

MATERIALS THEORY

Hidden magnetoelectric multipoles

 $\hat{H}\Psi(\mathbf{r},t)$

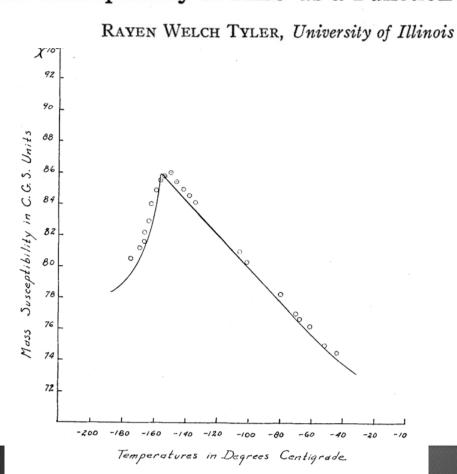
 $H\Psi(\mathbf{r},t)$

1930s – weird magnetic response of some "non-magnetic" materials

 $\hat{H}\Psi(\mathbf{r},t)$

 $H\Psi(\mathbf{r},t)$

NOVEMBER 1. 1933PHYSICAL REVIEWVOLUME 44The Magnetic Susceptibility of MnO as a Function of the Temperature

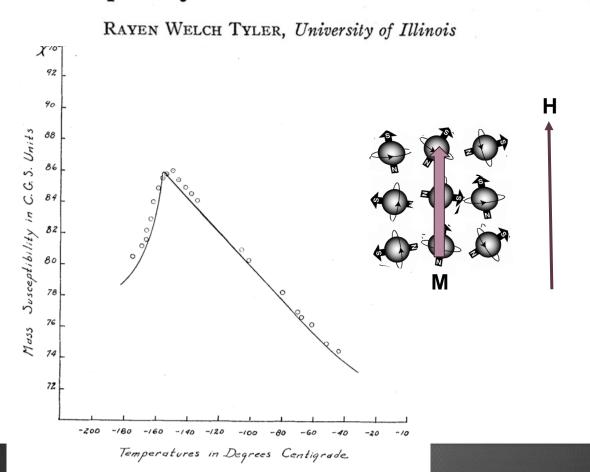


Understood at high temperature

 $H\Psi(\mathbf{r},t)$

NOVEMBER 1. 1933PHYSICAL REVIEWVOLUME 44The Magnetic Susceptibility of MnO as a Function of the Temperature

 $H\Psi(\mathbf{r},t)$

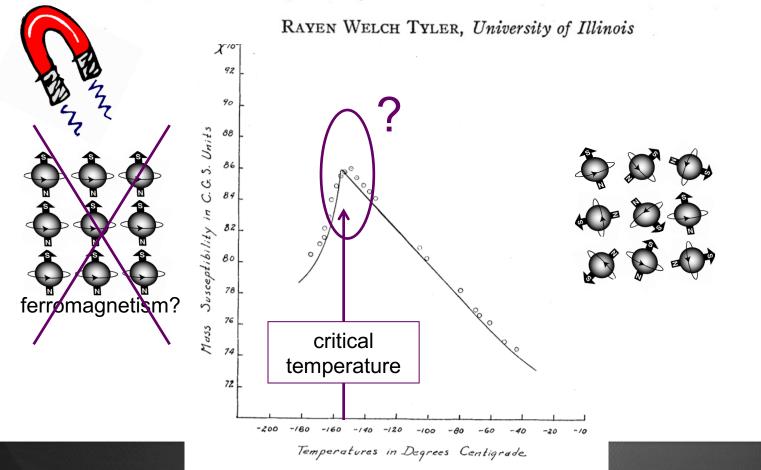


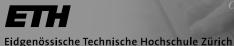
But not at low temperature

 $H\Psi(\mathbf{r},t)$

NOVEMBER 1. 1933PHYSICAL REVIEWVOLUME 44The Magnetic Susceptibility of MnO as a Function of the Temperature

 $\hat{H}\Psi(\mathbf{r},t)$



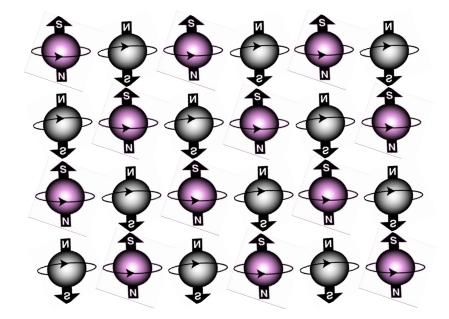


An early example of "hidden order"

 $H\Psi(\mathbf{r},t)$

In 1934 Louis Néel proposed a phase transition to antiferromagnetism...

 $\hat{H}\Psi(\mathbf{r},t)$



...and showed that the observed susceptibility was consistent with such a magnetic ordering

MATERIALS THEORY

First direct evidence 20 years later from neutron diffraction!

 $\hat{H}\Psi(\mathbf{r},t)$

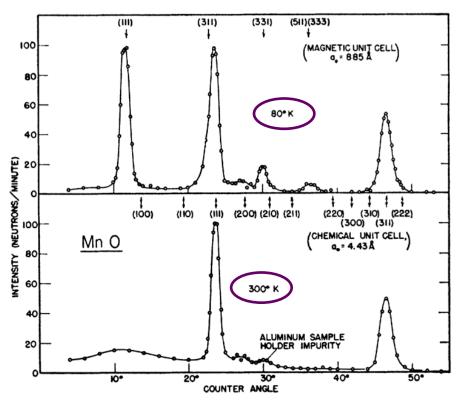
Detection of Antiferromagnetism by Neutron Diffraction*

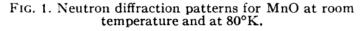
 $= H\Psi(\mathbf{r}, t)$

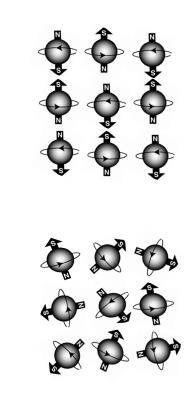
C. G. SHULL Oak Ridge National Laboratory, Oak Ridge, Tennessee

AND

J. SAMUEL SMART







MATERIALS THEORY

Nobel Prize 1994 – Clifford Shull and Bertram Brockhouse

 $H\Psi(\mathbf{r}_{\cdot})$

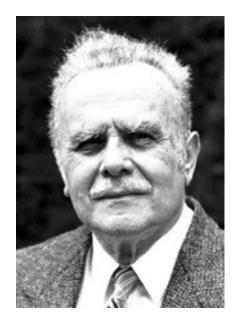


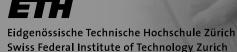
"For development of the neutron diffraction technique"

"For the development of neutron spectroscopy"

Nobel Prize 1970 – Louis Néel

"For fundamental work and discoveries concerning antiferromagnetism..."



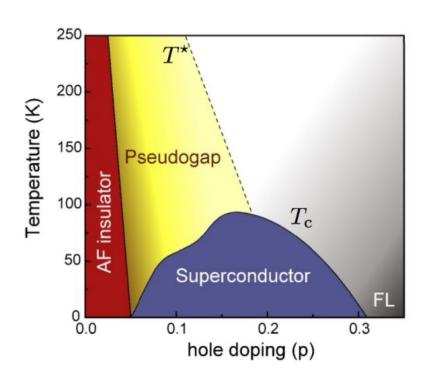


Antiferromagnets today

 $H\Psi(\mathbf{r},t)$

A large number of antiferromagnetic materials is now known ... They are extremely interesting from the theoretical point of view but do not seem to have any applications.

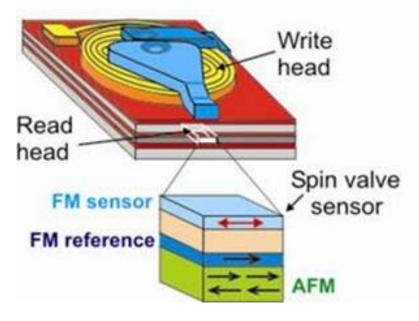
 $\hat{H}\Psi(\mathbf{r},t)$



L. Néel, Nobel lecture, 1970

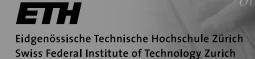
Exchange bias in GMR sensors

 $\partial \Psi(\mathbf{r},t)$



(Image from High-Magnetic Field Lab, Toulouse)

(Image from J. Stohr, SLAC)



 $\partial \Psi(\mathbf{r},t)$

 $\hat{H}\Psi(\mathbf{r},t)$

Are other kinds of magnetic order still hidden?

 $= H\Psi(\mathbf{r}, t)$

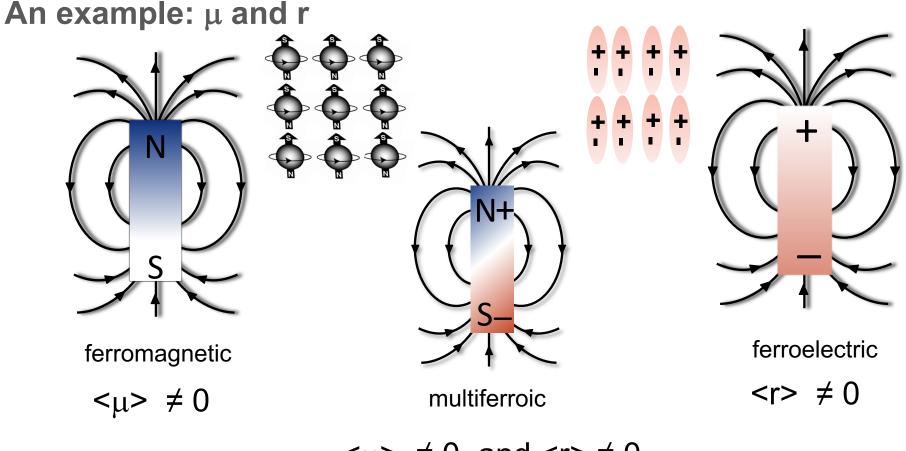
Probably ... but where to look?

Composite order, where $\langle A \rangle = 0 \langle B \rangle = 0$

but $\langle A \otimes B \rangle \neq 0$

 $= H\Psi(\mathbf{r}, t)$

MATERIALS THEORY



 $\hat{H}\Psi(\mathbf{r},t)$

 $<\mu> \neq 0$ and $<r> \neq 0$

Beyond Multiferroics

 $< \mu \otimes r > \neq 0$ even with $< \mu > = 0$ and < r > = 0

MATERIALS THEORY

Such $< \mu \otimes r >$ order occurs in magnetoelectric multipoles

 $\hat{H}\Psi(\mathbf{r},t)$

Outline

What are magnetoelectric multipoles?

 $H\Psi(\mathbf{r},t)$

What properties do the magnetoelectric multipoles cause?

Can we directly measure them?

How does a magnetic material interact with a magnetic field?

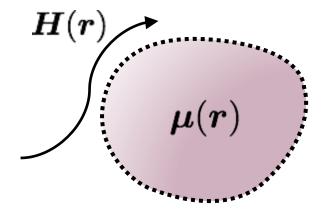
 $\hat{H}\Psi(\mathbf{r},t)$

In general, the interaction energy is

$$magnetization density$$

$$E_{int} = -\int \mu(\mathbf{r}) \cdot \mathbf{H}(\mathbf{r}) d^3 \mathbf{r}$$
magnetic field

 $H\Psi(\mathbf{r},t)$



 $\partial \Psi(\mathbf{r},t)$

 $\mathbf{T}(m)$

How does a magnetic material interact with a magnetic field?

 $\hat{H}\Psi(\mathbf{r},t)$

 $= H\Psi(\mathbf{r}, t)$

In general, the interaction energy is

$$E_{\text{int}} = -\int \mu(\mathbf{r}) \cdot \mathbf{H}(\mathbf{r}) d^{3}\mathbf{r}$$

$$magnetic field$$
and usually we write this as

$$= -\int \mu(\mathbf{r}) \cdot \mathbf{H}(0) d^{3}\mathbf{r}$$

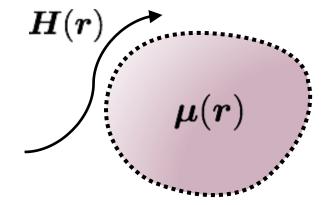
$$= -\mathbf{m} \cdot \mathbf{H}(0)$$
where $\mathbf{m} = \int \mu(\mathbf{r}) d^{3}\mathbf{r}$
is the magnetic dipole moment

How does a magnetic material interact with a magnetic field?

But we've ignored spatial variations in H!

If they matter: make a <u>multipole expansion</u> for the interaction energy of a magnetization density with the magnetic field, in powers of the field gradient:

 $H\Psi(\mathbf{r},t)$



$$E_{\text{int}} = -\int \mu(\mathbf{r}) \cdot \mathbf{H}(\mathbf{r}) d^{3}\mathbf{r}$$

$$= -\int \mu(\mathbf{r}) \cdot \mathbf{H}(0) d^{3}\mathbf{r} - \int r_{i}\mu_{j}(\mathbf{r})\partial_{i}H_{j}(0) d^{3}\mathbf{r} - \dots$$

$$= -\mathbf{m} \cdot \mathbf{H}(0)$$
usual dipolar
Zeeman term

MATERIALS THEORY

What are the extra terms in the interaction energy?

 $= H\Psi(\mathbf{r}, t)$

$$E_{\text{int}} = -\int \mu(\mathbf{r}) \cdot \mathbf{H}(\mathbf{r}) d^{3}\mathbf{r}$$

$$= -\int \mu(\mathbf{r}) \cdot \mathbf{H}(0) d^{3}\mathbf{r} + \int r_{i}\mu_{j}(\mathbf{r}) \partial_{i}H_{j}(0) d^{3}\mathbf{r} - \dots$$

$$= 9 \text{-component tensor}$$

$$\mathcal{M}_{ij} = \int r_{i}\mu_{j}(\vec{r}) d^{3}\vec{r}$$

the magnetoelectric multipole tensor

 $\partial \Psi(\mathbf{r},t)$

 $\hat{H}\Psi(\mathbf{r},t)$

MATERIALS THEORY

The < $\mu \otimes r$ > order can be described in terms of magnetoelectric multipoles

 $H\Psi(\mathbf{r},t)$

Convenient to decompose $\mathcal{M}_{ij} = \int r_i \mu_j(\vec{r}) d^3 \vec{r}$ into its irreducible parts:

 $\hat{H}\Psi(\mathbf{r},t)$

$$a = \frac{1}{3} \int \boldsymbol{r} \cdot \boldsymbol{\mu}(\boldsymbol{r}) d^3 \boldsymbol{r} \quad \boldsymbol{t} = \frac{1}{2} \int \boldsymbol{r} \times \boldsymbol{\mu}(\boldsymbol{r}) d^3 \boldsymbol{r} \quad q_{ij} = \frac{1}{2} \int \left[r_i \mu_j + r_j \mu_i - \frac{2}{3} \delta_{ij} \boldsymbol{r} \cdot \boldsymbol{\mu}(\boldsymbol{r}) \right] d^3 \boldsymbol{r}$$

magnetoelectric monopole moment

$$-a(\nabla \cdot \boldsymbol{H})_{\boldsymbol{r}=0}$$

magnetoelectric toroidal moment

 $-t \cdot [\nabla \times H]_{r=0}$

magnetoelectric quadrupole moment

$$-q_{ij}\left(\partial_{i}H_{j}+\partial_{j}H_{i}
ight)_{m{r}=0}$$

Outline

What properties do the magnetoelectric multipoles cause?

 $\hat{H}\Psi(\mathbf{r},t)$

 $H\Psi(\mathbf{r},t)$

Can we directly measure them?

What next?

Outline

What properties do the magnetoelectric multipoles cause? Linear Magnetoelectric Effect Surface Magnetism Can we directly measure them?

 $\hat{H}\Psi(\mathbf{r},t)$

 $H\Psi(\mathbf{r},t)$

What next?

MATERIALS THEORY

Property I: The linear magnetoelectric effect

 $H\Psi(\mathbf{r},t)$

$$P_{i} = \alpha_{ij} H_{j}$$
$$M_{i} = \alpha_{ji} E_{j}$$

 $\hat{H}\Psi(\mathbf{r}, \mathbf{r})$

 α is the magnetoelectric tensor

non-zero only in the absence of space-inversion and time-reversal symmetries

MATERIALS THEORY

Property I: The linear magnetoelectric effect

 $H\Psi(\mathbf{r},$

$$P_{i} = \alpha_{ij} H_{j}$$
$$M_{i} = \alpha_{ji} E_{j}$$

 α is the <u>magnetoelectric tensor</u>

non-zero only in the absence of space-inversion and time-reversal symmetries

form of the tensor determined by structural and magnetic symmetry

$$\begin{bmatrix} \boldsymbol{\alpha}_{11} & \boldsymbol{\alpha}_{12} & \boldsymbol{\alpha}_{13} \\ \boldsymbol{\alpha}_{21} & \boldsymbol{\alpha}_{22} & \boldsymbol{\alpha}_{23} \\ \boldsymbol{\alpha}_{31} & \boldsymbol{\alpha}_{32} & \boldsymbol{\alpha}_{33} \end{bmatrix}$$

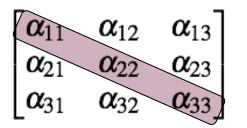
MATERIALS THEORY

By symmetry, when magnetoelectric multipoles exist, and order ferroically, the linear magnetoelectric tensor is nonzero (and vice versa)

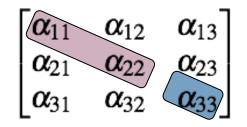
 $\hat{H}\Psi(\mathbf{r},t)$

 $H\Psi(\mathbf{r},t)$





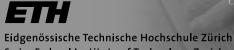
 $\begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix}$



isotropic, diagonal

anti-symmetric, off-diagonal

traceless

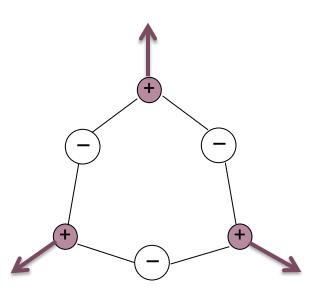


MATERIALS THEORY

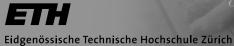
Possibly helpful cartoon connecting linear magnetoelectric effect and magnetoelectric monopole

 $\hat{H}\Psi(\mathbf{r}, \mathbf{r})$

 $H\Psi(\mathbf{r},t)$



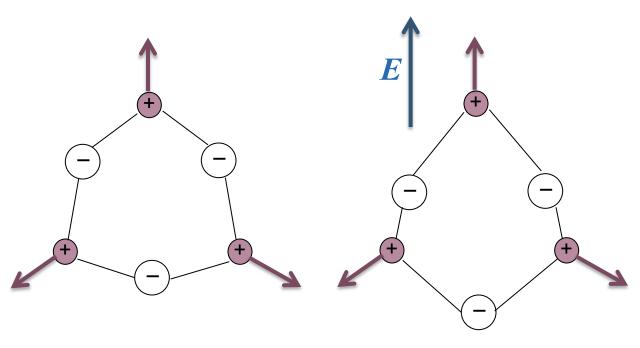
180° TM-O-TM interaction is AFM



MATERIALS THEORY

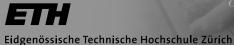
Possibly helpful cartoon connecting linear magnetoelectric effect and magnetoelectric monopole

 $\hat{H}\Psi(\mathbf{r}, \mathbf{r})$



 $H\Psi(\mathbf{r},t)$

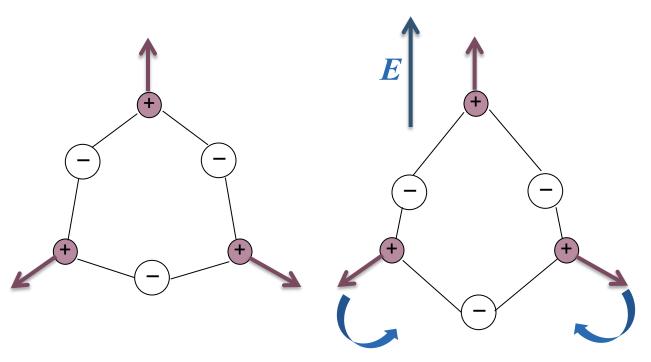
180° TM-O-TM interaction is AFM



MATERIALS THEORY

Possibly helpful cartoon connecting linear magnetoelectric effect and magnetoelectric monopole

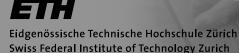
 $\hat{H}\Psi(\mathbf{r}, \mathbf{r})$



 $H\Psi(\mathbf{r},t)$

180° TM-O-TM interaction is AFM

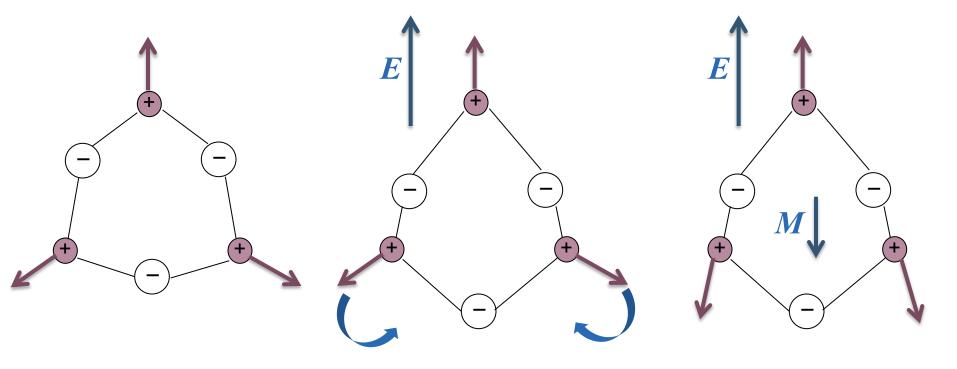
90° TM-O-TM interaction is FM



Possibly helpful cartoon connecting linear magnetoelectric effect and magnetoelectric monopole

 $H\Psi(\mathbf{r})$

 $H\Psi(\mathbf{r},t)$



180° TM-O-TM interaction is AFM

90° TM-O-TM interaction is FM

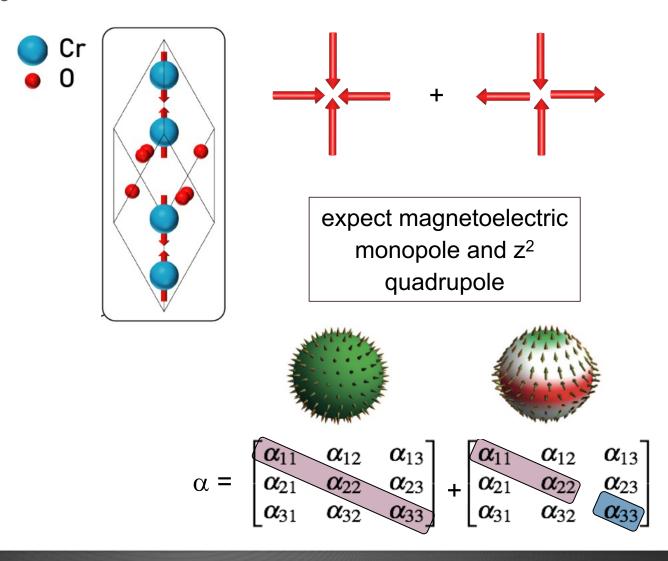
diagonal magnetoelectric response! ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

MATERIALS THEORY

An example: Cr₂O₃

 $= H\Psi(\mathbf{r}, t)$



 $\hat{H}\Psi(\mathbf{r},t)$

MATERIALS THEORY

First prediction and measurement of ME effect in Cr₂O₃

 $\hat{H}\Psi(\mathbf{r},t)$

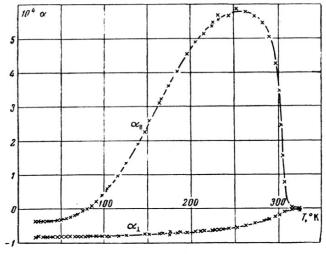
 $H\Psi(\mathbf{r},t)$

ON THE MAGNETO-ELECTRICAL EFFECT IN ANTIFERROMAGNETS

- I. E. DZYALOSHINSKIĬ
 - Institute for Physical Problems, Academy of Sciences, U.S.S.R.
 - Submitted to JETP editor June 17, 1959
 - J. Exptl. Theoret. Phys. (U.S.S.R.) 37, 881-882 (September, 1959)

MAGNETOELECTRIC EFFECT IN CHROMIUM OXIDE

D. N. ASTROV SOVIET PHYSICS JETP 1961



diagonal and uniaxial with $\alpha_{11} = \alpha_{22} \neq \alpha_{33}$ as expected:

$$\alpha = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} + \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix}$$

MATERIALS THEORY

Calculated magnetoelectric monopole / quadrupole in Cr₂O₃

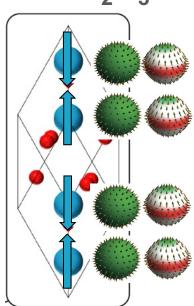
Local moments at the atomic sites:

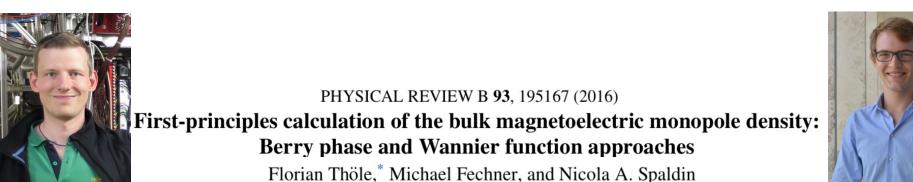
 $H\Psi(\mathbf{r},t)$

$$a = \frac{1}{3} \int \boldsymbol{r} \cdot \boldsymbol{\mu}(\boldsymbol{r}) d^{3}\boldsymbol{r}$$
$$q_{ij} = \frac{1}{2} \int \left[r_{i} \boldsymbol{\mu}_{j} + r_{j} \boldsymbol{\mu}_{i} - \frac{2}{3} \delta_{ij} \boldsymbol{r} \cdot \boldsymbol{\mu}(\boldsymbol{r}) \right] d^{3}\boldsymbol{r}$$

 $\hat{H}\Psi(\mathbf{r}, t)$

Calculate in sphere around the atom All non-zero with the same sign (μ_B . nm) "ferromonopolar" and "ferroquadrupolar" as expected





MATERIALS THEORY

Aside: hidden anti-ferro-mono/quadrupolar order in Fe₂O₃

 $H\Psi(\mathbf{r},t)$

Cr

Hidden orders and (anti-)Magnetoelectric Effects in Cr_2O_3 and α -Fe₂O₃ Xanthe H. Verbeek, Andrea Urru, and Nicola A. Spaldin Fe₂O₃ arXiv:2303.00513 Cr_2O_3 Fe

 $\hat{H}\Psi(\mathbf{r},t)$

antiferromonopolar "hidden order"! (Bulk "Monopolization" is zero) should manifest as a non-zone center magnetoelectric response spatially varying electric field should induce homogeneous magnetization pattern of antiferromonopolar order different from dipolar AFM order

 $\partial \Psi(\mathbf{r},t)$

 $\hat{H}\Psi(\mathbf{r},t)$

Outline

What are magnetoelectric multipoles?

Why are they interesting? Relationship to the magnetoelectric effect.

 $= H\Psi(\mathbf{r}, t)$

Surface magnetism

Can they be measured? An example: Measuring the magnetoelectric monopole through its magnetoelectric response in Cr_2O_3

MATERIALS THEORY

Calculated magnetoelectric monopole / quadrupole in Cr₂O₃

 $\hat{H}\Psi(\mathbf{r},t)$

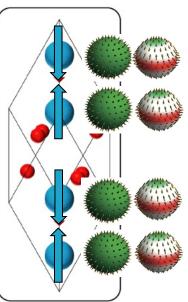
Local moments at the atomic sites: $a = \frac{1}{3} \int \mathbf{r} \cdot \boldsymbol{\mu}(\mathbf{r}) d^3 \mathbf{r}$

 $H\Psi(\mathbf{r},t)$

Calculate in sphere around the atom All non-zero with the same sign (μ_B . nm) "ferromonopolar" and "ferroquadrupolar" as expected

Bulk "Monopolization" / "Quadrupolization" / ME Multipolization (monopole / quadrupole moment per unit volume):

Berry phase calculation analogous to polarization (or cheat and sum over local dipole moment times position). Also non-zero consistent with linear ME response (μ_B / nm²)



PHYSICAL REVIEW B 93, 195167 (2016)

First-principles calculation of the bulk magnetoelectric monopole density: Berry phase and Wannier function approaches

Florian Thöle,^{*} Michael Fechner, and Nicola A. Spaldin

Surface Magnetic Dipole Moment

 $H\Psi(\mathbf{r},t)$

BULK

Ferroelectric polarization

depends on ρ times r

Magnetoelectric multipolization

depends on μ times r

SURFACE

Electric charge

Magnetic dipole

Contribution for the JETP special issue in honor of I.E. Dzyaloshinskii's 90th birthday Analogy between the Magnetic Dipole Moment at the Surface of a Magnetoelectric and the Electric Charge at the Surface of a Ferroelectric

> N. A. Spaldin Journal of Experimental and Theoretical Physics, 2021, Vol. 132, No. 4, pp. 493–505.

 $\hat{H}\Psi(\mathbf{r},t)$

Samstag, 18. März 2023

D-MATL / Materials Theory

MATERIALS THEORY

Property II. The bulk magnetoelectric multipolization leads to a surface magnetic dipole mom + $P \mu C/cm^2$

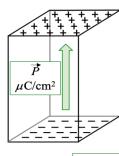
 $\hat{H}\Psi(\mathbf{r},t)$

BULK

 $H\Psi(\mathbf{r},t)$

Ferroelectric polarization

depends on ρ times r



 $\mathcal{M}_{zz} \mu_B/\text{hm}^2$

 $-P \mu C/cm^2$

 $+ \mathcal{M}_{zz} \mu_B/\text{nm}^2$

 $+ \mathcal{M}_{zz} \mu_B/\text{nm}^2$

SURFACE

Electric charge, ρ

Magnetic dipole, μ

Surface

Magnetoelectric multipolization

depends on μ times r

Contribution for the JETP special issue in honor of I.E. Dz Analogy between the Magnetic of a Magnetoelectric and the Lincoln Charge at the Surface of a Ferroelectric

N. A. Spaldin Journal of Experimental and Theoretical Physics, 2021, Vol. 132, No. 4, pp. 493–505.

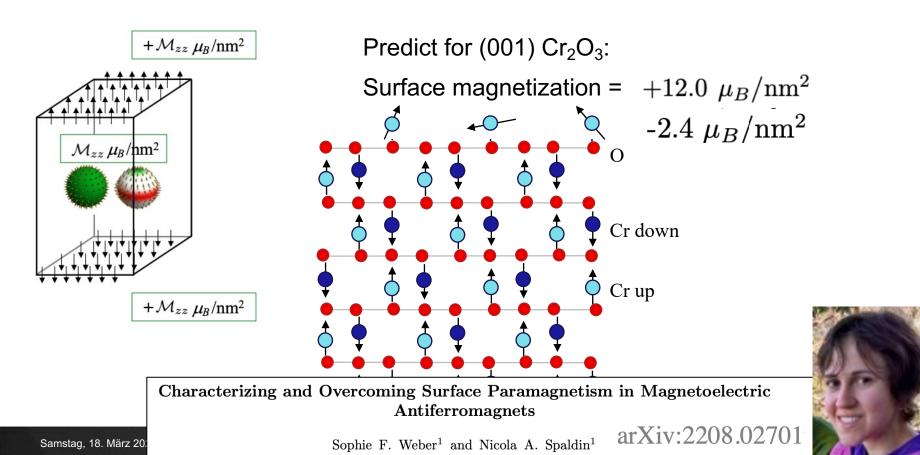
D-MATL / Materials Theory

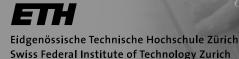
Property II. Intrinsic surface magnetization in Cr₂O₃

 $H\Psi(\mathbf{r},t)$

There is an intrinsic surface magnetization associated with the magnetoelectric multipoles in a magnetoelectric antiferromagnet

 $\hat{H}\Psi(\mathbf{r},t)$

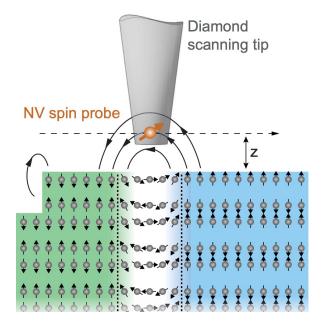




Measurement of intrinsic surface magnetization

 $H\Psi(\mathbf{r},t)$

Predicted value of -2.4 μ_B /nm² very close to value measured using Nv magnetometry!



Nanomagnetism of Magnetoelectric Granular Thin-Film Antiferromagnets

Patrick Appel,^{†,||} Brendan J. Shields,^{†,||} Tobias Kosub,^{‡,§} Natascha Hedrich,[†][®] René Hübner,[‡] Jürgen Faßbender,[‡] Denys Makarov,^{‡,§}[®] and Patrick Maletinsky^{*,†}

PHYSICAL REVIEW B 103, 094426 (2021)

 $\hat{H}\Psi(\mathbf{r},t)$

Coexistence of Bloch and Néel walls in a collinear antiferromagnet

M. S. Wörnle,^{1,2,*} P. Welter^{1,*} M. Giraldo,^{3,*} T. Lottermoser^{1,8} M. Fiebig^{1,*} P. Gambardella,^{2,‡} and C. L. Degen^{1,§}

Outline

What properties do the magnetoelectric multipoles cause?

 $H\Psi(\mathbf{r},t)$

Can we directly measure them?

What next?

Ongoing: Spherical neutron polarimetry, with Andrea Urru, Henrik Ronnow et al. Compton scattering, with Sayantika Bhowal, Urs Staub, Steve Collins et al.

 $\hat{H}\Psi(\mathbf{r},t)$

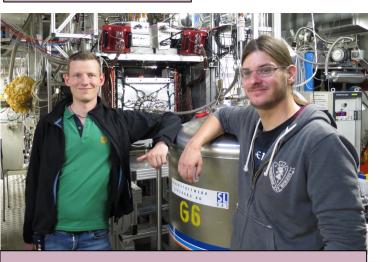
MATERIALS THEORY

An attempt to measure the magnetoelectric monopole with muons

 $\hat{H}\Psi(\mathbf{r},t)$

 $H\Psi(\mathbf{r},t)$

Igor Dzyaloshinskii



Michael Fechner and Quintin Meier

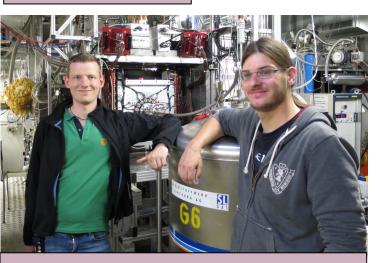
MATERIALS THEORY

An attempt to measure the magnetoelectric monopole with

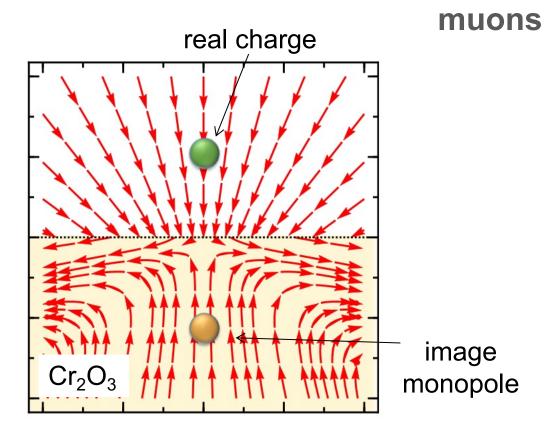
 $H\Psi(\mathbf{r},t)$

 $H\Psi(\mathbf{r},t)$

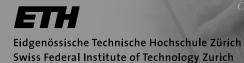
Igor Dzyaloshinskii



Michael Fechner and Quintin Meier



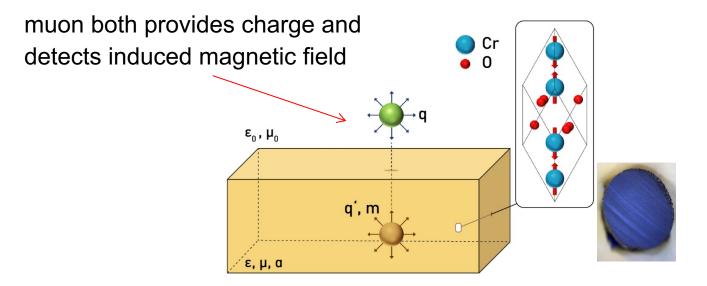
<u>Charge on the surface</u> induces image monopole in Cr_2O_3 and "monopolar" external field



 $\partial \Psi(\mathbf{r},t)$

Try to detect using muon spin resonance

 $H\Psi(\mathbf{r},t)$



 $\hat{H}\Psi(\mathbf{r},t)$

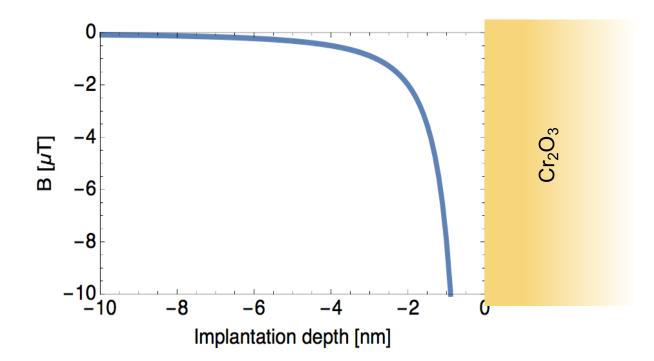
Hubertus Luetkens



Calculated field strength at charge +e above Cr₂O₃ surface

 $\hat{H}\Psi(\mathbf{r},t)$

 $H\Psi(\mathbf{r},t)$

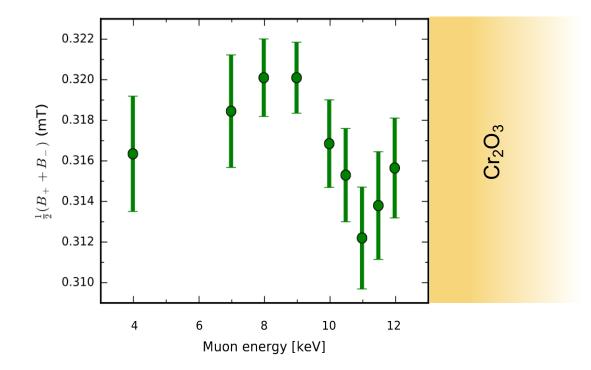


Q. Meier et al., Search for the magnetic monopole at a magnetoelectric surface, PRX 9, 011011 (2019)

MATERIALS THEORY

Did we find the monopolar field?

 $H\Psi(\mathbf{r},t)$



 $\hat{H}\Psi(\mathbf{r},t)$

Measured local fields in solid N_2 layer above Cr_2O_3 are *not inconsistent* with the existence of the monopole

Q. Meier et al., Search for the magnetic monopole at a magnetoelectric surface, PRX 9, 011011 (2019)

Outline

What properties do the magnetoelectric multipoles cause?

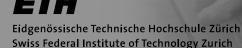
 $H\Psi(\mathbf{r},t)$

Can we directly measure them?

What next?

Well, we can keep expanding in our multipole expansion...

 $\hat{H}\Psi(\mathbf{r},t)$



Continuing to the next term in the multipole expansion:

 $\hat{H}\Psi(\mathbf{r},t)$

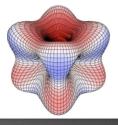
 $H\Psi(\mathbf{r},t)$

$$\begin{split} E_{\text{int}} &= -\int \boldsymbol{\mu}(\boldsymbol{r}) \cdot \boldsymbol{H}(\boldsymbol{r}) d^3 \boldsymbol{r} \\ &= -\int \boldsymbol{\mu}(\boldsymbol{r}) \cdot \boldsymbol{H}(0) d^3 \boldsymbol{r} - \int r_i \boldsymbol{\mu}_j(\boldsymbol{r}) \partial_i H_j(0) d^3 \boldsymbol{r} - \\ &- \int \mu_i(\mathbf{r}) r_j r_k \partial_j \partial_k H_i(0) d^3 \mathbf{r} \end{split}$$

── "r" appears tṫice‼

Magnetic octupole tensor decomposition and second-order magnetoelectric effect Andrea Urru^{*}, Nicola A. Spaldin

Annals of Physics Volume 447, Part 2, December 2022, 168964



ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

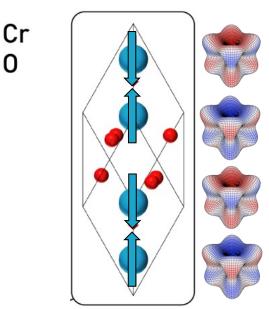
MATERIALS THEORY

Cr₂O₃ has hidden anti-ferro-magnetooctupolar order

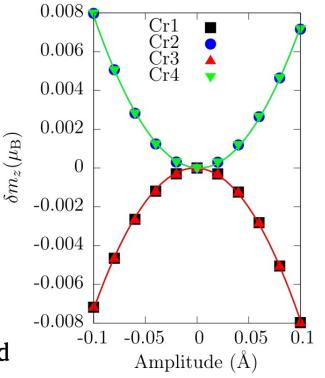
 $\hat{H}\Psi(\mathbf{r},t)$

 $H\Psi(\mathbf{r},t)$

 Cr_2O_3



leads to "hidden" quadratic anti-magnetoelectric response:



Magnetic octupole tensor decomposition and second-order magnetoelectric effect

Andrea Urru *, Nicola A. Spaldin

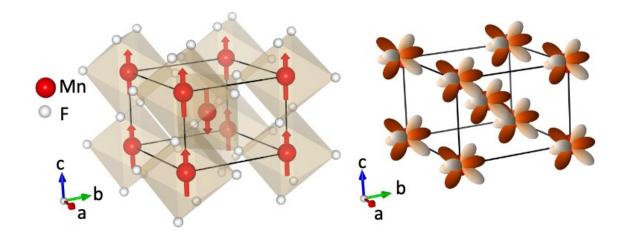
Annals of Physics Volume 447, Part 2, December 2022, 168964

MATERIALS THEORY

Ferro-magneto-octupolar materials exist

 $= H\Psi(\mathbf{r}, t)$

An example: MnF₂



 $\hat{H}\Psi(\mathbf{r},t)$

S. Bhowal and N. A. Spaldin, arXiv:2212.0375

What is special about ferro-magneto-octupolar materials? An example: MnF₂

 $\hat{H}\Psi(\mathbf{r},t)$

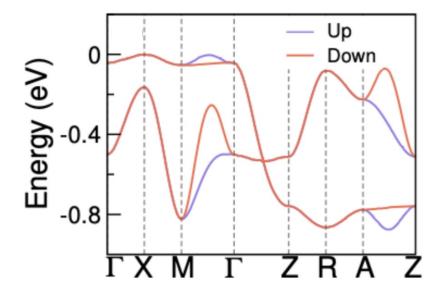
centrosymmetric

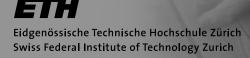
time-reversal symmetry broken even though dipoles order AFM quadratic magnetoelectric effect

piezomagnetic

non-relativistic spin splitting magnetic Compton profile

 $H\Psi(\mathbf{r},t)$





Summary and Open Questions

In non-centrosymmetric antiferromagnets, the magnetoelectric multipoles form a kind of "hidden multiferroic order"

HW(r

What do the magnetoelectric multipoles do? Magnetoelectric response Intrinsic surface magnetization

Can they be measured? N_V magnetometry? Muon spin resonance? Neutron scattering? Compton scattering?

Got a centrosymmetric AFM? Then look for ferroic magnetic octupoles!

(Top secret: magnetic hexadecapoles are looking interesting too...)