric 
polarization 
components}



GRA-
PHENE

We now have a 2D multiferroic !
Thanks for 

your attention
!

2d-Materials 
LEGO
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