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 Direct vs Inverse problem



 The problems of making a roadmap
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Explore structural space
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and
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Data to predictions: TC of ferromagnets

Chemical space

Structural space

Properties

James Nelson
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J. Nelson and SS, Phys. Rev. Mater 3, 104405  (2019)



 Example: TC of ferromagnets

Start from 
experimental  
data

Goal: predict TC of ferromagnets

~2,500



 Automated Extraction

250,000 
articles

Step 1:  
Sentence tokenisation

List of sentences

Step 4:  
Relation classification

Relevant sentences

The	Curie	temperature	of	Ga0.5Fe2.504	
and	Ga0.7Fe2.3O4	have	been	found	to	

be	equal	to	413	°C	and	347	°C,	
respecDvely.	

55,000 sentences

Step 3:  
Named entity 
recognition

The	Curie	temperature	of	Ga0.5Fe2.504	
and	Ga0.7Fe2.3O4	have	been	found	to	

be	equal	to	413	°C	and	347	°C,	
respecDvely.	

Step 2:  
Classification

Ga0.5Fe2.504			413	°C

Ga0.5Fe2.504			347	°C

Ga0.7Fe2.304			413	°C

Ga0.7Fe2.304			347	°C

Step 5:  
Post-processing

Compound TC (K)

Ga0.5Fe2.504																																		686

Ga0.7Fe2.304																																		620

1,700 unique entries Database

L.P.J. Gilligan et al., arXiv: 2301.11689  (2023)



 Example: TC of ferromagnets

Goal: predict TC of ferromagnets

“Standard way”

Density 
functional 

theory

Mapping on 
Heisenberg 

model

Classical 
Monte Carlo TC

Approximation 
Cell size 
Broken symmetry 
…

Non-magnons 
Interaction range 
….

Quantum effects 
….

Often if we do not know the answer we cannot ‘predict’



 Example: TC of ferromagnets

TC

ML algorithmO=8 Fe=26
Fe3O4

1818 Training

746 Test

N data

Error

Test data

Training data



 Example: TC of ferromagnets

Ridge = Ridge Regression 
KRR   = Kernel Ridge Reg. 
NN     = Neural Network 
RF     = Random Forest



 Example: TC of ferromagnets

MAE~65 K

J. Nelson and S. Sanvito, Phys. Rev. Mater 3, 104405  (2019)



 Example: TC of ferromagnets

J. Nelson and S. Sanvito, Phys. Rev. Mater 3, 104405  (2019)



 Example: TC of ferromagnets
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 What we have learnt ?

J. Nelson and S. Sanvito, Phys. Rev. Mater 3, 104405  (2019)

Data can be used to construct models !
Useful for an initial exploration

Extremely high throughput

Only experimental data are needed

Structure difficult to introduce

Need to harvest more data: automation 
possible now!!



Continuous properties representation

Chemical space

Structural space

Properties

Alessandro Lunghi, Yanhui Zhang, Michelangelo Domina

z

A. Lunghi and SS, J. Chem. Phys. C 124, 5802 (2019)



 Representing atomic distributions

We need to distinguish 
different structures

This is not trivial:

Space groups ?

No. 225 No. 166



 Representing atomic distributions

 Cartesian coordinates

Invariant by translations
Locality fixes the problem

1 2

3

4

Locality fixes also invariance by  
permutation
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 Representing atomic distributions

Invariant by rotations Needs to be built in

Usually spherical harmonics expansion



 Representing atomic distributions

ρ(r) = ∑
i

αiδ(r − ri) |ρ⟩ =
∞

∑
n=0

∞

∑
l=0

l

∑
m=−l

cnlm |nlm⟩

pnl =
l

∑
m=−l

|cnlm |2This is a rotational invariant 
(power spectrum)



 Need continuous representation

PRL 104, 136403 (2010); J. Comp. Phys. 285, 316 (2015) 

Spectral Neighbour Analysis Potential (SNAP)

Clever representation of the local chemical environment

Rotationally invariant descriptors

Total energy linear in the descriptors

}



 Total energy: [Co(pdms)2]2-

“Useful” configurations: 
phonon, stress tensor, 

First force field MD at finite T: 
new configurations

New force field

Monitor Phonon-
phonon 
coupling

Phonon 
spectrum

1.6kcal/mole
70 meV



 Total energy: agnostic of the bond nature

A. Lunghi and SS, Science Adv. 5, eaaw2210 (2019) 1kcal/mol = 40meV



 Not just for total energy

2.2 cm-1

A. Lunghi and SS, Science Adv. 5, eaaw2210 (2019); J. Chem. Phys. C 124, 5802 (2019).



 You can search in continuous surfaces!

5% reduction of:   dCo-N 

   N-Co-N
50% increase of D



 What is this useful for?

Very accurate atomic models possible
Useful for finite temperature

Mainly energy but other quantities possible

Only moderately large training set needed

Much better for molecules than solids

High risk of overfitting

Not really interpretable



 

Michelangelo Domina, Matteo Cobelli

ML potential for vector fields

Chemical space

Structural space

Properties

M. Domina, M. Cobelli and SS, Phys. Rev. B 105, 214439 (2022)



 Extension to spin

Then expand

The idea is to construct a force-field, which depends on a vector field



 Extension to spin

is fully rotational invariant

The l=0 term is the Heisenberg model



 Test against simple models

Transverse excitations

Longitudinal excitations



 Test against simple models: HH

E error 
~0.1%

35 features 

~200 training 
data



 Test against simple models: HH+HL

GAP ML model



 Test against simple models

Now fitting ab initio 
data

α-(bcc)-ε(hcp)



 Test against simple models

Extension of FF to vector fields possible
Very general and agnostic of the PES

Formalism extendible to bi-spectrum

Small training sets needed (so far)

Need non-linear model to go beyond 
Heisenberg

Constructing dataset is complicated

Concept extendable to other FF classes



 Bottom line ….


