

3D and inverse-design magnonics

Andrii Chumak

Nanomagnetism and Magnonics Group Faculty of Physics, University of Vienna, Austria

3D magnonics

High quantity of elements + new physics

Inverse-design magnonics

Any type of computing, incl. neuromorphic

ChatGPT4: "magnonic computer that looks like a human brain"

The field of magnonics

Nanoscale magnonic networks

PHYSICAL REVIEW APPLIED 21, 040503 (2024)

Perspective

Roadmap on spin-wave computing

IEEE TRANSACTIONS ON MAGNETICS, VOL. 58, NO. 6, JUNE 2022

0800172

Advances in Magnetics_

Roadmap on Spin-Wave Computing

A. V. Chumak¹⁰, P. Kabos¹⁰, *Life Fellow, IEEE*, M. Wu¹⁰, *Fellow, IEEE*, C. Abert¹⁰, C. Adelmann¹⁰⁵, A. O. Adeyeye⁶⁶, J. Åkerman⁷, F. G. Aliev⁶⁸, A. Anane⁹, A. Awad⁷, C. H. Back⁶¹⁰, A. Barman¹¹, G. E. W. Bauer^{12,13}, M. Becherer¹⁴, E. N. Beginin¹⁵, V. A. S. V. Bittencourt¹⁶, Y. M. Blanter¹⁷, P. Bortolotti⁹, I. Boventer⁹, D. A. Bozhko¹⁰¹⁸, S. A. Bunyaev¹⁰¹⁹, J. J. Carmiggelt¹⁷, R. R. Cheenikundil²⁰, F. Ciubotaru¹⁰⁵, S. Cotofana¹⁰²¹, G. Csaba²², O. V. Dobrovolskiy¹⁰¹, C. Dubs¹²³, M. Elyasi¹², K. G. Fripp²⁴, H. Fulara¹⁰25, I. A. Golovchanskiy¹⁰26,27, C. Gonzalez-Ballestero¹⁰28,29, P. Graczyk¹⁰30, D. Grundler¹⁰31, P. Gruszecki¹⁰³², G. Gubbiotti¹³³, K. Guslienko^{34,35}, A. Haldar¹³⁶, S. Hamdioui²¹, R. Hertel¹⁰²⁰ B. Hillebrands¹⁷, *Fellow, IEEE*, T. Hioki¹², A. Houshang⁷, C.-M. Hu³⁸, H. Huebl³⁹, M. Huth¹⁰, E. Iacocca¹⁰¹⁸, M. B. Jungfleisch¹⁰⁴¹, G. N. Kakazei¹⁹¹⁹, A. Khitun⁴², R. Khymyn⁷, T. Kikkawa¹⁰⁴³, M. Kläui⁴⁴, O. Klein⁴⁵, J. W. Kłos^{© 32}, S. Knauer^{© 1}, S. Koraltan^{© 1}, M. Kostylev⁴⁶, M. Krawczyk^{© 32}, I. N. Krivorotov⁴⁷, V. V. Kruglyak¹⁰²⁴, D. Lachance-Quirion¹⁰⁴⁸, S. Ladak⁴⁹, R. Lebrun¹⁰⁹, Y. Li⁵⁰, M. Lindner²³, R. Macêdo¹⁰⁵¹, S. Mayr¹⁰^{52,53}, G. A. Melkoy⁵⁴, S. Mieszczak¹⁰³², Y. Nakamura¹⁰^{55,56}, H. T. Nembach^[02,57], A. A. Nikitin^[058], S. A. Nikitov⁵⁹, V. Novosad⁵⁰, J. A. Otálora⁶⁰, Y. Otani^{61,62}, A. Papp²², B. Pigeau⁶³, P. Pirro¹⁰³⁷, W. Porod¹⁰⁶⁴, *Life Fellow, IEEE*, F. Porrati⁴⁰, H. Qin⁶⁵, B. Rana¹⁰³², T. Reimann²³, F. Riente⁶⁶⁶, O. Romero-Isart^{228,29}, A. Ross⁹, A. V. Sadovnikov¹⁵, A. R. Safin⁵⁹, E. Saitoh^{12,43,67} G. Schmidt¹68,69</sup>, H. Schultheiss⁷⁰, K. Schultheiss⁷⁰, A. A. Serga¹37, S. Sharma¹6, J. M. Shaw¹2, D. Suess^{1,4}, O. Surzhenko²³, K. Szulc³², T. Taniguchi¹⁰, M. Urbánek^{71,72}, K. Usami¹⁵⁵, A. B. Ustinov⁶⁵⁸, T. van der Sar¹⁷, S. van Dijken⁶⁵, V. I. Vasyuchka⁶³⁷, R. Verba⁷³, S. Viola Kusminskiy^{16,74}, Q. Wang¹, M. Weides⁵¹, M. Weiler³⁷, S. Wintz¹⁰⁷⁵, S. P. Wolski⁵⁵, and X. Zhang^{76,77}

- ✓ 116 authors
- ✓ 61 sections
- ✓ 57 figures
- ✓ 530 references

Spin waves for novel information systems

Boolean spin wave logic gates and magnonic conduits

Diodes and circulators, rf units, interferometers, valleytronics, majority gates, directional couplers, half-adder, 32-bit ripple carry adder, circuitry, amplifier designs, and interfacing

Magnonic unconventional computing

Neuromorphic computing, holographic memory, inverse-design magnonics, nonlinear phenomena, Ising machines

Towards quantum magnonics

BEC, quantum YIG, polarons, nano-resonators, cavity magnonics, planar hybrid circuits, entangled magnons, hybrid interactions, ultra-strong photon-to-magnon coupling, quantum interfaces, superconducting qubits

3D building blocks for magnonic networks

3D YIG nano-structures, Ni nano-tubes, FEBID and FIBID, 3D ASI, 3D interconnects and magn. crystals

Low-energy manipulation and amplification of spin waves

VCMA, multiferroics, ferrite-ferroelectric and ferrite-piezoelectric hybrids, magnon fluxonics

2D building blocks for magnonic networks

Conversion, superconductor hybrids, resonators, curved waveguides, controlled anisotropy, STIRAP

Magnonics at the nanoscale

YIG, $Co_{25}Fe_{75}$, ASI, bias-free nanomagnets, simulations, AFMs, NV magnetometry

Neuromorphic Digital data Stochastic RF data Quantum Sensing

Andrii Chumak

SPICE workshop "Nanomagnetism in 3D"

3D magnonics

Chapter IV. 3D BUILDING BLOCKS FOR MAGNONIC NETWORKS

40 nm

300 nm

IVA. 3D YIG Nanostructures *G. Schmidt*

- IVB.
 Conformal Ferromagnetic Coatings for Tubular Magnon Conduits and 3D Magnonic Networks

 D. Grundler and J. A. Otalora
 200 nm
- IVC. Direct-Write 3D Magnonic Nano-Architectures O. Dobrovolskiy, F. Porrati, and M. Huth
- IVD. Magnonics in 3D Magnetic Meta-Materials S. Koraltan, C. Abert, and D. Suess
- IVE. Magnonics in 3D Magnetic Meta-Materials *R.R. Cheenikundil and R. Hertel*
- IVF. Magnetic Charge Transport and Spin-Wave Propagation in 3D Nanostructured Lattices S. Ladak and A. Barman
- IVG. 3D Magnonic Crystals and Interconnects G. Gubbiotti, A.V. Sadovnikov, E. N. Beginin, S. A. Nikitov, C. Adelmann, and F. Ciubotaru

Three-Dimensional Magnonics, edited by G. Gubbiotti, 2019

Journal of Applied Physics

PERSPECTIVE

scitation.org/journal/jap

Prospects toward flexible magnonic systems

Cite as: J. Appl. Phys. **130**, 150901 (2021); doi: 10.1063/5.0055976 Submitted: 5 May 2021 · Accepted: 4 October 2021 · Published Online: 18 October 2021

D. Faurie, ^{1,a)} D. A. O. Adeyeye, ^{2,3} D and F. Zighem^{1,b)}

AFFILIATIONS

 ¹LSPM-CNRS, UPR3407, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
 ²Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, 117576 Singapore, Singapore
 ³Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom

^{a)}Author to whom correspondence should be addressed: faurie@univ-parisl3.fr
 ^{b)}Electronic address: zighem@univ-parisl3.fr

Three-Dimensional Magnonics, edited by G. Gubbiotti, 2019

Chapter Chapter 1 32 pages	Chapter Chapter 6 23 pages		
Dipole Exchange Theory of Magnons in Structured Composite Nanowires and Magnonic Crystal Arrays	Emission and Active Manipulation of Spin Waves in Multiferroic Heterostructures		
By M. G. Cottam, Z. Haghshenasfard, A. O. Adeyeye, G. Gubbiotti	By Sampo Hämäläinen, Huajun Qin, Sebastiaan van Dijken		
Chapter Chapter 2 34 pages	Chapter Chapter 7 34 pages	Chanter Chanter 11 30 pages	
From 2D Planar Magnonic Crystals to 3D Magnonic Crystals	Patterned Spin Textures for Magnonics	Strong Coupling in Cavity Magnonics	
By P. Graczyk, P. Gruszecki, S. Mamica, J. W. Kłos, M. Krawczyk, G. Gubbiotti	By E. Albisetti, D. Petti, R. Bertacco		
Chapter Chapter 3 38 pages		By Angelo Leo, Silvia Rizzato, Anna Grazia Monteduro, Giuseppe Maruccio	
3D Magnonic Crystals	Chapter Chapter 8 41 pages		
By E. N. Beginin, D. V. Kalyabin, P. A. Popov, A. V. Sadovnikov, A. Yu.	Spin Textures as Sources for Magnons with Sh Profiles	nort Wavelengths and 3D Mode	
Sharaevskaya, A. I. Stognij, S. A. Nikitov	By Volker Sluka, Sebastian Wintz		
Chapter Chapter 4 16 pages	Chapter Chapter 9 53 pages		
Spin Waves in Magnetic Metal-Insulator Hybrid Nanostructures	Precessional Magnetization Dynamics and S	Spin Waves in 3D Ferromagnetic	
By Chuanpu Liu, Jilei Chen, Haiming Yu	Nanostructures		
Chapter Chapter 5 39 pages	By Sucheta Mondal, Sourav Sahoo, Anjan Ba	rman	
Spin Waves in Thin Films and Magnonic Crystals with Dzyaloshinskii–Moriya Interactions	Chapter Chapter 10 31 pages		
	Spin Waves in Nanotubes: Impact of Curvature on Transport Properties		
By Rodolfo A. Gallardo, David Cortés-Ortuño, Roberto E. Troncoso, Pedro	By Jorge A. Otálora, Helmut Schultheiss, Attila Kákay		
Landeros	, , , , , , , , , , , , , , , , , , ,		

Why 3D magnonics?

Motivation befind 3D magnonics

Number of data processing units

No problems with heating

Access to new physics

10x10x10 nm³ unit
1x1 mm ² chip, one layer: 10 ¹⁰ units
1x1x1 mm ³ chip: 10 ¹⁵ units

Parameters	YIGª (100 nm)	YIG ^₅ (30 nm)	CMOS⁰ (7nm)
Area (µm²)	5.58	1.016	1.024
Delay time (ns)	150	18	6×10 ⁻²
Total energy consumption without amplification (aJ)	24.6	1.96	35.3

Wang, et al., Nature Electronics 3, 765 (2020)

(a) Damon-Eshbach geometry

Otálora, et al., Phys. Rev. Lett. 117, 227203 (2016)

Nanomagnetism and Magnonics

1st row: Noura Zenbaa, Andrii Chumak, Qi Wang, **Oleksandr Dobrovolskiy**, Barbora Budinská; 2nd row: Rostyslav Serha, Andrey Voronov, Khrystyna Levchenko, Fabian Majcen, **Sebastian Lamb-Camarena**, Pedro del Real; 3rd row: Richard Emberger, Sebastian Knauer, Simon Peinhaupt, Clemens Schmid; 4th row: David Schmoll, Andreas Höfinger, Aram Sajdak

Engineered nano-volcanoes

Microwave spectroscopy of 3D nanomagnets

Nanodisks with crowns [depleted-precursor writing regime]

3D case: "Drum modes" in nanovolcanoes

Mode profiles in nanovolcanoes

MuMax3 simulations

- Low-frequency modes: volcano crater
- High-frequency modes: ring around crater

Dobrovolskiy, et al., APL 118, 132405 (2021)

Mode profiles in nanovolcanoes

Nanomagnetism and Magnonics

1st row: Noura Zenbaa, Andrii Chumak, Qi Wang, Oleksandr Dobrovolskiy, Barbora Budinská; 2nd row: Rostyslav Serha, Andrey Voronov, Khrystyna Levchenko, Fabian Majcen, Sebastian Lamb-Camarena, Pedro del Real; 3rd row: Richard Emberger, Sebastian Knauer, Simon Peinhaupt, Clemens Schmid; 4th row: David Schmoll, Andreas Höfinger, Aram Sajdak

Nano-scaled directional coupler

ARTICLES https://doi.org/10.1038/s41928-020-00485-6

Check for updates

A magnonic directional coupler for integrated magnonic half-adders

Q. Wang[®]^{1,2}[∞], M. Kewenig², M. Schneider[®]², R. Verba³, F. Kohl², B. Heinz[®]^{2,4}, M. Geilen², M. Mohseni², B. Lägel⁵, F. Ciubotaru⁶, C. Adelmann[®]⁶, C. Dubs[®]⁷, S. D. Cotofana[®]⁸, O. V. Dobrovolskiy[®]¹, T. Brächer², P. Pirro[®]² and A. V. Chumak[®]^{1,2}[∞]

Wang, et al., Nature Electronics 3, 765 (2020)

Andrii Chumak

SPICE workshop "Nanomagnetism in 3D"

Ingelheim, 02.05.24

Non-reciprocal magnonic directional coupler

$$L = \frac{\pi}{\Delta k} = \frac{\pi}{|k_{as} - k_s|}, \quad L_{+k} \neq L_{-k}$$

At a special frequency where $L_{-k} = 2 \times L_{+k}$

k-resolved BLS results

YIG(100)/CoFeB(40) film

$YIG(100)/SiO_2(5)/CoFeB(40)$ film

Fabrication of the non-reciprocal coupler

Sample: YIG(100nm)/NM(5nmm)/CoFeB(40nm)

3D magnonic directional coupler

$$L = \frac{\pi}{\Delta k} = \frac{\text{Much stronger coupling!}}{|\kappa_{as} - \kappa_{s}|'}$$

At a special frequency where $L_{-k} = 2 \times L_{+k}$

Bulk and Surface Modes in 3D Nanomagnonic Networks

RESEARCH ARTICLE

ADVANCED MATERIALS

Realization and Control of Bulk and Surface Modes in 3D

• BLS measuremetns of thermal spectrum

f(GHz)

Spin-wave dynamics in gyroid nanostructures

Open Acces

ACS APPLIED MATERIALS & INTERFACES

This article is licensed under <u>CC-BY 4.0</u>	© ()
Research A	rticle

www.acsami.org

Collective Spin-Wave Dynamics in Gyroid Ferromagnetic Nanostructures

Mateusz Gołębiewski,* Riccardo Hertel, Massimiliano d'Aquino, Vitaliy Vasyuchka, Mathias Weiler, Philipp Pirro, Maciej Krawczyk, Shunsuke Fukami, Hideo Ohno, and Justin Llandro

- unit cell of the investigated gyroid sample measures 50 nm
- volume fraction of approximately 10% (4 nm node)
- block copolimer
- micromagnetics and FMR

NANO LETTERS

Coherent spin waves in a 3D ASI

ns of coherent magnons

Fe₁₉

pubs.acs.org/NanoLett

Observation of Coherent Spin V Artificial Spin Ice Structure

Sourav Sahoo, Andrew May, Arjen van Den Berg,

Cite This: Nano Lett. 2021, 21, 4629-4635

Challenge:

- -> Shadowing effect
- -> Localised spin-wave source
 - 3D spin-wave detection

1.4 kOe

1.0 kOe

3D spin-wave mapping

nature communications

Article

https://doi.org/10.1038/s41467-024-47339-9

Three-dimensional spin-wave dynamics, localization and interference in a synthetic antiferromagnet

Received:	16	June	2023	

Davide Girardi \mathbb{O}^1 , Simone Finizio \mathbb{O}^2 , Claire Donnelly $\mathbb{O}^{3,4}$, Guglielmo Rubini¹, Sina Mayr^{2,5}, Valerio Levati \mathbb{O}^1 , Simone Cuccurullo¹, Federico Maspero \mathbb{O}^1 , Jörg Raabe \mathbb{O}^2 , Daniela Petti $\mathbb{O}^1 \boxtimes \&$ Edoardo Albisetti $\mathbb{O}^1 \boxtimes$

Published online: 09 April 2024

Accepted: 28 March 2024

Nature Communications | (2024)15:3057

- SAF: CoFeB 50 / Ru 0.5 / NiFe 40 / Ru 4 (nm)
- time-resolved magnetic laminography
- the full 3D landscape of coherent propagating spin waves was reconstructed

3D magnonics

High quantity of elements + new physics

Inverse-design magnonics

Any type of computing, incl. neuromorphic

ChatGPT4: "magnonic computer that looks like a human brain"

Nanomagnetism and Magnonics

1st row: Noura Zenbaa, Andrii Chumak, Qi Wang, Oleksandr Dobrovolskiy, Barbora Budinská; 2nd row: Rostyslav Serha, Andrey Voronov, Khrystyna Levchenko, Fabian Majcen, Sebastian Lamb-Camarena, Pedro del Real; 3rd row: Richard Emberger, Sebastian Knauer, Simon Peinhaupt, Clemens Schmid; 4th row: David Schmoll, Andreas Höfinger, Aram Sajdak

Inverse-design concept

Magnonic demultiplexer

Inverse-design (de-)multiplexer

Nonlinear spin-wave switch

Nonreciprocal magnonic circulator

Advantages compared to inverse-design photonics

- Scalability
 (10 nm was shown)
- 2) Pronounced nonlinearity
- 3) Natural nonreciprocity

Nanoscale neural network using non-linear spin-wave interference

ARTICLE

https://doi.org/10.1038/s41467-021-26711-z

Nanoscale neural network using non-linear spin-wave interference

OPEN

Ádám Papp¹, Wolfgang Porod ^[]² & Gyorgy Csaba ^[][™]

NATURE COMMUNICATIONS | (2021)12:6422 | https://doi.org/10.1038/s41467-021-26711-z | www.nature.com/naturecommunications

Andrii Chumak

Check for updates

Nanoscale neural network using non-linear spin-wave interference

Fig. 1 Nanomagnet-based spin-wave scatterer. a The schematics of the envisioned computing device. The input signal is applied on the coplanar waveguide (CPW) on the left and the magnetic state (up/down) of programming magnets on top of the YIG film define the weights. **b** Magnets exhibiting perpendicular magnetic anisotropy are placed on top of the YIG film and generate a bias-field landscape. The training algorithm finds the binary state of the programming magnets. **c** Spin-wave intensity pattern for a particular applied input, which results in a high intensity at o_1 . The size of the simulation area is 10 µm × 10 µm.

Papp, Porod, Csaba, Nature Commun., 12, 6422 (2021)

Nanoscale neural network using non-linear spin-wave interference

Experimental Demonstration of a Spin-Wave Lens Designed with Machine Learning

IEEE MAGNETICS LETTERS, Volume 13 (2022)

6105305

Nanomagnetics

Experimental Demonstration of a Spin-Wave Lens Designed With Machine Learning

Martina Kiechle^{1*}, Levente Maucha², Valentin Ahrens¹, Carsten Dubs³, Wolfgang Porod⁴, Gyorgy Csaba², Markus Becherer¹, and Adam Papp²

¹Department of Electrical and Computer Engineering, Technical University of Munich, 80809 Munich, Germany

²Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary

³INNOVENT e.V. Technologieentwicklung, 07745 Jena, Germany

⁴Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA

* Graduate Student Member, IEEE

Received 30 Jun 2022, revised 12 Aug 2022, accepted 24 Aug 2022, published 26 Sep 2022, current version 13 Oct 2022.

Experimental Demonstration of a Spin-Wave Lens Designed with Machine Learning

Fig. 1. Nonlinear trend of the ion-dose-dependent change in YIG. The modified wavelengths λ_{FIB} were measured in 38 × 38 µm regions irradiated with the respective ion dose. Subsequently, the effective magnetization change was calculated from the respective λ_{FIB} and the spin-wave dispersion relation. The largest $M_{\text{eff}} = 144.7$ kA/m is used as the basis for the training.

Kiechle, et al. IEEE Mag. Lett. 13, 6105305 (2022)

Experimental Demonstration of a Spin-Wave Lens Designed with Machine Learning

Fig. 3. Focusing of spin waves by a machine-learning-designed magnetization pattern. (a) SpinTorch uses the two values $M_{\rm eff,0}$ and $M_{\rm eff,FIB}$ as training parameters, and constructs a binary nontrivial saturation magnetization map by the inverse-design algorithm. (b) Plane wave propagation through the pattern in (a) simulated in mumax³. (c) Measured spin wave waveform in the FIB-irradiated magnetization pattern, showing the wavefront focusing to the center output. The dashed rectangle corresponds to the 50 × 50 µm design area used for the training.

Kiechle, et al. IEEE Mag. Lett. 13, 6105305 (2022)

Experimental inverse-design unit

Search..

Physics > Applied Physics

[Submitted on 26 Mar 2024]

Magnonic inverse-design processor

Noura Zenbaa, Claas Abert, Fabian Majcen, Michael Kerber, Rostyslav Serha, Sebastian Knauer, Qi Wang, Thomas Schrefl, Dieter Suess, Andrii Chumak

Artificial Intelligence (AI) technology has revolutionized our everyday lives and research. The concept of inverse design, which involves defining a functionality by a human and then using an algorithm to search for the device's design, opened new perspectives for information processing. A specialized AI-driven processor capable of solving an inverse problem in real-time offers a compelling alternative to the time and energy-intensive CMOS computations. Here, we report on a magnon-based processor that uses a complex reconfigurable medium to process data in the gigahertz range, catering to the demands of 5G and 6G telecommunication. Demonstrating its versatility, the processor solves inverse problems using two algorithms to realize RF notch filters and demultiplexers. The processor also exhibits potential for binary, reservoir, and neuromorphic computing paradigms.

Subjects: Applied Physics (physics.app-ph); Materials Science (cond-mat.mtrl-sci) Cite as: arXiv:2403.17724 [physics.app-ph] (or arXiv:2403.17724v1 [physics.app-ph] for this version) https://doi.org/10.48550/arXiv.2403.17724

Zenbaa, et al., arXiv 2403.17724 (2024)

Experimental inverse-design unit

350 mT OOP biasing field

First run

Fabian Majcen, Claas Abert, Noura Zenbaa

Propagating spin wave spectrum

18 μ m thick YIG 350 mT bias field

Notch filter

Notch filter

Two-port demultiplexer

$$O_{j}^{\text{DS}} = (S_{21}^{\text{ref}} - S_{21,j}^{\text{I}_{\text{app}}})_{f_{1},\text{output}_{1}} \times (S_{21}^{\text{ref}} - S_{21,j}^{\text{I}_{\text{app}}})_{f_{2},\text{output}_{2}}$$

Two-port demultiplexer

$$O_{j}^{\text{DS}} = (S_{21}^{\text{ref}} - S_{21,j}^{\text{I}_{\text{app}}})_{f_{1},\text{output}_{1}} \times (S_{21}^{\text{ref}} - S_{21,j}^{\text{I}_{\text{app}}})_{f_{2},\text{output}_{2}}$$

Two-port demultiplexer

Iterations

Tenured Senior Scientist position to be announced soon

- Experimental magnonics
- Group of Nanomagnetism and Magnonics, Faculty of Physics, University of Vienna
- Tenured (after some period)

Please write to: andrii.chumak@univie.ac.at

Conclusions

3D magnonics has great potential for guiding and processing information

Merging 3D magnonics with inverse design opens new opportunities

Thank you for your attention!

Challenges:

- Quality and choice of nano-materials
- (Localised) SW excitation and (3D) detection
- Limited computational power/memory