

Developments in Ultrafast Electron Microscopy

Claus Ropers

Solids and Nanostructures: Selected Challenges

- Emergence and control of correlated states of matter
- Energy transfer and redistribution among different degrees of freedom
- Pathways in structural and magnetic transformations

Fig. adapted from: Tokura et al., Nat. Phys. (2017)

Ultrafast transmission electron microscopy (UTEM)

Nanocathodes:

- High coherence
- Large extraction fields
- Short electron pulses

Ultrafast transmission electron microscope (UTEM)

Liu et al., J. Vac. Sci Tech. (2010).

Temporal/spatial/spectral electron pulse properties

→ rms-Emittance: $\varepsilon = 2 pm \cdot rad$ (m. Apertur) → Peak Brillance: 1.75·10¹³ A/m²sr

> A. Feist *et al.*, Nature 521, 200 (2015) A. Feist *et al.*, Ultramicroscopy (2017)

Ultrafast transmission electron microscopy (UTEM)

Ultrafast transmission electron microscopy (UTEM)

Structural dynamics 100 200 Time Delay (ps) 100 200 Time Delay (ps)

Phase transitions

P=90.0mW

Th. Danz et al., Science (2021)

Ulrafast Imaging of a Metal-Insulator Transition

Ultrafast dark-field imaging

pump pulses Specimen plane **Objective lens** Back-focal plane (BFP)

Laser

Imaging lenses

Electron-sensitive detector

Collimated electron probe pulses

Gold reflection layer Silicon nitride membrane 1 T-TaS, thin film

> Dark-field (DF) aperture array

1*T*-TaS₂ sample design

Th. Danz, T. Domröse, C. Ropers, *Science* **371.6527** (2021): 371-374.

Ultrafast charge-density wave dynamics in 1*T*-TaS₂

- Rapid out-of-plane carrier transport
- Formation of phase boundaries
- Relaxation governed by thermal diffusion
- Study of phase transition at hundreds of kHz

Quantum probing in electron microscopy

Want to develop strategies to prepare, manipulate and characterize the quantum state of electron pulses for novel measurement schemes

->Develop a "Quantum Optics" framework for electron microscopy

Image: adapted from M. Haider

Counting electrons for each pulse

n-event classification

- We observe considerable antibunching.
- Poisson statistics: $P_n = r_n \frac{P_1^n}{n!}$ with $r_n = 1$
- In the measurement: $r_{n=2} = 0.85$, $r_{n=3} = 0.57$

see also: S. Keramati et al., Phys. Rev. Lett. 127, 180602 (2021)

Electron number-state spectra

Two-electron energy correlation

Electron pair distribution

- Correlation gap of 1.7 eV
- Energy antibunching

 Strongly Coulomb-correlated two-electron states

Quantum probing in electron microscopy

Image: adapted from M. Haider

Real-space imaging of nanotip plasmons B. Schröder *et al.,* Phys. Rev. B (2015)

Literature:

Feist et al., Nature (2015) Barwick et al., Nature (2009) A. Howie, Inst. Phys. Conf. Ser. 161, 311 (1999) F.J. García de Abajo *et al.*, Nano Lett. (2010) S.T. Park *et al.*, NJP (2010)

B. Barwick *et al.,* Nature (2009)

Photon-induced near-field electron microscopy (PINEM)

 $\Gamma(\omega) = \frac{e}{\pi \hbar \omega} \int dt \, Re \left\{ e^{-i\omega t} v \cdot E^{ext} [r_e(t), \omega] \right\}$ Loss/gain probability external E-field

See e.g.: F. J. Garcia de Abajo, Rev. Mod. Phys. 82, 209 (2010)

20

A. Feist et al., Nature 521, 200-203 (2015)

Literature:

Feist et al., Nature (2015)
B. Barwick *et al.*, Nature (2009)
A. Howie, Inst. Phys. Conf. Ser. 161, 311 (1999)
F.J. García de Abajo *et al.*, Nano Lett. (2010)
S.T. Park *et al.*, NJP (2010)

Equivalent to a continuous-time quantum walk

A. Feist et al., Nature 521, 200-203 (2015)

Literature:

Feist et al., Nature (2015)
B. Barwick *et al.*, Nature (2009)
A. Howie, Inst. Phys. Conf. Ser. 161, 311 (1999)
F.J. García de Abajo *et al.*, Nano Lett. (2010)
S.T. Park *et al.*, NJP (2010)

Equivalent to a continuous-time quantum walk

Energy

Two-colour coherent state control

K. Priebe *et al.* Nat. Phot. 11, 793 (2017)

Two-colour coherent state control

K. Priebe *et al.* Nat. Phot. 11, 793 (2017)

Two sequential Galton boards

Ramsey-type double interaction

- Single interaction: phase modulation along the pulse
- quantum coherent control of free electron momentum states

K. E. Echternkamp et al., Nature Phys. (2016)

Attosecond bunching

b

Time (fs)

K. E. Priebe et al., Nat. Phot. (2017)

Phase-matched interaction in whispering gallery mode resonators

O. Kfir *et al., Nature* (2020).

Electron-light interaction at high-Q resonators

J.-W. Henke et al. Nature 600, 653–658 (2021)

Electron-light interaction at high-Q resonators

Ramsey-type interference at resonator

side view

quantitative PINEM of larger area

J.-W. Henke, AF et al., Nature 600, 653–658 (2021).

Electron energy dependent phase matching

100

150

Electron energy (keV)

200

- PINEM for varying the electron energy between 80-200 keV
- visualization of velocity phase matching
- good agreement with numerical simulations

Coupling to an empty cavity: Spontaneous photon generation

A. Feist et al., Science (2022)

Coincidence measurements:

see also D. Jannis et al., Appl. Sci. (2021) D. Varkentina et al., Sci Adv. (2022)

Free spectral range: 194 GHz (design)

Spectrum limited by

- detector
- coupling of resonator

Electron-photon pair state

events

two distinct features

- uncorrelated background $|E_0, 0\rangle$ Initial state
- photon correlated electron energy loss peak

 $|E_0 - \hbar\omega, 1\rangle$ Single photon generation

- unique identification \rightarrow of correlated electron-photon pairs
- **Correlation-enhanced imaging and spectroscopy**
- **Heralded Single Photon Generation**
- Strong indication for entanglement

Contrast enhancement by coincidence gating

- imaging the resonator mode with loss scattered electrons, generated photons and correlated events
- → two orders of magnitude contrast enhancement by coincidence gating

Ultrafast TEM Dr. Armin Feist Dr. Marcel Möller John Gaida Till Domröse Dr. Murat Sivis Jan-Wilke Henke Germaine Arend Jasmin Kappert Dr. Sergey V. Yalunin **Rudolf Haindl Karin Ahlborn** Dr. Nora Bach Dr. Hao Jeng Dr. Igor Vinograd

Former members: Dr. Thomas Danz Dr. Max Gulde Dr. Katharina Priebe Dr. Nara Rubiano Dr. Sascha Schäfer Dr. Tyler Harvey

Ultrafast LEED **Dennis Epp Tim Dauwe** Dr. Hannes Böckmann **Felix Kurtz** Dr. Benjamin Schröder Alp Akbiyik **Johannes Otto** Leon Brauns **Maximilian Franz Ultrafast Harmonic Imaging** Dr. Sergey Zayko Dr. Hung-Tzu Chang Jakob Hagen **Tobias Heinrich**

Acknowledgements

Dr. Gero Storeck Gevin v. Witte Dr. Ofer Kfir Dr. Gerrit Horstmann Dr. Hugo Lourenco-Martins Dr. Bareld Wit Dr. Simon Vogelgesang

DFG Deutsche Forschungsgemeinschaft

TaS2-Samples: K. Rossnagel (Kiel) Photonic Resonators: T. Kippenberg (EPFL)

Thank you for your attention!

