Terahertz spinorbitronics Driving and probing spin and orbital currents at highest frequencies

Tom S. Seifert Project Leader Terahertz Physics Group Freie Universität Berlin

Terahertz (THz) radiation

Why combining THz & spin/orbital transport?

Review: P. Lu,..TSS,.., M. Jarrahi, Nanophot. 10.1515 (2022)

Spin and orbit as information carrier

Spinorbitronics

Encode information by S or L

Conventional electronics: towards terahertz rates

Next-gen WiFi (6G): 0.3 THz

EG

Oxide Layer n+

Gate (G) Source (S) Drain (D) n+ p-type substrate

fastest FET:

~1 THz cut-off

Zhang *et al.*, IEEE VTM (2019)

Del Alamo, Nature (2011)

Low-dissipation spinorbitronics \rightarrow overcome GHz data-processing limit

Spinorbitronics needs to work at THz rates

Terahertz spinorbitronics

Ultrafast spinorbitronics

Guiding questions:

- 1. Spinorbitronic effects operative at THz rates?
- 2. Can we discriminate *S* vs *L* dynamically?
- 3. Exploite in terms of THz photonics?

Heating a ferromagnet

Ultrafast?

Ultrafast heating of a ferromagnet

6

Ultrafast heating of a ferromagnet

heating pulse

Choi, Cahill et al., Nat. Comm. (2014) Mueller, Rethfeld, PRB (2014). R. Rouzegar,.., TSS et al., PRB (2022) Gupta, Oppeneer et al., PRB (2023)

 $\mu_{S,L}(t)$ is an excess magnetization: "Spin/Orbital voltage (accumulation)"

Relaxes locally

T

Ultrafast heating of a ferromagnet

Spin information processing:

0. Need a THz spin battery

1. Transport spins through space (fast) + detect

Idea: inject a spin current into an adjacent layer.

R. Rouzegar,..,TSS et al., PRB (2022)

Single vs bilayers

R. Rouzegar,..,TSS et al., PRB (2022)

THz inv. spin Hall effect

- > THz emission is magnetic
- \succ THz electric field \perp M

 THz waveform reverses for reversed sample Electric dipole \perp M as expected from inv. spin Hall effect

Final check: exchange Pt

THz inv. spin Hall effect

TSS et al., Nat. Phot. (2016)

Pt vs W:

Strong opposite spin Hall angles

Saitoh et al., APL (2006)

<u>Probe diverse materials:</u> Tls, Weyl semimetals, superconductors, TMDCs etc.

Recent review: TSS *et al.*, APL 120 (2022)

Detailed understanding?

Single vs bilayers

R. Rouzegar,.., TSS et al., PRB (2022)

THz spin current

R. Rouzegar,.., TSS et al., PRB (2022)

THz spin current

 $\mu_{\rm s}$ is an excess magnetization "Spin voltage"

Relaxes locally and via transport

Nice but what good for? Optimization?

Choi, Cahill *et al.*, Nat. Comm. (2014) Mueller, Rethfeld, PRB (2014).

R. Rouzegar,.., TSS et al., PRB (2022)

Gupta, Oppeneer et al., PRB (2023)

Optimized spintronic THz source

Thickness optimization

TSS et al., Nat. Photon. (2016)

Optimized spintronic THz source

TSS et al., Nat. Photon. (2016)

Optimized spintronic THz source

Applications?

TSS et al., Nat. Photon. (2016)

Broadband spintronic THz emitter

wavelength

al. APL (2019)

Trans. (2018)

Flexible/ curved substrates

Wu, Yang *et al.*, Adv. Mat. (2016)

THz transmission (8 µm Teflon)

Tom S. Seifert, Freie Universität Berlin

Broadband spintronic THz emitter

Upscaling yields high THz field strength (1 MV/cm) TSS, *et al.*, APL (2017)

Peak currents in metals (10⁶ S/m): 10¹⁰ A/cm²

Enables nonlinear THz spectroscopy

TeraSpinTec Ultrabroadband Spintronic THz emitters <u>teraspintec.com</u>

2021: Commercially available spintronic THz emitters

Rouzegar,..TSS, et al., PRAppl (2023)

Towards the ideal broadband THz emitter

Hybrid emitter

Alostaz, TSS, et al., arXiv (2023): arXiv:2310.12012

yield optimized THz (probe) pulses

Towards the ideal broadband THz emitter

Hybrid emitter

Tune THz pulse shape by magnetic field

Going small

THz microscopy: Fiber-coated spintronic emitter

Paries, TSS, von Freymann *et al.*, Opt. Expr. (2023)

S conclusions

New insights

Spintronic Terahertz Emitters

- Inv. spin Hall effect operative at THz rates
- Ultrafast demagnetization and terahertz spin transport driven by the same force: Spin voltage
- Optimization: efficient spintronic THz sources

Recent review: TSS et al., APL 120 (2022)

How about detection?

TSS *et al.*, Nat. Photon. 10 (2016) R. Rouzegar,.., TSS *et al.*, PRB (2023)

Chekhov,TSS *et al.*, PR Appl. 20 (2023) Vicario et al., *Nat. Photonics* (2013) Bonetti et al., *PRL* (2016) Shalaby et al., *PRB* (2018)

Zeeman torque

Spin accumulation

26

Spin accumulation

S conclusions

New insights

Spintronic Terahertz Emitters

- Inv. spin Hall effect operative at THz rates
- Iron is an excellent terahertz S-current source
- Optimization: efficient spintronic THz sources
- Inversion allows for broadband spin-based detection

TSS *et al.*, Nat. Photon. 10 (2016) R. Rouzegar,.., TSS *et al.*, PRB (2023) Chekhov, TSS *et al.*, PR Appl. 20 (2023)

A puzzling experiment..

Recent review: TSS et al., APL 120 (2022)

Surprising experiment

Impact of W Thickness

TSS, et al., Nature Nano. (2023) Xu, Fert, Zhao et al. ArXiv (2022) Wang, Jinag et al., npj Quant. Mat. (2023)

Look at THz currents vs time

Ni|W THz Currents

What can propagate that far?

Anomalous thickness dependence of SOTs in same samples: Hayashi, Ando *et al.*, Comm. Phys. (2023)

TSS, et al., Nature Nano. (2023)

Orbital angular momentum L

Review: Go, et al. *Europhysics Letters* 135 (2021): 37001.

Orbitronics: data processing with L

But L is quenched in a solid, right?

Orbital angular momentum L

P-orbital system

Orbital quenching in the ground state imposed by *PT* symmetry

Superposition state

"p_x+ ip_y"

 $\langle \mathbf{L} \rangle \neq 0$

Orbital angular momentum can reappear in nonequilibrium

How to imagine an L current?

Orbital current

Review: Go, et al. *Europhysics Letters* 135 (2021): 37001.

Dongwook, what are good *L* current sources?

Pezo, Manchon et al. PRB 106 (2022)

L current source

Ultrafast L and S accumulations

Ni|W THz Currents

- 1. Delayed
- 2. Sign change
- 3. Broadened

What leads to delayed response in Ni|W?

Inv. orbital Rashba-Edelstein effect

Interpretation

- 1. Delay: there is some arrival layer
- **2. Sign change:** IOREE in W|SiOx same sign as SHE in Pt Confirmed by ab-initio calculations

TSS, et al., Nature Nano. (2023)

Inv. orbital Rashba-Edelstein effect

Interpretation

- 1. Delay: there is some arrival layer
- **2. Sign change:** IOREE in W|SiOx same sign as SHE in Pt Confirmed by ab-initio calculations
- 3. Broadening: Angular dispersion
- 4. Long-range relaxation: Exponential decay

Can theory support this view?

TSS, et al., Nature Nano. (2023)

Ab-initio calculations

Calculations: Dongwook Go, Frank Freimuth, Yuriy Mokrousov

Model our Ni|W data

THz IOREE: experiment vs model

TSS, et al., Nature Nano. (2023)

Mishra et al. arXiv:2401.08373 (2024). Xu et al. arXiv:2307.03490 (2023).

S & L conclusions

New insights

- Spintronic effects operative at THz rates
- Spin voltage drives ultrafast demag and THz spin transport
- Optimization: efficient spintronic THz sources
- Ultrabraodband THz detection through inversion

Chekhov, TSS et al., PR Appl. 20 (2023) R. Rouzegar, TSS et al., PRB 106 (2023)

Spintronic Terahertz Emitters

New insights

- L currents in Ni|W: reach 10's of nm
- L currents live for about 1 ps in W
- W|SiOx interface: efficient L-to-charge conversion

TSS, et al., Nature Nano. (2023), doi.org/10.1038/s41565-023-01470-8

Terahertz emission spectroscopy can sense *S/L* current propagation

Outlook: THz spin conductance spectroscopy

What is the NiO spin conductance?

Outlook: THz spin conductance spectroscopy

Get NiO spin conductance: Fourier transform & divide $\sigma_{NiO}(\omega) = S(\omega)/S_{ref}(\omega)$

44

Related TES studies: Sasaki et al., APL (2020).; Lee et al., Nature Nano. 16 (2021);

Two contributions:

- I. Immediate response magnetic dipole
- II. Time delayed response magnon spin current through NiO

Magnon group velocity 30 nm/ps (30 km/s)

Hutchings, Samuelsen, PRB 6 (1972)

Rouzegar, TSS et al. arXiv preprint arXiv:2305.09074 (2023).

Acknowledgments

S & L conclusions

New insights

- Spintronic effects operative at THz rates
- Spin voltage drives ultrafast demag and THz spin transport
- Optimization: efficient spintronic THz sources
- Ultrabraodband THz detection through inversion

Chekhov, TSS et al., PR Appl. 20 (2023) R. Rouzegar, TSS et al., PRB 106 (2023)

Spintronic Terahertz Emitters

New insights

- L currents in Ni|W: reach 10's of nm
- L currents live for about 1 ps in W
- W|SiOx interface: efficient L-to-charge conversion

TSS, et al., Nature Nano. (2023), doi.org/10.1038/s41565-023-01470-8

Terahertz emission can sense *S/L* current propagation: Spin conductance spectroscopy