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Today’s Topic

“Magnetic Skyrmion”



What kind of function can be expected from 
magnetic vortices?

Today’s Topic

Particle String



Rossler et al., Nature (2006). 
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What is magnetic skyrmion?

Particle nature + Nanometric scale 
　=  New information carrier for memory device?

cf. Racetrack memory, bubble memory etc...



G. Yu et al.,  
Nano Lett. 17, 261 (2017).

For practical memory applications, the readout can be done by
using a rather standard technique, tunnel magnetoresistance
(TMR) in the indicated magnetic tunnel junction (MTJ) on
the end of the device, as shown in Figure 1. With an out-of-
plane pinned layer (PL) provided as a reference, the presence
or absence of a skyrmion in the free layer (FL) could be
detected in the form of electrical resistance. Once a skyrmion
reaches the junction region, it can be detected via a standard
MTJ readout. However, for detailed studies of the skyrmion
dynamics we instead use magneto-optical Kerr microscopy for
readout in this experiment. One key advance presented here is
the controlled generation of individual skyrmions in the SKS
memory, the first step for realizing a practical device. Although
it has previously been demonstrated that single skyrmions can
be created in thin films, for example, by using local spin-
polarized currents from a scanning tunneling microscope at low
temperature,20 the room-temperature controllable generation
of individual skyrmions is required for practical applications.
This control over the number and position of individually
created skyrmions is a key ingredient for practical memory
devices, which is addressed in this work.
Our SKS memory device is a step beyond the recent work of

Jiang et al. In that work, a chiral stripe domain can be
dynamically transformed into ensembles of skyrmion bubbles,22

by using spatially divergent current-induced spin−orbit torque
(SOT).27,28 The skyrmion number generation in a controlled
manner was not achieved. Here, we solve this problem by
demonstrating a precise control of the generation of single
skyrmions in a single shot fashion in a simple two-terminal
device. One key factor for realizing this is that the generation of
a stripe domain can be controlled through spin−orbit torque-
induced asymmetric domain nucleation due to the presence of
DMI that tilts magnetization at the device boundary. This two-
terminal device integrating both skyrmion generation and
manipulation functions is more advantageous by simply
applying an “in-line” electron current between two terminals.

This is also in contrast to the previous demonstration by Jiang
et al., which requires four terminals to realize writing and
shifting, among which two are used for generating skyrmions
and the other two for shifting them,29,30 requiring at least two
pulse generators for operating the device. For practical memory
application, the realization of “in-line” injection of skyrmions
can significantly simplify the memory device structure.31

In the presented memory device, a single skyrmion bubble
can be controlled (including creation and manipulation) purely
by current pulses. Through controlling the magnitude and
duration of the applied current pulses, we show that it is
possible to select the device operation mode between either (i)
injecting (i.e., writing) a single skyrmion or (ii) shifting
skyrmions. In addition, the direction of motion is determined
by the sign of current. In this manner, we demonstrate a fully
electrically operated SKS memory device with a simple
structure.

Sample Structure. The film structures used to build the
device consist of Ta(5 nm)/Co40Fe40B20(t = 1.1, 1.2, and 1.3
nm)/TaOx. The metal layers were deposited on thermally
oxidized wafers by dc magnetron sputtering at room temper-
ature. The TaOx layer was formed by oxidizing a 1.5 nm thick
Ta layer using a radio frequency O2/Ar plasma. The films were
then annealed to enhance their crystallization and improve their
perpendicular magnetic anisotropy. Figure 2a shows the high-

resolution cross-section transmission electron microscope
(TEM) image of the sample with t = 1.2 nm, where the
sharp interfaces can be identified. The magnetic properties of
the films were measured using vibrating sample magnetometer
(VSM) measurements at room temperature. For the sample
with t = 1.2 nm, the out-of-plane and in-plane magnetic
hysteresis loops (as shown in Figure 2b) indicate that the
CoFeB layer is perpendicularly magnetized. The saturation
magnetization was determined to be Ms = 724 emu/cc. The

Figure 1. Proposed SKS memory device. The blue circles represent
generated skyrmions in the CoFeB layer. The spin textures in the
skyrmions are shown in the sketch in the lower right corner. The blue
stripe at the left edge of the device channel represents the stripe
domain generated by the current-induced SOT. The regions with
orange (blue) color represent Mz > 0 (Mz < 0) of the CoFeB layer. Je
represents the direction of a positive electron current. The red and
blue arrows on the side show the spin directions of polarized electrons
in the heavy metal due to the spin Hall effect. The writing of individual
skyrmions is realized by applying a low amplitude current pulse (IWrite)
with a given duration, whereas the shifting or moving of existing
skyrmions is realized by applying current pulses with a shorter
duration and a higher magnitude (IShift). Readout may be
accomplished using a MTJ with an out-of-plane pinned layer as a
reference to detect the presence (representing “1”) or absence
(representing “0”) of a skyrmion from TMR. The PL and FL refer to
the pinned layer and free layer in the MTJ, respectively.

Figure 2. Film properties. (a) High-resolution cross-section TEM
image of the thin film. (b) Perpendicular (black) and in-plane (red)
M/Ms−H loops of a Ta(5)/CoFeB(1.2)/TaOx (thickness in nm)
multilayer. The inset shows the enlarged perpendicular loop, which
indicates that the switching is accomplished in a gradual fashion. (c)
Evolution of magnetic domain patterns with an out-of-plane external
magnetic field. The labyrinthine domain at zero field is consistent with
the gradual switching shown in (b) inset. The bright (dark) color
represents the magnetization pointing up (down).
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FIG. 4: Experimentally deduced magnetic structures for GdRu2Ge2. a-e, The magnetic

structure m(r) for Phases I, II, III, IV and V, reconstructed based on Eq. (5) and m̃α(Qν) (Qν =

QA, QA′ , QB, QB′ , QC and QC′) deduced by RXS experiments as summarized in Supplementary

Table 1. The relative phase θQν
α is determined so as to realize the most uniform |m(r)| distribution

(See Supplementary Note III for the detail). The black arrows and background color represent the

in-plane and out-of-plane component of local magnetic moment m(r), respectively. f-j, Schematic

illustration of spin textures in a-e. k-m, The spatial distribution of |m(r)| for the spin textures

in b-d. The small amount of non-uniform component remaining in the |m(r)| profile is associated

with the higher-order harmonics neglected in the present model.
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Magnetic skyrmions in noncentrosymmetric system

Noncentrosymmetric systems
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Skyrmions mediated by itinerant electrons
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Each contribution is expressed by the diagram in Fig. 4.
A1 and A2 represent the scattering processes by a single
wave number, while B1, B2, and B3 by multiple wave
numbers.

Let us discuss which term plays a dominant role among
the five types of multiple spin interactions in Eqs. (17)-
(21). Figures 5(a) and 5(b) compares the coe�cients
A1, A2, B1, B2, and B3 for two sets of parameters used
in Fig. 3. In both cases, the coe�cient A2 becomes
dominant in the low-temperature limit. This indicates

that F (4)
2 is the most important contribution among the

fourth-order multiple spin interactions, as confirmed in
Figs. 5(c) and 5(d).

It is worth noting that F (4)
2 in Eq. (18) is in the form of

the biquadratic interaction with a positive coe�cient A2.
The positive biquadratic interaction, in general, favors a

noncollinear spin configuration. For example, a triple-Q
noncoplanar ordering is realized on a triangular lattice,
when the positive biquadratic interaction is enhanced by
Fermi surface connections24,26.

E. Higher-order contributions

The higher-order contributions can be straightfor-
wardly expressed by the Feynman diagrams similar to
those in Fig. 4. By analyzing the contributions from each
diagram, we find that the scattering process proportional
to (SQ⌫ · S�Q⌫ )

n gives the most important contribution

in each order. Note that the dominant F (4)
2 in Eq. (18) is

the case with n = 2. Thus, the general form of the dom-
inant contribution in the free energy at the 2nth order is
given by

F
(2n)
(Q,�Q) =

2nT

n

✓
Jp
N

◆2n

⇥
X

k,!p,⌫

(Gk)
n(Gk+Q⌫ )

n(SQ⌫ · S�Q⌫ )
n
. (27)

The sum of the dominant contributions up to the infinite
orders can be summarized in a compact form

F(Q,�Q) = F
(2)
(Q,�Q) + F

(4)
(Q,�Q) + · · ·+ F

(2n)
(Q,�Q) + · · · (28)

= 2T
J
2

N

X

k,!p,⌫


GkGk+Q⌫

1� 2(J2/N)GkGk+Q⌫ (SQ⌫ · S�Q⌫ )

�
(SQ⌫ · S�Q⌫ ). (29)

The corresponding Feynman diagrams are shown in
Fig. 6.

We find that the dominant terms in Eq. (28) con-
tribute in a di↵erent way depending on the order of the
expansion: the (4l + 2)th-order terms proportional to
TG

2l+1
k G

2l+1
k+Q < 0 tend to favor a single-Q coplanar order,

while the 4lth-order ones proportional to TG
2l
k G

2l
k+Q > 0

tend to favor multiple-Q noncoplanar order. This im-
plies that Eq. (28) is divided into two groups, which are
phenomenologically represented by a bilinear interaction
(SQ⌫ ·S�Q⌫ ) and a biquadratic interaction (SQ⌫ ·S�Q⌫ )

2.
On the basis of this observation, we construct an e↵ective
model in Sec. III.

We note that the free energy in Eq. (29) obtained the
partial summation of the dominant contributions con-
verges in the limit of zero temperature, while each term
is divergent, as inferred in Figs. 5(c) and 5(d). We discuss
the e↵ect of the higher-order contributions by evaluating
Eq. (29) in Sec. V.

III. EFFECTIVE SPIN MODEL

A. Bilinear-biquadratic model in momentum space

The perturbation expansion in Sec. II indicates that
many di↵erent types of e↵ective spin interactions can
contribute to the magnetic ordering in itinerant mag-
nets. The careful comparison between di↵erent terms,
however, gives an insight into the dominant contribution,
as discussed in Secs. IID and II E. Based on the obser-
vations, we propose an e↵ective spin model in the weak
coupling regime by including the contributions from the
bilinear and biquadratic interactions. The Hamiltonian
is given by

H = 2
X

⌫

h
�J̃SQ⌫ · S�Q⌫ + K̃(SQ⌫ · S�Q⌫ )

2
i
, (30)

where the sum is taken for ⌫ = 1, 2 (1, 2, 3) for the square
(triangular) lattice, and Q⌫ are the wave numbers for the
multiple peaks of the bare susceptibility �

0
q J̃ and K̃ are

the coupling constants for bilinear and biquadratic in-

2

weak coupling regime. We show that the origin of non-
coplanar magnetic orderings in itinerant magnets is an
e↵ective biquadratic interaction specified by particular
wave numbers dictated by the Fermi surface. We derive
an e↵ective spin model with bilinear and biquadratic cou-
plings by examining the dominant contributions in the
perturbative expansion in terms of the spin-charge cou-
pling. By constructing the phase diagram of the e↵ective
spin model on square and triangular lattices by Monte
Carlo simulations, we find that our model provides a
unified understanding of unconventional multiple-Qmag-
netic orders previously found in itinerant magnets25,28.
We confirm the stability of the multiple-Q phases ob-
tained in the spin model by comparing with those in the
original itinerant electron model by variational calcula-
tions. We also elucidate the magnetic phase diagram
by applying an external magnetic field to our e↵ective
model. We find a variety of field-induced multiple-Q
phases including di↵erent types of double(triple)-Q states
on the square (triangular) lattice.

The rest of the paper is organized as follows. In Sec. II,
we present the starting itinerant electron model, the
Kondo lattice model. We discuss how e↵ective multiple
spin interactions are generated from the perturbative ex-
pansion for the Kondo lattice Hamiltonian with respect
to the exchange coupling between itinerant electrons and
localized spins. By carefully examining contributions
from the expansion, we extract a minimal ingredient rel-
evant to exotic magnetic orderings. In Sec. III, we con-
struct the e↵ective spin model with bilinear-biquadratic
interactions defined in momentum space. In Sec. IV, we
discuss the multiple-Q instability in this e↵ective model.
In Sec. V, we compare the results between the e↵ective
spin model and the original Kondo lattice model by using
variational calculations. In Sec. VI, we show the phase
diagram under an external magnetic field. A plethora
of multiple-Q phases is obtained from our Monte Carlo
simulations. Section VII is devoted to a summary and a
discussion of candidate materials.

II. EFFECTIVE MULTIPLE SPIN
INTERACTIONS IN ITINERANT MAGNETS

In this section, we discuss e↵ective exchange interac-
tions between localized spins based on the perturbative
expansion with respect to the exchange coupling in the
Kondo lattice model. In Sec. II A, we introduce the
Hamiltonian of the model. In Sec. II B, we present a
general expression for the perturbative expansion in the
Kondo lattice model. Then, in Sec. II C, we discuss the
e↵ect of the second-order RKKY interaction, which is
not enough to determine magnetic orderings even when
the exchange coupling is infinitely small. We extract the
minimal ingredient to induce noncoplanar magnetic or-
derings by examining the fourth-order spin interactions
in Sec. IID, and generalize it to higher orders in Sec. II E.

A. Model

We begin with a Kondo lattice model consisting of itin-
erant electrons and localized spins on the square and tri-
angular lattices. The Hamiltonian is given by

H = �
X

i,j,�

tijc
†
i�cj� + J

X

i,�,�0

c
†
i����0ci�0 · Si, (1)

where c†i� (ci�) is a creation (annihilation) operator of an
itinerant electron at site i and spin �. The first term rep-
resents the kinetic motion of itinerant electrons. We con-
sider hopping elements between nearest-neighbor sites,
tij = t1, and third-neighbor sites, tij = t3, in the follow-
ing analyses. It is noteworthy that qualitative features
derived from the model in Eq. (1) are expected to hold
for other choices of the hopping elements, e.g., second-
neighbor hopping instead of t3, whenever the bare mag-
netic susceptibility shows multiple maxima at symmetry-
related wave numbers, as discussed in Sec. II C. Here-
after, we take t1 = 1 as an energy unit of the model in
Eq. (1). The second term represents the exchange cou-
pling between itinerant electron spins and localized spins.
� = (�x

,�
y
,�

z) is the vector of Pauli matrices, Si is a
localized spin at site i which is regarded as a classical
spin with length |Si| = 1, and J is the exchange cou-
pling constant; the sign of J is irrelevant for the classical
treatment of Si.

For the following arguments, it is useful to express the
Hamiltonian in Eq. (1) in momentum space as

H =
X

k,�

"kc
†
k�ck� +

Jp
N

X

k,q,�,�0

c
†
k����0ck+q�0 · Sq,

(2)

where c
†
k� and ck� are the Fourier transform of c†i� and

ci�, respectively. "k is the energy dispersion of free elec-
trons depending on the lattice structures: for the square
lattice,

"k = �2
X

l=1,2

(t1 cosk · el + t3 cos 2k · el), (3)

where e1 = x̂ = (1, 0) and e2 = ŷ = (0, 1), and for the
triangular lattice,

"k = �2
X

l=1,2,3

(t1 cosk · el + t3 cos 2k · el), (4)

where e1 = x̂, e2 = �x̂/2 +
p
3ŷ/2, and e3 = �x̂/2 �p

3ŷ/2. We set the lattice constant a = 1 as the length
unit. In the second term in Eq. (2), Sq is the Fourier
transform of Si and N is the number of sites. The sec-
ond term can be regarded as the scattering of itinerant
electrons by localized spins with the momentum transfer
q.

�
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FIG. 3. (a, c) The contour plots of the bare susceptibility χ 0
q for

(a) the square lattice model at t3 = −0.5 and µ = 0.98 and (c) the
triangular lattice model at t3 = −0.85 and µ = −3.5. χ 0

q exhibits
maxima at Q1 and Q2 in (a), while Q1, Q2, and Q3 in (c). In both
cases, Qν are connected with each other by the rotational symmetry
operation of the lattice structure. The squares and hexagons in the
figures represent the first Brillouin zone. (b, d) The Fermi surfaces
corresponding to (a) and (c), respectively. Qν are the vectors giving
the maxima of χ0

q in (a) and (c).

of the centrosymmetric Bravais lattice structures, there is in
general residual degeneracy related to rotational symmetry.
This remaining degeneracy plays a role in realizing multiple-Q
orderings as discussed in Sec. II D.

Let us describe how the degeneracy arises from the
rotational symmetry by showing the momentum dependence of
the bare susceptibility. χ0

q possesses multiple peaks reflecting
the rotational symmetry of the lattice structure. This is
demonstrated in Fig. 3. Figures 3(a) and 3(c) show χ0

q on
the square lattice with t3 = −0.5 and µ = 0.98 and the
triangular lattice with t3 = −0.85 and µ = −3.5, respectively.
The corresponding Fermi surfaces are also shown in Figs. 3(b)
and 3(d). The bare susceptibility shows multiple peaks at
the wave numbers for which the Fermi surface is nested,
and the wave numbers respect the rotational symmetry of
the system: C4 (C6) for the square (triangular) lattice. The
former square lattice case has four peak structures at Q1 =
±(2π/6,2π/6) and Q2 = R(π/2)Q1, and the latter triangular
lattice case shows six peak structures at Q1 = (2π/6,0), Q2 =
R(2π/3)Q1, and Q3 = R(4π/3)Q1; here, R(θ ) represents the
rotational operator by θ . As described above, at the level of
the RKKY interaction in Eq. (10), the single-Q helical order
is realized by choosing the ordering vector Q out of these
multiple peaks.

Thus, the second-order free energy, i.e., the RKKY
interaction, favors the helical ordering with the single-Q
modulation represented by Eq. (13), while there remains
the degeneracy related to rotational symmetry of the lattice

structure. Reflecting this, the ground state in the Kondo lattice
model is not given by the helical state but by noncoplanar
multiple-Q states even for the J → 0 limit. The striking result
was originally found at particular electron fillings where the
Fermi surface has perfect nesting [22] or multiple connections
[23,24,26], while recently generalized to generic fillings where
the Fermi surface has no special property except for the
rotational symmetry [25]. The fundamental mechanism is that
the system tends to lift the degeneracy due to the rotational
symmetry of the lattice structure through the higher-order
contributions of the free energy, as described in the following
sections.

D. Fourth-order interaction

Next, we consider the fourth-order contribution of the free
energy, Eq. (8) with n = 2. It is explicitly written as

F (4) = T

2
J 4

N2

∑

k,ωp

∑

q1,q2,q3,q4,l

GkGk+q1Gk+q1+q2Gk+q1+q2+q3

× δq1+q2+q3+q4,lG
[(

Sq1 · Sq2

)(
Sq3 · Sq4

)

+
(
Sq1 · Sq4

)(
Sq2 · Sq3

)
−

(
Sq1 · Sq3

)(
Sq2 · Sq4

)]
.

(15)

This gives the four-spin interactions, which play an important
role in lifting the degeneracy between the helical ordered states
and leads to the instability toward multiple-Q orderings. For
discussing such degeneracy lifting, it is enough to take into
account the wave numbers for the multiple maxima in the bare
susceptibility: q = ±Q1 and ±Q2 (±Q1, ±Q2, and ±Q3) for
the square (triangular) lattice. In the following, we consider the
scattering processes satisfying q1 + q2 + q3 + q4 = 0, i.e.,
l = 0 in Eq. (15); the special cases with q1 + q2 + q3 + q4 =
G were discussed for 2Qν = G in Refs. [22–24,26,30] and
4Qν = G in Ref. [27] (ν = 1,2,3). Then, the fourth-order free
energy is given by the sum of five types of multiple spin
interactions:

F (4) = F
(4)
1 + F

(4)
2 + F

(4)
3 + F

(4)
4 + F

(4)
5 , (16)

F
(4)
1 = J 4

N
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(
SQν

· SQν

)(
S−Qν

· S−Qν

)
, (17)

F
(4)
2 = J 4

N

∑

ν

(2A2)
(
SQν

· S−Qν

)2
, (18)

F
(4)
3 = 4

J 4

N

∑

ν,ν ′

(B1 + B2 − B3)
(
SQν

· S−Qν

)(
SQν′ · S−Qν′

)
,
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FIG. 3. (a, c) The contour plots of the bare susceptibility χ 0
q for

(a) the square lattice model at t3 = −0.5 and µ = 0.98 and (c) the
triangular lattice model at t3 = −0.85 and µ = −3.5. χ 0

q exhibits
maxima at Q1 and Q2 in (a), while Q1, Q2, and Q3 in (c). In both
cases, Qν are connected with each other by the rotational symmetry
operation of the lattice structure. The squares and hexagons in the
figures represent the first Brillouin zone. (b, d) The Fermi surfaces
corresponding to (a) and (c), respectively. Qν are the vectors giving
the maxima of χ0

q in (a) and (c).

of the centrosymmetric Bravais lattice structures, there is in
general residual degeneracy related to rotational symmetry.
This remaining degeneracy plays a role in realizing multiple-Q
orderings as discussed in Sec. II D.

Let us describe how the degeneracy arises from the
rotational symmetry by showing the momentum dependence of
the bare susceptibility. χ0

q possesses multiple peaks reflecting
the rotational symmetry of the lattice structure. This is
demonstrated in Fig. 3. Figures 3(a) and 3(c) show χ0

q on
the square lattice with t3 = −0.5 and µ = 0.98 and the
triangular lattice with t3 = −0.85 and µ = −3.5, respectively.
The corresponding Fermi surfaces are also shown in Figs. 3(b)
and 3(d). The bare susceptibility shows multiple peaks at
the wave numbers for which the Fermi surface is nested,
and the wave numbers respect the rotational symmetry of
the system: C4 (C6) for the square (triangular) lattice. The
former square lattice case has four peak structures at Q1 =
±(2π/6,2π/6) and Q2 = R(π/2)Q1, and the latter triangular
lattice case shows six peak structures at Q1 = (2π/6,0), Q2 =
R(2π/3)Q1, and Q3 = R(4π/3)Q1; here, R(θ ) represents the
rotational operator by θ . As described above, at the level of
the RKKY interaction in Eq. (10), the single-Q helical order
is realized by choosing the ordering vector Q out of these
multiple peaks.

Thus, the second-order free energy, i.e., the RKKY
interaction, favors the helical ordering with the single-Q
modulation represented by Eq. (13), while there remains
the degeneracy related to rotational symmetry of the lattice

structure. Reflecting this, the ground state in the Kondo lattice
model is not given by the helical state but by noncoplanar
multiple-Q states even for the J → 0 limit. The striking result
was originally found at particular electron fillings where the
Fermi surface has perfect nesting [22] or multiple connections
[23,24,26], while recently generalized to generic fillings where
the Fermi surface has no special property except for the
rotational symmetry [25]. The fundamental mechanism is that
the system tends to lift the degeneracy due to the rotational
symmetry of the lattice structure through the higher-order
contributions of the free energy, as described in the following
sections.

D. Fourth-order interaction

Next, we consider the fourth-order contribution of the free
energy, Eq. (8) with n = 2. It is explicitly written as
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This gives the four-spin interactions, which play an important
role in lifting the degeneracy between the helical ordered states
and leads to the instability toward multiple-Q orderings. For
discussing such degeneracy lifting, it is enough to take into
account the wave numbers for the multiple maxima in the bare
susceptibility: q = ±Q1 and ±Q2 (±Q1, ±Q2, and ±Q3) for
the square (triangular) lattice. In the following, we consider the
scattering processes satisfying q1 + q2 + q3 + q4 = 0, i.e.,
l = 0 in Eq. (15); the special cases with q1 + q2 + q3 + q4 =
G were discussed for 2Qν = G in Refs. [22–24,26,30] and
4Qν = G in Ref. [27] (ν = 1,2,3). Then, the fourth-order free
energy is given by the sum of five types of multiple spin
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Figure Captions 

 

Fig. 1. Phase diagram and topological Hall effect in Gd2PdSi3. (A) The basic AlB2-type 

crystal structure for Gd2PdSi3. (B) The schematic illustration of the spin texture in the 

skyrmion lattice (SkL) state. Each arrow indicates a spin at each Gd site. (C)-(D) The 

contour plot of (C) 𝜒’ and (D) that of 𝜌𝑦𝑥T  (see the text for the definition) for H||c. “A” 

represents the SkL phase and “PM” the paramagnetic phase. The “IC-1” and “IC-2” phases 

temperature-hysteretic Hall conductivity signal (shaded in gray)
emerges on the back of a smooth background in an intermediate
range of magnetic fields. We approximate the background by a
low-order (odd) polynomial and extract the topological Hall
conductivity σxyTHE. The topological signal as obtained from the
isothermal field scans is confined within the boundaries of the
SkL phase (Fig. 2c). Meanwhile, measurements of σxy(T) at fixed
magnetic field and for increasing temperature (dT/dt > 0) show a
large split between curves recorded under zero-field cooled (ZFC)
and field-cooled (FC) sample conditions, exclusively at inter-
mediate field values (Fig. 2d, μ0Hint= 1.22 and 1.42 T). The
natural conclusion is that a metastable SkL state, with its largely
enhanced σxy(T), can be sustained at the lowest temperatures in
the FC experiment, where the SkL is absent under ZFC
conditions. This behavior suggests the stabilization of the SkL
by thermal fluctuations (c.f. Discussion section). The point of

divergence between the ZFC and FC curves at T= 5–8 K in
Fig. 2d marks the first order phase transition between the TC and
SkL states in our phase diagram (labeled in Fig. 2a,c by black open
squares). Detailed susceptibiltity measurements evidence that the
boundaries of phases TC and SkL with all surrounding phases are
also strongly of first order (Supplementary Fig. 7).

Resonant elastic x-ray scattering (REXS) and microscopic
magnetic structure. We now proceed to study the field-induced
magnetic phases using REXS (Fig. 3) and real-space imaging
(Fig. 4, next section), before finally returning to a semi-
quantitative analysis of the Hall signal. For polarization analysis
in REXS, three mutually orthogonal components of the
q-modulated magnetic moment m(q) are separated viz.34
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Fig. 1 Crystal structure and zero-field magnetic order of a Gd-based breathing kagomé lattice. a Hexagonal unit cell of Gd3Ru4Al12, where a, b, and c are
crystallographic lattice directions. b Within the Gd3Al4 layer, rare earth (Gd) atoms form a distorted kagomé net with alternating distances r, r’ between
nearest neighbors. Al and Ru atoms are not shown. The black rhombus indicates the size of the primitive unit cell. cMagnetic susceptibility (blue, left axis)
increases continuously in the paramagnetic state as temperature is lowered. The inverse susceptibility H/M (red, right axis) is fitted by the Curie–Weiss
expression (dashed line) at high temperature. d, e Specific heat cP(T) and M/H show two phase transitions in zero magnetic field. f, g At the (7, 0, 0)+
q3= (7+ q, −q, 0) incommensurate reflection, resonant x-ray scattering with polarization analysis provides modulated moments within (m⊥ q,c, blue solid
triangles) and perpendicular to (m//c, red open triangles) the hexagonal plane, as well as the magnitude of the ordering vector q. Inset of (c) six directions
of qi are allowed by symmetry. The black hexagon indicates a conventional unit cell in real space. The transition temperatures TN2 > TN1 bound the red
shaded area in (d–g).
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An important challenge is the search for an appropriate material 
system to experimentally realize these situations. Very recently, it 
was discovered that the centrosymmetric triangular-lattice magnet 
Gd2PdSi3 hosts a hexagonal lattice of skyrmions, which is character-
ized by a small skyrmion diameter, λsk of 2.4 nm with an associated 
giant topological Hall effect29. A similar skyrmion formation was 
also reported for the centrosymmetric Gd3Ru4Al12 with a breath-
ing kagomé network30. For these compounds, the existence of a 
geometrically frustrated lattice is considered to be the key for the 
skyrmion formation. Nevertheless, in principle, the competition of 
long-range magnetic interactions mediated by itinerant electrons 
can be allowed for any type of crystal lattice. Therefore, it remains 
an important question whether similar skyrmion formation in cen-
trosymmetric magnets without geometrically frustrated lattices 
is possible or not. In this study, we focus on the centrosymmetric 
tetragonal magnet GdRu2Si2 without a geometrically frustrated 
lattice, and investigated its magnetic structure in detail. We found 
the emergence of the double-Q square skyrmion lattice state in an 
out-of-plane magnetic field. The observed skyrmion diameter is 
as small as 1.9 nm, which is the smallest among those reported for 
single-component bulk materials. Our present results demonstrate 
that a skyrmion lattice can be formed even without a geometrically 

frustrated lattice or inversion symmetry breaking, and suggest that, 
in general, rare-earth intermetallics with a highly symmetric crystal 
lattice can be a promising material platform to realize nanometric 
skyrmions of exotic origins.

Magnetic phase diagram for B!//![001]
GdRu2Si2 belongs to the family of RM2X2 compounds crystallized 
in a ThCr2Si2-type structure with centrosymmetric tetragonal space 
group I4/mmm (R, rare-earth element; M, a 3d, 4d or 5d element; 
X, Si or Ge)31. The crystal structure consists of alternate stacking of 
square lattice Gd layers and Ru2Si2 layers as presented in Fig. 1a, with 
the magnetism governed by Gd3+ (spin = 7/2, orbital moment = 0) 
ions with a Heisenberg magnetic moment. According to previous 
reports, this compound hosts incommensurate magnetic order below 
a Néel temperature of ~46 K (refs. 31,32), with the magnetic modulation 
vector Q = (0.22, 0, 0) confined within the tetragonal basal plane33. 
Application of a magnetic field B along the [001] axis induces several 
magnetic phase transitions as summarized in Fig. 1b, but the detailed 
magnetic structure in each phase has not been identified31–34.

Figure 1f–h,j–l indicates the magnetic field dependence of mag-
netization M, longitudinal resistivity ρxx and Hall resistivity ρyx mea-
sured at 5 K for B // [001]. The magnetization profile shows clear 
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Fig. 1 | Crystal structure, magnetic structure and magnetic phase diagram of GdRu2Si2. a, Crystal structure of GdRu2Si2. b, B–T phase diagram for 
B!//![001] based on the measurements of temperature (T) and magnetic field (B) dependence of magnetization M. Multiple magnetic phases can be 
clearly identified, including (modulated) screw (phase I), double-Q square skyrmion lattice (SkL) (phase II) and fan structure (phase III). c, Schematic 
illustration of the screw magnetic structure in phase I. d, Square SkL in phase II described by equation (3), that is, the superposition of two screw 
spin structures with orthogonally arranged magnetic modulation vectors Q1 and Q2. e, Fan structure in phase III. f–h, Magnetic field dependence of 
magnetization M (f), longitudinal resistivity ρxx (g) and Hall resistivity ρyx (h) at T!=!5!K for B!//![001] and I!//![100]. i–l, Expanded view of data in b (i), f (j), 
g (k) and h (l). f.u., formula unit; FM, ferromagnetic; PM, paramagnetic.
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An important challenge is the search for an appropriate material 
system to experimentally realize these situations. Very recently, it 
was discovered that the centrosymmetric triangular-lattice magnet 
Gd2PdSi3 hosts a hexagonal lattice of skyrmions, which is character-
ized by a small skyrmion diameter, λsk of 2.4 nm with an associated 
giant topological Hall effect29. A similar skyrmion formation was 
also reported for the centrosymmetric Gd3Ru4Al12 with a breath-
ing kagomé network30. For these compounds, the existence of a 
geometrically frustrated lattice is considered to be the key for the 
skyrmion formation. Nevertheless, in principle, the competition of 
long-range magnetic interactions mediated by itinerant electrons 
can be allowed for any type of crystal lattice. Therefore, it remains 
an important question whether similar skyrmion formation in cen-
trosymmetric magnets without geometrically frustrated lattices 
is possible or not. In this study, we focus on the centrosymmetric 
tetragonal magnet GdRu2Si2 without a geometrically frustrated 
lattice, and investigated its magnetic structure in detail. We found 
the emergence of the double-Q square skyrmion lattice state in an 
out-of-plane magnetic field. The observed skyrmion diameter is 
as small as 1.9 nm, which is the smallest among those reported for 
single-component bulk materials. Our present results demonstrate 
that a skyrmion lattice can be formed even without a geometrically 

frustrated lattice or inversion symmetry breaking, and suggest that, 
in general, rare-earth intermetallics with a highly symmetric crystal 
lattice can be a promising material platform to realize nanometric 
skyrmions of exotic origins.

Magnetic phase diagram for B!//![001]
GdRu2Si2 belongs to the family of RM2X2 compounds crystallized 
in a ThCr2Si2-type structure with centrosymmetric tetragonal space 
group I4/mmm (R, rare-earth element; M, a 3d, 4d or 5d element; 
X, Si or Ge)31. The crystal structure consists of alternate stacking of 
square lattice Gd layers and Ru2Si2 layers as presented in Fig. 1a, with 
the magnetism governed by Gd3+ (spin = 7/2, orbital moment = 0) 
ions with a Heisenberg magnetic moment. According to previous 
reports, this compound hosts incommensurate magnetic order below 
a Néel temperature of ~46 K (refs. 31,32), with the magnetic modulation 
vector Q = (0.22, 0, 0) confined within the tetragonal basal plane33. 
Application of a magnetic field B along the [001] axis induces several 
magnetic phase transitions as summarized in Fig. 1b, but the detailed 
magnetic structure in each phase has not been identified31–34.

Figure 1f–h,j–l indicates the magnetic field dependence of mag-
netization M, longitudinal resistivity ρxx and Hall resistivity ρyx mea-
sured at 5 K for B // [001]. The magnetization profile shows clear 
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Fig. 1 | Crystal structure, magnetic structure and magnetic phase diagram of GdRu2Si2. a, Crystal structure of GdRu2Si2. b, B–T phase diagram for 
B!//![001] based on the measurements of temperature (T) and magnetic field (B) dependence of magnetization M. Multiple magnetic phases can be 
clearly identified, including (modulated) screw (phase I), double-Q square skyrmion lattice (SkL) (phase II) and fan structure (phase III). c, Schematic 
illustration of the screw magnetic structure in phase I. d, Square SkL in phase II described by equation (3), that is, the superposition of two screw 
spin structures with orthogonally arranged magnetic modulation vectors Q1 and Q2. e, Fan structure in phase III. f–h, Magnetic field dependence of 
magnetization M (f), longitudinal resistivity ρxx (g) and Hall resistivity ρyx (h) at T!=!5!K for B!//![001] and I!//![100]. i–l, Expanded view of data in b (i), f (j), 
g (k) and h (l). f.u., formula unit; FM, ferromagnetic; PM, paramagnetic.
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¾ Distinct square SkXs in GdRu2Si2 and GdRu2Ge2
induced by the nesting vector of (q/2, q/2, 0) direction
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Figure 1 │Magnetic phase diagram of EuAl4. a, Crystal structure of EuAl4. b, 

H(magnetic field)-T(temperature) phase diagram for H || [001] determined from T and 

H dependences of magnetization, M, and the H dependence of Hall resistivity, ρyx. FM 

and PM represent the ferromagnetic and paramagnetic states, respectively. c, 

Schematic illustration of the skyrmion spin texture. d, Schematic illustration of the 

experimental geometry for the SANS measurement. kin and kout are the incident and 

scattered neutron wave vectors, respectively. e-g, Magnetic field dependence of 

magnetization M (e), longitudinal resistivity ρxx (f), and Hall resistivity ρyx (g) at 4 K for 

H || [001] and I || [100]. Black filled and red open circles correspond to the field-

increasing and -decreasing processes, respectively. 
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rhombic square

(szQi
) represents the modulated spin component normal to both

magnetic modulation vector Qi and the [001] axis (parallel to the
[001] axis). The resultant spin textures for phases II and III are
illustrated in Fig. 2f, g, which can be considered as the rhombic
and square lattice of magnetic skyrmions, respectively, according

to Eq. (1). In Fig. 4c, the temperature dependence of ISF and INSF
measured at 1 T is summarized. In phase IV above 11 K, the
magnetic scattering appears only in the ISF channel but not in the
INSF channel. It suggests that m̂ðQÞ in phase IV consists only of
the in-plane component normal to Q. A similar conclusion is also

Fig. 2 Magnetic-field dependence of SANS patterns for EuAl4. a–d Typical SANS patterns taken at 5.0 K at various strengths of magnetic field for H ||
[001]. The color scale indicates the integrated intensity. e–h Schematics of the screw (e), rhombic skyrmion lattice (f), square skyrmion lattice (g), and
vortex-lattice (h) spin textures. Each phase is characterized by distinctive orientation of the fundamental magnetic modulation vectors Q1 and Q2. The
rhombic and square skyrmion lattice states are the double-Q states described by Eq. (2), i.e., the superposition of two obliquely or orthogonally modulated
spin helices. Background color represents the out-of-plane component of local magnetic moment mz. See Supplementary Note VII and VIII for the detailed
spin texture in phase IV.

Fig. 3 Magnetic-field dependence of the magnetic modulation vectors in EuAl4. a, b Schematic illustrations of Area 1 and Area 2 used for the SANS
intensity integration. c, d The SANS integrated intensities for Area 1 (a) and Area 2 (b) as a function of magnetic field for H || [001] at 5.0 K. The colored
lines in (c, d) are guides to the eye, showing the assignment of each magnetic reflection to either Q1 or Q1+Q2. e, f Magnetic-field dependence of the
wavenumber |Q| (e) and azimuth angle θQ (f) of the fundamental magnetic modulation vector Q1. Here, θQ is defined as the angle between the Q-direction
and the [110] axis, as shown in Fig. 2a. g, h The corresponding data for the higher-order Q1+Q2 magnetic satellite reflection. The black curves in (g, h)
represent the theoretical |Q| and θQ values for Q1+Q2 reflection calculated from fundamental magnetic reflections in (e, f), which agree well with the
experimental data. The gray regions between phases I and II indicate the phase coexistence region (see Supplementary Note IV).
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Multiple skyrmion phases are observed in EuAl4 and GdRu2Ge2

FIG. 4: Experimentally deduced magnetic structures for GdRu2Ge2. a-e, The magnetic

structure m(r) for Phases I, II, III, IV and V, reconstructed based on Eq. (5) and m̃α(Qν) (Qν =

QA, QA′ , QB, QB′ , QC and QC′) deduced by RXS experiments as summarized in Supplementary

Table 1. The relative phase θQν
α is determined so as to realize the most uniform |m(r)| distribution

(See Supplementary Note III for the detail). The black arrows and background color represent the

in-plane and out-of-plane component of local magnetic moment m(r), respectively. f-j, Schematic

illustration of spin textures in a-e. k-m, The spatial distribution of |m(r)| for the spin textures

in b-d. The small amount of non-uniform component remaining in the |m(r)| profile is associated

with the higher-order harmonics neglected in the present model.
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GdRu2Ge2 : Multiple-step metamagnetic transition

Centrosymmetric tetragonal 
Gd3+ Heisenberg spin

M profile shows three intermediate steps 
ρyx shows two peak structure (Phase II & IV : topological Hall effect ?)
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FIG. 2: RXS measurements for GdRu2Ge2. a, Schematic illustration of experimental setup

for RXS measurement. The scattering plane spanned by the incident and the scattered beams (ki

and kf , respectively) lies normal to the [001] axis. The incident X-ray beam is linearly polarized

within the scattering plane (π-polarized). b-d, Magnetic-field dependence of magnetization M ,

the wave number q and integrated intensity of the (4 + q, 2, 0) magnetic reflection for B ‖ [001] at

6 K. e-i, Line profiles of (4 + δ, 2, 0) scan (i.e. line scan A) for Phases I (B = 0), II (0.92 T), III

(1.03 T), IV (1.13 T) and V (1.3 T) to identify the Q ∼ (q, 0, 0) magnetic satellite peaks around

the fundamental Bragg spot (4, 2, 0). Each experimental data (closed circles) is fitted by one or

two Gaussian functions. j-n, Line profiles of (4 − τ, q0 + τ, 0) scan (i.e. line scan B) to identify

Q ∼ (q/2, q/2, 0) magnetic satellite peaks around the fundamental Bragg spot (4, 0, 0) for Phases

I-V. The definition of q0 is shown in (p). o-s, Reciprocal-space distribution of magnetic satellite

reflections, as well as the directions of line scans A and B for Phases I-V. Closed and open circles

in o, p, and q represent the contributions of magnetic domains α and β, respectively.
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Q1 + Q2 peak is identified in 
Phases II, III, and IV

第 2章 実験手法 52

Incident X-ray

(π-polarized) 

Scattered X-ray

Analyzer
(PG 006)

Detector
Sample

π-π’
π-σ’

b a

B

a b

c

c 

図 2.5 a, 共鳴 X 線散乱実験における測定配置。入射 X 線は π 偏光となっており、熱分解グラ
ファイトの (006)面によるアナライザーによって、π′ 偏光成分と σ′ 偏光成分に分解することがで
きる。b, 測定に用いたサンプル。c, 共鳴 X線散乱実験のロッドにサンプルをマウントした様子。
アルミニウム板に固定したサンプルを、ワニスでロッドに固定している。磁場方向はロッドに並
行方向であり、サンプルの c軸方向である。

KEK BL-3A

H. Yoshimochi

double-Q magnetic order 

with Nakajima & Arima Lab.

GdRu2Ge2 : Magnetic structure (Resonant X-ray scattering)
H. Yoshimochi, … , S. Seki, Nature Physics (2024).
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9 Measurement arrangement

Bragg spot channel Detected mQ component

(4, -2, 0)
𝜋 − 𝜋′ m[001]
𝜋 − 𝜎′ m[100]

(4, 0, 0)
𝜋 − 𝜋′ m[001]
𝜋 − 𝜎′ m[110]

N. D. Khanh et al., Nat. Nanotech. 15, 444 (2020).

Magnetic modulation vector : Q

Modulated spin component :

Magnetic scattering intensity :  

Incident X-ray polarization

Magnetic structure：

Summary (I) 35

Phase I

Phase II

Phase III

Scattering peaks on (H, K, 0) plane Schematic spin modulatuion component

H

Spin texture

(q, 0, 0) (q, q, 0)(q/2, q/2, 0)

(q, 0, 0)

H

H

K

K

K

(q, 0, 0)

+
(0, q, 0)

+

(q/2, q/2, 0)

(-q/2, q/2, 0)

+

(q, q, 0)

(-q, q, 0)

(q, 0, 0) (q/2, q/2, 0)

(q, 0, 0)

+
(0, q, 0)

+

(q/2, q/2, 0)

(-q/2, q/2, 0)

(q, 0, 0)

Nsk = 0

Nsk = 0

Nsk = -1

→ Each mQi  can be identified by polarization analysis

¾ Experimental determination of all the modulated spin components in each phase

¾ Confirmation of the existence of higher-order-peaks in each phase

Spin modulation component at each phase 22

(q 0 0) (q/2 q/2 0) (q q 0) (2q 0 0) (0 0 0)

Phase II

mx
1 = 1.0000

mz
1 = 0.8865

mx
2 = 0.5302

mz
2 = 0.2201

m[110] = 0.3852
mz = 0.5900

m[110] = 0.082
mz = 0.1524 mz

0 = 0.2346 Mz
sat.

Phase III

mx
1 = 0.7256

mz
1 = 0.4386

m//q
1 = 0.3027

mx
2 = 0.4438

mz
2 = 0.2326

m[110] = 0.1394
mz = 0.5768
m//q = 0.1021

mz
0 = 0.4106 Mz

sat.

Phase IV mx = 1.0250
mz = 0.4217

m[110] = 0.2845
mz = 0.5545

m[110] = 0.0592
mz = 0.1338 mz

0 = 0.5718 Mz
sat.

Phase V mx = 0.4413 mx = 0.0487 mz
0 = 0.7206 Mz

sat.

¾ Experimental determination of all the modulated spin components in each phase

¾ Confirmation of the existence of higher-order-peaks in each phase

Spin modulation component at each phase 22
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m[110] = 0.3852
mz = 0.5900

m[110] = 0.082
mz = 0.1524 mz

0 = 0.2346 Mz
sat.

Phase III

mx
1 = 0.7256

mz
1 = 0.4386

m//q
1 = 0.3027

mx
2 = 0.4438

mz
2 = 0.2326

m[110] = 0.1394
mz = 0.5768
m//q = 0.1021

mz
0 = 0.4106 Mz

sat.

Phase IV mx = 1.0250
mz = 0.4217

m[110] = 0.2845
mz = 0.5545

m[110] = 0.0592
mz = 0.1338 mz

0 = 0.5718 Mz
sat.

Phase V mx = 0.4413 mx = 0.0487 mz
0 = 0.7206 Mz

sat.
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Temperature : 6 K
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Domain AとDomain Bの比率の見積もり：(q00)のデータで、それぞれのDomainのSz成分を比較して見積もる

Phase I Phase II Phase III Phase IV

積分強度で比較した
Domain AとBの体積比 2.047 2.40 0.67 1.63

ピーク値で比較した
Domain AとBの体積比 1.44 1.94 0.58 1.33

→ 以降の解析は、積分強度で比較したDomain比を用いて解析している

Phase IVは本来
1:1のドメイン比に
なるべき (?)

h

k

Scattered X-ray polarization

GdRu2Ge2 : Magnetic structure (Resonant X-ray scattering)
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FIG. 4: Experimentally deduced magnetic structures for GdRu2Ge2. a-e, The magnetic

structure m(r) for Phases I, II, III, IV and V, reconstructed based on Eq. (5) and m̃α(Qν) (Qν =

QA, QA′ , QB, QB′ , QC and QC′) deduced by RXS experiments as summarized in Supplementary

Table 1. The relative phase θQν
α is determined so as to realize the most uniform |m(r)| distribution

(See Supplementary Note III for the detail). The black arrows and background color represent the

in-plane and out-of-plane component of local magnetic moment m(r), respectively. f-j, Schematic

illustration of spin textures in a-e. k-m, The spatial distribution of |m(r)| for the spin textures

in b-d. The small amount of non-uniform component remaining in the |m(r)| profile is associated

with the higher-order harmonics neglected in the present model.
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GdRu2Ge2 : Magnetic structure (Resonant X-ray scattering)

Multiple-step topological transitions among skyrmion and meron crystal states

H. Yoshimochi, … , S. Seki, Nature Physics (2024).
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B1 =
T

N

X

k,!p

(Gk)
2
Gk+Q⌫Gk+Q⌫0 , (24)

B2 =
T

N

X

k,!p

(Gk)
2
Gk+Q⌫Gk�Q⌫0 , (25)

B3 =
T

N

X

k,!p

GkGk+Q⌫Gk+Q⌫0Gk+Q⌫+Q⌫0 . (26)

Each contribution is expressed by the diagram in Fig. 4.
A1 and A2 represent the scattering processes by a single
wave number, while B1, B2, and B3 by multiple wave
numbers.

Let us discuss which term plays a dominant role among
the five types of multiple spin interactions in Eqs. (17)-
(21). Figures 5(a) and 5(b) compares the coe�cients
A1, A2, B1, B2, and B3 for two sets of parameters used
in Fig. 3. In both cases, the coe�cient A2 becomes
dominant in the low-temperature limit. This indicates

that F (4)
2 is the most important contribution among the

fourth-order multiple spin interactions, as confirmed in
Figs. 5(c) and 5(d).

It is worth noting that F (4)
2 in Eq. (18) is in the form of

the biquadratic interaction with a positive coe�cient A2.
The positive biquadratic interaction, in general, favors a

noncollinear spin configuration. For example, a triple-Q
noncoplanar ordering is realized on a triangular lattice,
when the positive biquadratic interaction is enhanced by
Fermi surface connections24,26.

E. Higher-order contributions

The higher-order contributions can be straightfor-
wardly expressed by the Feynman diagrams similar to
those in Fig. 4. By analyzing the contributions from each
diagram, we find that the scattering process proportional
to (SQ⌫ · S�Q⌫ )

n gives the most important contribution

in each order. Note that the dominant F (4)
2 in Eq. (18) is

the case with n = 2. Thus, the general form of the dom-
inant contribution in the free energy at the 2nth order is
given by

F
(2n)
(Q,�Q) =

2nT

n

✓
Jp
N

◆2n

⇥
X

k,!p,⌫

(Gk)
n(Gk+Q⌫ )

n(SQ⌫ · S�Q⌫ )
n
. (27)

The sum of the dominant contributions up to the infinite
orders can be summarized in a compact form

F(Q,�Q) = F
(2)
(Q,�Q) + F

(4)
(Q,�Q) + · · ·+ F

(2n)
(Q,�Q) + · · · (28)

= 2T
J
2

N

X

k,!p,⌫


GkGk+Q⌫

1� 2(J2/N)GkGk+Q⌫ (SQ⌫ · S�Q⌫ )

�
(SQ⌫ · S�Q⌫ ). (29)

The corresponding Feynman diagrams are shown in
Fig. 6.

We find that the dominant terms in Eq. (28) con-
tribute in a di↵erent way depending on the order of the
expansion: the (4l + 2)th-order terms proportional to
TG

2l+1
k G

2l+1
k+Q < 0 tend to favor a single-Q coplanar order,

while the 4lth-order ones proportional to TG
2l
k G

2l
k+Q > 0

tend to favor multiple-Q noncoplanar order. This im-
plies that Eq. (28) is divided into two groups, which are
phenomenologically represented by a bilinear interaction
(SQ⌫ ·S�Q⌫ ) and a biquadratic interaction (SQ⌫ ·S�Q⌫ )

2.
On the basis of this observation, we construct an e↵ective
model in Sec. III.

We note that the free energy in Eq. (29) obtained the
partial summation of the dominant contributions con-
verges in the limit of zero temperature, while each term
is divergent, as inferred in Figs. 5(c) and 5(d). We discuss
the e↵ect of the higher-order contributions by evaluating
Eq. (29) in Sec. V.

III. EFFECTIVE SPIN MODEL

A. Bilinear-biquadratic model in momentum space

The perturbation expansion in Sec. II indicates that
many di↵erent types of e↵ective spin interactions can
contribute to the magnetic ordering in itinerant mag-
nets. The careful comparison between di↵erent terms,
however, gives an insight into the dominant contribution,
as discussed in Secs. IID and II E. Based on the obser-
vations, we propose an e↵ective spin model in the weak
coupling regime by including the contributions from the
bilinear and biquadratic interactions. The Hamiltonian
is given by

H = 2
X

⌫

h
�J̃SQ⌫ · S�Q⌫ + K̃(SQ⌫ · S�Q⌫ )

2
i
, (30)

where the sum is taken for ⌫ = 1, 2 (1, 2, 3) for the square
(triangular) lattice, and Q⌫ are the wave numbers for the
multiple peaks of the bare susceptibility �

0
q J̃ and K̃ are

the coupling constants for bilinear and biquadratic in-
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Nature Comm. 13, 1472 (2022). 
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FIG. 4: Experimentally deduced magnetic structures for GdRu2Ge2. a-e, The magnetic

structure m(r) for Phases I, II, III, IV and V, reconstructed based on Eq. (5) and m̃α(Qν) (Qν =

QA, QA′ , QB, QB′ , QC and QC′) deduced by RXS experiments as summarized in Supplementary

Table 1. The relative phase θQν
α is determined so as to realize the most uniform |m(r)| distribution

(See Supplementary Note III for the detail). The black arrows and background color represent the

in-plane and out-of-plane component of local magnetic moment m(r), respectively. f-j, Schematic

illustration of spin textures in a-e. k-m, The spatial distribution of |m(r)| for the spin textures
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4f system

3d system

Further search of RKKY-induced multi-q spin order
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CoTa3S6 : Intercalated van der Waals antiferromagnet

Chiral hexagonal crystal structure 
AFM order below TN ~ 36K 
Weak spontaneous M || [001] (~ 0.01μB/Co)

P6322

2H-TaS2 + Co-intercalation

H. Takagi

結晶構造+磁気変調ベクトル

磁気構造の基底(対称性から)

etc…

磁性,輸送特性をもとに
磁気構造を推測する

任意の磁気構造は
基底の線形和で表現できる

手法

~2mm

単結晶作製 磁気構造の考察
気相成長法 ISOTROPY Software

磁化 : VSM

輸送 : 交流五端子測定

H. T. Stokes et al., ISOTROPY Software Suite, iso.byu.edu.
https://stokes.byu.edu/iso/isotropy.php
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CoTa3S6 : Giant spontaneous Hall effect

Giant spontaneous Hall effect, not proportional to M 
(ρyx/ρxx ~ 2%)

Time-reversal-symmetry-broken AFM order?
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CoTa3S6 : Polarized neutron scattering

Fig2v2 ver2

magnetic reflections
nuclear reflections

100

110

½00
a*

b*

½½0

(δ,0,0)-scan
42 K
10 K

In
te

ns
ity

 [a
.u

.]

0.0

0.1

0.2

0.3

0.50 0.75 1.00
δ [r.l.u.]

(δ,δ,0)-scan
42 K
10 K

In
te

ns
ity

 [a
.u

.]

0

25

50

0.50 0.75 1.00
δ [r.l.u.]

a b

c d

e f

I[
co

un
ts

 / 
20

 m
in

.]

0

50

100

δ [r.l.u.]
0.46 0.50 0.540.48 0.52

2.2 K SF    (⊥c)
NSF (||c)

(δ,0,0)-scan

I[
co

un
ts

 / 
5 

m
in

.]

0

50

100

150

200

δ [r.l.u.]
0.48 0.50 0.520.49 0.51

2.2 K
(δ,δ,0)-scan

SF    (⊥c)
NSF (||c)

ki

kf

Q(=ki-kf)

Spin
flipper

Heusler
monochromator

Heusler analyzer Detector

Sn
flip on
flip off

sample
c

Fig2v2 ver2

magnetic reflections
nuclear reflections

100

110

½00
a*

b*

½½0

(δ,0,0)-scan
42 K
10 K

In
te

ns
ity

 [a
.u

.]

0.0

0.1

0.2

0.3

0.50 0.75 1.00
δ [r.l.u.]

(δ,δ,0)-scan
42 K
10 K

In
te

ns
ity

 [a
.u

.]

0

25

50

0.50 0.75 1.00
δ [r.l.u.]

a b

c d

e f

I[
co

un
ts

 / 
20

 m
in

.]

0

50

100

δ [r.l.u.]
0.46 0.50 0.540.48 0.52

2.2 K SF    (⊥c)
NSF (||c)

(δ,0,0)-scan

I[
co

un
ts

 / 
5 

m
in

.]

0

50

100

150

200

δ [r.l.u.]
0.48 0.50 0.520.49 0.51

2.2 K
(δ,δ,0)-scan

SF    (⊥c)
NSF (||c)

ki

kf

Q(=ki-kf)

Spin
flipper

Heusler
monochromator

Heusler analyzer Detector

Sn
flip on
flip off

sample
c

Spin-flip (SF) scattering

(mq ⊥ Sn) and (mq ⊥ Q)

Neutron 
spin

Non-spin-flip (NSF) scattering

(mq || Sn) and (mq ⊥ Q)

Out-of-plane  
spin component

In-plane  
spin component

Both in-plane and out-of-plane 
spin components coexist 

Non-coplanar spin texture ?

@ 5G PONTA, JRR-3



CoTa3S6 : Representation Analysis
Basis MPG σ (M=0) 𝒎⊥(12 0 0) 𝒎⊥(12

1
2 0) Channel Structure

1 62’2’
𝜎𝑥𝑥 𝜎𝑥𝑦 0
−𝜎𝑥𝑦 𝜎𝑦𝑦 0
0 0 𝜎𝑧𝑧

4
3
𝑆𝐞𝑍 −

8
3
𝑆𝐞𝑍 NSF

2 6’22’
𝜎𝑥𝑥 0 0
0 𝜎𝑦𝑦 0
0 0 𝜎𝑧𝑧

−
4 3
3

𝑆𝑖𝐞𝑍 0 NSF

3 62’2’
𝜎𝑥𝑥 𝜎𝑥𝑦 0
−𝜎𝑥𝑦 𝜎𝑦𝑦 0
0 0 𝜎𝑧𝑧

2 3𝑆𝑖𝐞𝑌 0 SF

4 622
𝜎𝑥𝑥 0 0
0 𝜎𝑦𝑦 0
0 0 𝜎𝑧𝑧

0 0 -

5 6’22’
𝜎𝑥𝑥 0 0
0 𝜎𝑦𝑦 0
0 0 𝜎𝑧𝑧

2𝑆𝐞𝑌 0 SF

6 6’22’
𝜎𝑥𝑥 0 0
0 𝜎𝑦𝑦 0
0 0 𝜎𝑧𝑧

0 −4𝑆𝐞𝑌 SF

Magnetic structure is 
described by  

linear combination of  
Bases 1 and 6

Fig2v2 ver2

magnetic reflections
nuclear reflections

100

110

½00
a*

b*

½½0

(δ,0,0)-scan
42 K
10 K

In
te

ns
ity

 [a
.u

.]

0.0

0.1

0.2

0.3

0.50 0.75 1.00
δ [r.l.u.]

(δ,δ,0)-scan
42 K
10 K

In
te

ns
ity

 [a
.u

.]

0

25

50

0.50 0.75 1.00
δ [r.l.u.]

a b

c d

e f

I[
co

un
ts

 / 
20

 m
in

.]

0

50

100

δ [r.l.u.]
0.46 0.50 0.540.48 0.52

2.2 K SF    (⊥c)
NSF (||c)

(δ,0,0)-scan

I[
co

un
ts

 / 
5 

m
in

.]

0

50

100

150

200

δ [r.l.u.]
0.48 0.50 0.520.49 0.51

2.2 K
(δ,δ,0)-scan

SF    (⊥c)
NSF (||c)

ki

kf

Q(=ki-kf)

Spin
flipper

Heusler
monochromator

Heusler analyzer Detector

Sn
flip on
flip off

sample
c

Fig2v2 ver2

magnetic reflections
nuclear reflections

100

110

½00
a*

b*

½½0

(δ,0,0)-scan
42 K
10 K

In
te

ns
ity

 [a
.u

.]

0.0

0.1

0.2

0.3

0.50 0.75 1.00
δ [r.l.u.]

(δ,δ,0)-scan
42 K
10 K

In
te

ns
ity

 [a
.u

.]

0

25

50

0.50 0.75 1.00
δ [r.l.u.]

a b

c d

e f

I[
co

un
ts

 / 
20

 m
in

.]

0

50

100

δ [r.l.u.]
0.46 0.50 0.540.48 0.52

2.2 K SF    (⊥c)
NSF (||c)

(δ,0,0)-scan

I[
co

un
ts

 / 
5 

m
in

.]

0

50

100

150

200

δ [r.l.u.]
0.48 0.50 0.520.49 0.51

2.2 K
(δ,δ,0)-scan

SF    (⊥c)
NSF (||c)

ki

kf

Q(=ki-kf)

Spin
flipper

Heusler
monochromator

Heusler analyzer Detector

Sn
flip on
flip off

sample
c

(1/2,0,0)

(1/2,1/2,0)



CoTa3S6 : “All-in-all-out" non-coplanar AFM order
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TABLE IV. Tensor forms for magnetic Laue groups of category (a).

Magnetic
Laue group τ ′ σ

1̄1′




τxx τyx τzx

τxy τyy τzy

τxz τyz τzz








σxx σxy σxz

σxy σyy σyz

σxz σyz σzz





2/m1′




τxx 0 τzx

0 τyy 0
τxz 0 τzz








σxx 0 σxz

0 σyy 0
σxz 0 σzz





mmm1′




τxx 0 0
0 τyy 0
0 0 τzz








σxx 0 0
0 σyy 0
0 0 σzz





3̄1′,4/m1′,

6/m1′




τxx −τxy 0
τxy τxx 0
0 0 τzz








σxx 0 0
0 σxx 0
0 0 σzz





3̄1m1′, 3̄m11′,

4/mmm1′, 6/mmm1′




τxx 0 0
0 τxx 0
0 0 τzz








σxx 0 0
0 σxx 0
0 0 σzz





m3̄1′, m3̄m1′




τxx 0 0
0 τxx 0
0 0 τxx








σxx 0 0
0 σxx 0
0 0 σxx





shape of the thermogalvanic tensors result only from the
application of Eq. (43) as there are no antiunitary operations.
As a consequence, all tensors σ , τ , and τ ′ have the same shape.
Accordingly, only the shape of τ is given in Table V, that is in
full agreement with Kleiner’s Table IV [2].

For magnetic space groups belonging to category (a) or
category (c) Eq. (44) has to be applied in addition to Eq. (43).
In general, this leads to different symmetry restrictions for the
tensors of type τ ′ and σ . The resulting shape of the tensors for
category (a) is given in Table IV. These results agree with those
given by Kleiner’s Table V [2], apart from those for the Laue
groups 3̄1′, 4/m1′, and 6/m1′. Since the magnetic Laue groups
in category (a) differ from those in (b) only by the time-reversal
1′ as an element of its own, the tensor shapes in Table IV

TABLE V. Tensor forms for magnetic Laue groups of category (b).

Magnetic Laue group τ

1̄




τxx τxy τxz

τyx τyy τyz

τzx τzy τzz





2/m




τxx 0 τxz

0 τyy 0
τzx 0 τzz





mmm




τxx 0 0
0 τyy 0
0 0 τzz





3̄, 4/m, 6/m




τxx τxy 0

−τxy τxx 0
0 0 τzz





3̄1m, 3̄m1, 4/mmm, 6/mmm




τxx 0 0
0 τxx 0
0 0 τzz





m3̄, m3̄m




τxx 0 0
0 τxx 0
0 0 τxx





TABLE VI. Tensor forms for magnetic Laue groups of category
(c). The tensor forms for the groups 4′/mm′m and 4′/mmm′ are
related to each other by a rotation of the coordinate system around
the principal (z) axis by π/4.

Magnetic
Laue group τ ′ σ

2′/m′




τxx −τyx τzx

−τxy τyy −τzy

τxz −τyz τzz








σxx σxy σxz

−σxy σyy σyz

σxz −σyz σzz





m′m′m




τxx −τyx 0

−τxy τyy 0
0 0 τzz








σxx σxy 0

−σxy σyy 0
0 0 σzz





4′/m




τyy −τxy 0

−τyx τxx 0
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alternatively can be deduced from those in Table V simply
by considering in addition the effect of 1′. In case of σ this
can lead to additional restrictions (degeneracies and zero
elements) since in this case the antiunitary time reversal
connects σ with itself according to its definition given
above. For the thermoelectric tensor on the other hand,
this just states the usual Onsager relations as expressed by
τ ′
ij (H) = τji(−H) [see Eq. (34)]. Table VI gives the results

for category (c) that are in full agreement with those given by
Kleiner’s Table VI [2]. Obviously the results presented in
Tables IV–VI fulfill the Onsager relations given by Eqs. (32)
to (34) that are not postulated a priori.

Kleiner’s scheme was applied here to derive the shape of
the tensors representing homogeneous bulk systems. However,
it may also be applied to investigate the symmetry restrictions
on the so-called layer-resolved conductivity tensor σ IJ with
I and J labeling atomic layers of a two-dimensional periodic
system [17]. This concept may be used for example in the
context of electrical transport in layered GMR systems [18,19]
or magneto-optical properties of surface systems [20,21].
Another extension of Kleiner’s scheme is the discussion of
nonlinear effects [17].

C. Shape of the spin conductivity tensor

Spin transport as reflected for example by the spin Hall
effect is usually described by use of the spin conductivity σ k

ij
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mentary Fig. 7). A uniform |Mtri
i | is obtained only when the Fourier

components Δν of the three wave vectors qν
m are orthogonal to each

other12, i.e., Mtri
i =

P
ν = 1,3Δν cosðqν

m"riÞ with Δv⊥Δv′ for ν≠ν0: We note,
however, that the magnitude of the ordered moments (|Mtri

i |) does not
have to be the same for quantum mechanical spins. Nevertheless, as
explained in detail in the Supplementary Information, only non-coplanar
triple-Q orderings corresponding to equilateral ( Δν

!! !!= Δν0

!! !!, Fig. 2h) or
non-equilateral ( Δν

!! !! Δν0

!! !!) tetrahedral configurations are consistent with
our Rietveld refinement of neutron diffraction data.

In the high-temperature ordered phase at TN2 < T < TN1, the triple-
Q ordering that yields the same neutron diffraction pattern as that of
the single-Q ordering shown in Fig. 2g is collinear, giving rise to highly
nonuniform |Mtri

i | (see Supplementary Fig. 7). Such a strong modula-
tion of |Mtri

i | is unlikely for S = 3/2 moments weakly coupled to con-
duction electrons (see discussion below). In addition, the collinear
triple-Q ordering allows for finite Mz(H =0) and σxyðH=0Þ19–22, while
they are precisely zero within our measurement error for TN2 < T < TN1.
On the other hand, the single-Q ordering shown in Fig. 2g is more
consistent with Mz(H =0) = σxyðH=0Þ =0 in the temperature range
TN2 < T < TN1 due to its τ1aT symmetry. Therefore, the combined neu-
tron diffraction and anomalous transport data indicate that a transi-
tion from a collinear single-Q to non-coplanar triple-Q ordering occurs
at TN2. Interestingly, as we will see below, our theoretical analysis
captures this two-step transition process.

We now examine the feasibility of the tetrahedral triple-Q ground
state in Co1/3TaS2. Notably, in contrast to typical triple-Q orderings
reported in other materials27–29, this state emerges spontaneously in
Co1/3TaS2 without requiring an external magnetic field. It was pro-
posed on theoretical grounds that this state could arise in a 2Dmetallic
TLAF formulated by the Kondo lattice model12,13,18,30:

H = $ t
X

hi,ji
cyiαcjα $ J

X
i
Si " c

y
iασαβciβ: ð1Þ

From a crystal structure perspective, Co1/3TaS2 is an ideal candi-
date to be described by this model. The nearest Co-Co distance
(5.74 Å) is well above Hill’s limit, and the CoS6 octahedra are fully
isolated ((Fig. 3a). This observation suggests that the Co 3d bands
would retain their localized character, while itinerant electrons mainly
arise from the Ta 5d bands. Our density functional theory (DFT) cal-
culations confirm this picture and reveal that the density of states near
the Fermi energy has a dominant Ta 5d orbital character (Supple-
mentary Fig. 11). In this situation, a magnetic Co2+ ion can interact with
another Co2+ ion only via the conduction electrons in the Ta 5d bands.
Thus, in a first approximation, the Co2+ 3d electrons can be treated as
localized magnetic moments interacting via exchange with the Ta 5d
itinerant electrons23,25 (see Fig. 3b). Indeed, the Curie-Weiss behavior
observed in Co1/3TaS2 provides additional support for this picture; the
magnitude of the fitted effective magnetic moment indicates S~1.35,
close to the single-ion limit of Co2+ in the high spin S = 3/2
configuration26. However, our neutron diffraction measurement indi-
cates a significant suppression of the ordered magnetic moment
S ~ 0.64 (assuming that a g-factor is 2). Similar reductions of the
ordered moment have been reported in other metallic magnets com-
prising 3d transition metal elements, and they are generally attributed
to a partial delocalization of the magnetic moments. In addition,
interactions between Co local moments and itinerant electrons from
Ta 5dband can lead to partial screening of the localmoments. Another
possible origin of the reduction of the ordered moment is quantum
spin fluctuations arising from the frustrated nature of the effective
spin-spin interactions.

Tetrahedral ordering can naturally emerge when the Fermi sur-
face (FS) is three-quarters (3/4) filled12,13,18,31 because the shape of the FS
is a regular hexagon (for a tight-binding model with nearest-neighbor
hopping), whose vertices touch theM-points of the first Brillouin zone
(Fig. 3c). In this case, there are three nesting wave vectors connecting
the edges of the regular hexagon and the van Hove singularities at

Fig. 3 | Stabilization mechanism and dynamical properties of the tetrahedral
order in Co1/3TaS2. a The in-plane crystal structure of Co1/3TaS2 demonstrates
isolated CoS6 octahedrons (purple-colored) and a long NN Co-Co distance. b The
exchange interaction between Co local moments and conduction electrons from
TaS2 layers leads to an effective RKKY interaction between the local moments.
c The Fermi surface of a 2D TLAF with 3/4 filling (shaded hexagons) and the Fermi
surface of Co1/3TaS2 measured by ARPES. d Themagnon spectra of Co1/3TaS2 at 5 K
along the (00 L) direction. Ei = 7.9 and 14meV data are plotted. eAntiferromagnetic
NN interlayer coupling (Jc) of Co1/3TaS2, which is necessary for explaining the data
in d and the refined spin configuration (Fig. 2g–i). f Const-E cuts of the INS data
measured at 5 K (<TN2). An energy integration range for each plot is ±0.2meV. The
E = 1 and 1.5meV (2.0~3.0meV) plots are based on the Ei = 5 (7.9) meV data. In

addition to bright circular spots centered at six M points (=linear modes), a weak,
diffuse ring-like scattering which we interpret as the quadratic mode predicted by
spin-wave theory, appears for E > 1.5meV. g The calculated INS cross-section of the
tetrahedral triple-Q ordering with J1S2 = 3.92meV, JcS2 = 2.95meV, J2/J1 = 0.19, and
Kbq/J1 = 0.02 (see Supplementary Materials). h The calculated INS cross-section of
the single-Q ordering with three domains, using J1S2 = 3.92meV, JcS2 = 2.95meV, J2/
J1 = 0.1, andKbq/J1 = 0. The line-shaped signal inhhas amuchhigher intensity than in
f or g. The simulations in g, h include resolution convolution (see Supplementary
Fig. 9), and their momentum and energy integration range are the same as f. i Low-
energy magnon spectra measured with Ei = 3.5meV at 5 K, showing the energy gap
of the linear magnon mode.
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TN2 < T < TN1 due to its τ1aT symmetry. Therefore, the combined neu-
tron diffraction and anomalous transport data indicate that a transi-
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at TN2. Interestingly, as we will see below, our theoretical analysis
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state in Co1/3TaS2. Notably, in contrast to typical triple-Q orderings
reported in other materials27–29, this state emerges spontaneously in
Co1/3TaS2 without requiring an external magnetic field. It was pro-
posed on theoretical grounds that this state could arise in a 2Dmetallic
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From a crystal structure perspective, Co1/3TaS2 is an ideal candi-
date to be described by this model. The nearest Co-Co distance
(5.74 Å) is well above Hill’s limit, and the CoS6 octahedra are fully
isolated ((Fig. 3a). This observation suggests that the Co 3d bands
would retain their localized character, while itinerant electrons mainly
arise from the Ta 5d bands. Our density functional theory (DFT) cal-
culations confirm this picture and reveal that the density of states near
the Fermi energy has a dominant Ta 5d orbital character (Supple-
mentary Fig. 11). In this situation, a magnetic Co2+ ion can interact with
another Co2+ ion only via the conduction electrons in the Ta 5d bands.
Thus, in a first approximation, the Co2+ 3d electrons can be treated as
localized magnetic moments interacting via exchange with the Ta 5d
itinerant electrons23,25 (see Fig. 3b). Indeed, the Curie-Weiss behavior
observed in Co1/3TaS2 provides additional support for this picture; the
magnitude of the fitted effective magnetic moment indicates S~1.35,
close to the single-ion limit of Co2+ in the high spin S = 3/2
configuration26. However, our neutron diffraction measurement indi-
cates a significant suppression of the ordered magnetic moment
S ~ 0.64 (assuming that a g-factor is 2). Similar reductions of the
ordered moment have been reported in other metallic magnets com-
prising 3d transition metal elements, and they are generally attributed
to a partial delocalization of the magnetic moments. In addition,
interactions between Co local moments and itinerant electrons from
Ta 5dband can lead to partial screening of the localmoments. Another
possible origin of the reduction of the ordered moment is quantum
spin fluctuations arising from the frustrated nature of the effective
spin-spin interactions.

Tetrahedral ordering can naturally emerge when the Fermi sur-
face (FS) is three-quarters (3/4) filled12,13,18,31 because the shape of the FS
is a regular hexagon (for a tight-binding model with nearest-neighbor
hopping), whose vertices touch theM-points of the first Brillouin zone
(Fig. 3c). In this case, there are three nesting wave vectors connecting
the edges of the regular hexagon and the van Hove singularities at

Fig. 3 | Stabilization mechanism and dynamical properties of the tetrahedral
order in Co1/3TaS2. a The in-plane crystal structure of Co1/3TaS2 demonstrates
isolated CoS6 octahedrons (purple-colored) and a long NN Co-Co distance. b The
exchange interaction between Co local moments and conduction electrons from
TaS2 layers leads to an effective RKKY interaction between the local moments.
c The Fermi surface of a 2D TLAF with 3/4 filling (shaded hexagons) and the Fermi
surface of Co1/3TaS2 measured by ARPES. d Themagnon spectra of Co1/3TaS2 at 5 K
along the (00 L) direction. Ei = 7.9 and 14meV data are plotted. eAntiferromagnetic
NN interlayer coupling (Jc) of Co1/3TaS2, which is necessary for explaining the data
in d and the refined spin configuration (Fig. 2g–i). f Const-E cuts of the INS data
measured at 5 K (<TN2). An energy integration range for each plot is ±0.2meV. The
E = 1 and 1.5meV (2.0~3.0meV) plots are based on the Ei = 5 (7.9) meV data. In

addition to bright circular spots centered at six M points (=linear modes), a weak,
diffuse ring-like scattering which we interpret as the quadratic mode predicted by
spin-wave theory, appears for E > 1.5meV. g The calculated INS cross-section of the
tetrahedral triple-Q ordering with J1S2 = 3.92meV, JcS2 = 2.95meV, J2/J1 = 0.19, and
Kbq/J1 = 0.02 (see Supplementary Materials). h The calculated INS cross-section of
the single-Q ordering with three domains, using J1S2 = 3.92meV, JcS2 = 2.95meV, J2/
J1 = 0.1, andKbq/J1 = 0. The line-shaped signal inhhas amuchhigher intensity than in
f or g. The simulations in g, h include resolution convolution (see Supplementary
Fig. 9), and their momentum and energy integration range are the same as f. i Low-
energy magnon spectra measured with Ei = 3.5meV at 5 K, showing the energy gap
of the linear magnon mode.
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triple-Q ordering allows for finite Mz(H =0) and σxyðH=0Þ19–22, while
they are precisely zero within our measurement error for TN2 < T < TN1.
On the other hand, the single-Q ordering shown in Fig. 2g is more
consistent with Mz(H =0) = σxyðH=0Þ =0 in the temperature range
TN2 < T < TN1 due to its τ1aT symmetry. Therefore, the combined neu-
tron diffraction and anomalous transport data indicate that a transi-
tion from a collinear single-Q to non-coplanar triple-Q ordering occurs
at TN2. Interestingly, as we will see below, our theoretical analysis
captures this two-step transition process.
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state in Co1/3TaS2. Notably, in contrast to typical triple-Q orderings
reported in other materials27–29, this state emerges spontaneously in
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date to be described by this model. The nearest Co-Co distance
(5.74 Å) is well above Hill’s limit, and the CoS6 octahedra are fully
isolated ((Fig. 3a). This observation suggests that the Co 3d bands
would retain their localized character, while itinerant electrons mainly
arise from the Ta 5d bands. Our density functional theory (DFT) cal-
culations confirm this picture and reveal that the density of states near
the Fermi energy has a dominant Ta 5d orbital character (Supple-
mentary Fig. 11). In this situation, a magnetic Co2+ ion can interact with
another Co2+ ion only via the conduction electrons in the Ta 5d bands.
Thus, in a first approximation, the Co2+ 3d electrons can be treated as
localized magnetic moments interacting via exchange with the Ta 5d
itinerant electrons23,25 (see Fig. 3b). Indeed, the Curie-Weiss behavior
observed in Co1/3TaS2 provides additional support for this picture; the
magnitude of the fitted effective magnetic moment indicates S~1.35,
close to the single-ion limit of Co2+ in the high spin S = 3/2
configuration26. However, our neutron diffraction measurement indi-
cates a significant suppression of the ordered magnetic moment
S ~ 0.64 (assuming that a g-factor is 2). Similar reductions of the
ordered moment have been reported in other metallic magnets com-
prising 3d transition metal elements, and they are generally attributed
to a partial delocalization of the magnetic moments. In addition,
interactions between Co local moments and itinerant electrons from
Ta 5dband can lead to partial screening of the localmoments. Another
possible origin of the reduction of the ordered moment is quantum
spin fluctuations arising from the frustrated nature of the effective
spin-spin interactions.

Tetrahedral ordering can naturally emerge when the Fermi sur-
face (FS) is three-quarters (3/4) filled12,13,18,31 because the shape of the FS
is a regular hexagon (for a tight-binding model with nearest-neighbor
hopping), whose vertices touch theM-points of the first Brillouin zone
(Fig. 3c). In this case, there are three nesting wave vectors connecting
the edges of the regular hexagon and the van Hove singularities at

Fig. 3 | Stabilization mechanism and dynamical properties of the tetrahedral
order in Co1/3TaS2. a The in-plane crystal structure of Co1/3TaS2 demonstrates
isolated CoS6 octahedrons (purple-colored) and a long NN Co-Co distance. b The
exchange interaction between Co local moments and conduction electrons from
TaS2 layers leads to an effective RKKY interaction between the local moments.
c The Fermi surface of a 2D TLAF with 3/4 filling (shaded hexagons) and the Fermi
surface of Co1/3TaS2 measured by ARPES. d Themagnon spectra of Co1/3TaS2 at 5 K
along the (00 L) direction. Ei = 7.9 and 14meV data are plotted. eAntiferromagnetic
NN interlayer coupling (Jc) of Co1/3TaS2, which is necessary for explaining the data
in d and the refined spin configuration (Fig. 2g–i). f Const-E cuts of the INS data
measured at 5 K (<TN2). An energy integration range for each plot is ±0.2meV. The
E = 1 and 1.5meV (2.0~3.0meV) plots are based on the Ei = 5 (7.9) meV data. In

addition to bright circular spots centered at six M points (=linear modes), a weak,
diffuse ring-like scattering which we interpret as the quadratic mode predicted by
spin-wave theory, appears for E > 1.5meV. g The calculated INS cross-section of the
tetrahedral triple-Q ordering with J1S2 = 3.92meV, JcS2 = 2.95meV, J2/J1 = 0.19, and
Kbq/J1 = 0.02 (see Supplementary Materials). h The calculated INS cross-section of
the single-Q ordering with three domains, using J1S2 = 3.92meV, JcS2 = 2.95meV, J2/
J1 = 0.1, andKbq/J1 = 0. The line-shaped signal inhhas amuchhigher intensity than in
f or g. The simulations in g, h include resolution convolution (see Supplementary
Fig. 9), and their momentum and energy integration range are the same as f. i Low-
energy magnon spectra measured with Ei = 3.5meV at 5 K, showing the energy gap
of the linear magnon mode.

Article https://doi.org/10.1038/s41467-023-43853-4

Nature Communications | ��������(2023)�14:8346� 4

RKKY-driven mechanism also works well in 3d electron systems !
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FIG. 4: Experimentally deduced magnetic structures for GdRu2Ge2. a-e, The magnetic

structure m(r) for Phases I, II, III, IV and V, reconstructed based on Eq. (5) and m̃α(Qν) (Qν =

QA, QA′ , QB, QB′ , QC and QC′) deduced by RXS experiments as summarized in Supplementary

Table 1. The relative phase θQν
α is determined so as to realize the most uniform |m(r)| distribution

(See Supplementary Note III for the detail). The black arrows and background color represent the

in-plane and out-of-plane component of local magnetic moment m(r), respectively. f-j, Schematic

illustration of spin textures in a-e. k-m, The spatial distribution of |m(r)| for the spin textures

in b-d. The small amount of non-uniform component remaining in the |m(r)| profile is associated

with the higher-order harmonics neglected in the present model.
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Traditional approach

Only 2D information is obtained 
(averaged over depth direction)

Magnetization

Electron beam

Image

(Lorentz Force)

Cu2OSeO3 has recently been reported to
show small anomalies in the dielectric constant
accompanied with magnetic transitions (26, 31).
To fully understand the magnetoelectric response
in this material, we performed the electric pola-
rization measurement for each magnetic phase,
focusing on the [111] component of the electric
polarization (P[111]) under H || [111]. Figure 3C
indicates the magnetic field dependence of P[111]
at 5 K, measured after cooling at zero E and H.
In the helimagnetic phase with multiple q do-
mains (denoted as h′), P[111] remains zero even
under finite H (<400 Oe). Upon the transition
into the single q-domain helimagnetic state (de-
noted as h) around 600 Oe, P[111] first takes a
nonzero negative value but then changes its sign
as H is further increased. In the ferrimagnetic
state (denoted as f ), P[111] saturates at a positive
value. The reversal of the H direction gives the
same sign as that of P[111]. In general, applica-
tion of H induces the continuous deformation of
spin texture from proper screw to conical, and
finally to collinear (that is, ferrimagnetic) (Fig. 4A).
The variation of P[111] withH || [111] appears to be
well scaledwith the relation thatP½111" ¼ P0 þ bM2

(where P0 and b are the fitting parameters) (red
dashed line in Fig. 3C), except for the low-H re-
gion where P remains zero probably due to the
cancelation ofP averaged over different q domains.

Similar behavior is observed at elevated tem-
peratures: 55 (Fig. 3F) and 57 K (Fig. 3I). How-
ever, when passing through the A phase—that

is, the bulk SkX phase (denoted as s) at 57 K—
P[111] shows an abrupt change and takes a non-
zero positive value. Each magnetic transition
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Fig. 2. Magnetic phase diagram under H || [111], deduced for (A) bulk and (B)
thin-film forms of Cu2OSeO3, respectively. The former is determined by temperature
(T ) and magnetic-field (H) scans of magnetization (M), electric polarization (P), and
ac magnetic susceptibility (c′), and the latter by the measurement of skyrmion
density through Lorentz TEM imaging at selected data points (small gray circles). (C)

Magnified view of (A) near the A-phase (skyrmion crystal phase) region. (D to G)
Magnetic field dependence of lateral magnetization distribution at 5 K with the
same color wheel mapping as in Fig. 1, where a magnetic field is applied normal to
the (111) thin film. (H to K) Temperature dependence of the magnetic domain
configuration (underfocused Lorentz TEM images) with H = 400 Oe.
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Fig. 3. Magnetic field (H || [111]) dependence of magnetization M, ac magnetic susceptibility c’, and [111]-
component of electric polarization (P[111]) measured for bulk single crystal of Cu2OSeO3 at 5 (A to C), 55 (D to
F), and 57 K (G to I), respectively. Red dashed lines in the P[111]-profiles indicate the numerical fit for the
single-domain helimagnetic state with P[111] = P0 + bM2. Letter symbols f, h, h′, and s denote ferrimagnetic,
helimagnetic (single q domain), helimagnetic (multiple q domains), and skyrmion-crystal states, respectively.
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achieved for the thin-film form of the specimen
(6, 7), in which SkX is found to be stabilized
over a much wider T and H range than in bulk
specimen. Because the existence of the SkX state
has been confirmed only in conductive materials
(4, 5, 7), the dielectric nature of this spin state
remains unexplored.

The crystal structure of Cu2OSeO3 is char-
acterized by the same space group (cubic and
chiral) P213 as the B20 alloys, but with very dif-
ferent atom coordination (Fig. 1A) (23–25). Cu2+

(spin S = 1/2) sites are surrounded by either a
square pyramid or a trigonal bipyramid of ox-
ygen ligands, with the ratio of 3:1. Recent pow-
der neutron diffraction (26) and nuclear magnetic
resonance (27) studies suggested that a three-
up, one-down type of ferrimagnetic spin arrange-
ment is realized in the magnetic ground state
below Tc ~ 60 K, where collinear spins align
antiparallel among two inequivalent Cu2+ sites
(Fig. 1B). The single crystal of Cu2OSeO3 has
been grown by chemical vapor transport meth-
od (27).

To investigate the nanometric-scale modifi-
cation of the magnetic structure, we performed

high-resolution Lorentz TEM imaging of a thin-
film single crystal of Cu2OSeO3 with a thick-
ness of ~100 nm. Combined with a magnetic
transport-of-intensity equation calculation, this
technique enables mapping the lateral magne-
tization distribution in real space (28). Under
zero magnetic field for the (110) and (111) sample
planes (Fig. 1, C and F, respectively), we ob-
served the stripe patterns of the lateral magneti-
zation, corresponding to a proper screw-spin
order with a modulation period of ~50 nm, where
spins rotate within a plane perpendicular to the
magnetic modulation vector q || <110>. These
results are consistent with the existence of a finite
D-M interaction and reveal that the magnetic
ground state of Cu2OSeO3 is helically modu-
lated. Note that the modulation period (~50 nm)
of the magnetic moment is long enough as com-
pared with the Cu-Cu atomic distance, being
compatible with the local ferrimagnetic spin ar-
rangement. With H ~ 800 Oe applied normal
to the sample plane, the formation of a trian-
gular lattice of skyrmions is observed both for
the (110) and (111) planes (Fig. 1, D and G).
Here, the diameter of a skyrmion is identical to

the modulation period of the helical spin state.
Every skyrmion in the SkX state has a uni-
form spin chirality (spin-swirling direction), and
three magnetic modulation vectors always lie
perpendicular to the applied H. These features
are consistent with the recent report for the
SkX state in B20 alloys (4, 6, 7). Based on these
real-space observations, Fig. 2B shows the H-T
phase diagram under H || [111] for thin-film
Cu2OSeO3 determined through the measure-
ment of skyrmion density. Skyrmions disappear
for H > 1800 Oe, which implies transition into
the collinear (ferrimagnetic) spin state. Typical spin
textures for selected (T, H) points are displayed
in Fig. 2, D to K.

In B20 alloys, the stability of the SkX state
essentially depends on the dimensions of the
system: Whereas the SkX is stable over a wide
T and H range in the two-dimensional (2D) limit
(thin film), it shrinks into the narrow A-phase
region in the 3D limit (bulk) (6, 7). To invest-
igate the effects of dimensionality in our system,
we studied the magnetic behavior of a bulk
single crystal of Cu2OSeO3 for H || [111]. Figure
3, A and B, indicate the H-dependence of mag-
netization M and ac magnetic susceptibility c′
measured at 5 K. Around 600 Oe, the M profile
shows a steplike anomaly, and c′ also exhibits a
clear kink structure. Above 1800 Oe, M-value
saturates at M ~ 0.5mB/Cu

2+ (where mB is the
Bohr magneton), which suggests the transition
into the three-up, one-down ferrimagnetic state
(Fig. 1B) (25, 26, 29). The same measurements
are also performed at 55 (Fig. 3, D and E) and
57 K (Fig. 3, G and H), and the obtained c′
profiles indicate that the above two magnetic
transitions still take place at both temperatures.
Notably, we found an additional dip anomaly
for 200 Oe < H < 400 Oe in the c′ profile at
57 K, which has not been identified previously.
The H-T phase diagram for the bulk crystal of
Cu2OSeO3 obtained through H and T scans of
M and c′ is summarized in Fig. 2, A and C. The
overall features of the magnetic phase diagram,
including the existence of a narrow A phase char-
acterized by the dip anomaly in the c′ profile,
bear close resemblance to those reported for B20
alloys (21, 30). Considering the reported dimen-
sion dependence for the stability of the SkX state
in B20 alloys (6, 7), we conclude that the ob-
served A phase represents the SkX state in the
bulk form of Cu2OSeO3. The ground state of the
bulk Cu2OSeO3 can be assigned to be helimag-
netic, but with multiple q domains due to the
high symmetry of the cubic lattice. Here, the ap-
plication of H leads to the formation of a single
q-domain state with H || q keeping the proper
screw-spin texture, as antiferromagnetically aligned
spins tend to lie perpendicular to the applied H.
Such rearrangement of a q vector within the heli-
magnetic state explains the steplike anomaly of
the M profile (Fig. 3A) and the enhancement of
the c′ value (Fig. 3B) observed around 600 Oe
at 5 K, as in the case of B20 (e.g., Fe1–xCoxSi)
compounds (22).

Se

O

Cu

a

b
c

A

B

C

D

E

F

G

H

Fig. 1. (A) Crystal structure of Cu2OSeO3, characterized by two inequivalent Cu
2+ sites with different oxygen

coordination. (B) Ferrimagnetic spin arrangement on Cu2+ sites. (C to G) Lateral magnetization distribution
map for a thin-film (~100-nm-thick) sample of Cu2OSeO3, obtained through the analysis of Lorentz TEM data
taken at 5 K. The color wheel in the bottom-left corner of (F) shows the direction (hue) and relative magnitude
(brightness) of the lateral magnetization. Panels (C) and (D), as well as (F) and (G), represent images for the
(110) and (111) plane, respectively, and a magnetic field is applied normal to the observed sample plane. In
both cases, proper screw-spin texture appears for zero magnetic field, whereas a skyrmion lattice with the
identical spin chirality is formed for H = 800 Oe. A magnified view of (D) is shown in (E), where white arrows
represent the magnetization direction. (H) Schematic illustration of a single magnetic skyrmion.
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Lorentz Transmission Electron 
Microscopy (LTEM)

X. Z. Yu et al., Nature 465, 901  (2010).

How to visualize 3D spin texture ?
quantizedmagneticwhirls (3–8). A single skyrmion
is a linelike structure oriented parallel to a small
external magnetic field, where the magnetization
winds once around the unit sphere in the plane
perpendicular to the field. Skyrmion lattices are
regular arrangements of skyrmion lines. They are
ideally suited to explore the question of topolog-
ical phase conversion experimentally. They occur
in all B20 compounds with helimagnetic order
comprisingmetallic, semiconducting, and insulating
systems such asMnSi, Fe1−xCoxSi, and Cu2OSeO3,
respectively. As the distance of skyrmions varies
strongly among these systems, one may select
compounds amenable to the experimental question
of interest. In addition, skyrmion lattices in chiral
magnets have been studied microscopically in
great detail bymeans of neutron scattering (3, 4, 8)
and transmission electron microscopy (TEM)
(5, 6, 9, 10). All properties, including themagnetic
phase diagram, are in excellent agreement with
theory, providing a sound basis for studies of the
topological unwinding. Beyond these fundamen-

tal aspects, there is also great interest in skyrmions
in chiral magnets as a new route toward spintronics
applications (9, 11, 12).

The complex magnetic texture of skyrmions
causes the electron spin to pick up a Berry phase,
which allows for an efficient coupling of currents
to the magnetic structure (11, 12). This coupling
may be elegantly described by associating to each
skyrmion an artificial “emergent” magnetic field
(12–14), which is, because of the topology of the
skyrmion, quantized to one flux quantum per
skyrmion. The corresponding forces on electrons
can be observed directly in theHall effect (12,15,16).
As skyrmion lines have a one-to-one association
with a quantized magnetic flux, their creation or
destruction is naturally associated with quantized
sources or sinks of emergent magnetic flux.
These can be identified with “emergent magnetic
monopoles.” Quantized magnetic monopoles
were originally introduced as a hypothetical par-
ticle by Dirac (17) to explain the quantization of
electric charge.Whereas magnetic monopoles have

so far not been found experimentally as elementary
particles, the concept has been used to describe
spin-flip excitations in so-called spin-ice (18, 19).

Combiningmagnetic forcemicroscopy (MFM),
numerical calculations, and topological arguments,
we study the transition of a skyrmion lattice in
Fe1−xCoxSi (x = 0.5) to conventional magnetic
order. Our central result is that the skyrmions
unwind by means of hedgehog point defects,
which can directly be interpreted as emergent
magnetic monopoles and antimonopoles. Figure
1B shows schematically how such a singular point
defect merges two skyrmion lines like the slider
of a zipper.

For our study, we selected Fe1−xCoxSi (x =
0.5) because the periodicity of the magnetic mod-
ulations of ∼90 nm for this composition is large
as compared with the resolution of ∼20 nm of the
MFM (20). Figure 1, C and D, displays the phase
diagram of Fe1−xCoxSi, inferred from magnetiza-
tion, ac susceptibility, and small-angle neutron
scattering in bulk samples (4, 20). Under zero-
field cooling (zfc) (Fig. 1C) helimagnetic order
(h) appears below the critical temperature, Tc ≈
45 K, with a modulation vector parallel to 〈100〉.
Well below Tc, the helimagnetic order undergoes
a spin-flop transition to conical order (c) at Bc1 ∼
30 mTwith the modulation vector parallel to the
magnetic field, followed by a transition to a spin-
polarized state (fm) at Bc2 ∼ 60 mT. For tem-
peratures T just below Tc, an additional phase (s)
stabilizes, the skyrmion lattice.

Under field cooling (fc) (i.e., cooling while
keeping the applied field constant), the phase dia-
gram (Fig. 1D) exhibits several important differ-
ences with respect to zfc. First, for field values
outside the range of the skyrmion lattice, there is
only a paramagnetic to conical transition. Second,
for field values in the range of the skyrmion
lattice, the skyrmion lattice survives as a meta-
stable state down to the lowest T with the same
reversible phase boundaries near Tc as for zfc but
irreversible phase boundaries well below Tc.

This metastable skyrmion lattice state made it
possible to take measurements at T << Tc, which
was helpful in two ways. First, as the magnetic
moment increases considerably toward low T, the
contrast of the MFM data increases substantially,
providing unambiguous information. Second, the
topological stability of skyrmions relies on the
fact that the modulus of the local magnetization
is finite everywhere. Close to Tc, strong thermal
fluctuations may in principle weaken the topo-
logical stability, which is not the case for T << Tc,
thereby exposing the generic mechanism of the
topological unwinding.

Typical MFM data for decreasing applied
fields after initial field cooling in +20mT to 10 K
are summarized in Fig. 2 [see (20) for details].
Each row is composed of the real-space image,
an enlarged section of the same image, and a fast
Fourier transform (FFT) (see bottom of Fig. 2 for
scales). The MFM measurements reveal a hex-
agonally ordered pattern (Fig. 2, A1 and B1) with
one of the reciprocal lattice vectors approximate-

Fig. 1. Phase diagram of Fe1−xCoxSi for x = 0.5 inferred from magnetization, susceptibility,
and neutron scattering. The diagram comprises skyrmion-lattice (s), helimagnetic (h), conical (c),
ferromagnetic (fm), and paramagnetic (pm) phases. (A) Typical spin configuration of a skyrmion lattice
(from MC data). (B) Sketch of a magnetic configuration describing the merging of two skyrmions. At the
merging point the magnetization vanishes at a singular point (arrow). This defect can be interpreted as an
emergent magnetic antimonopole, which acts like the slider of a zipper connecting two skyrmion lines. (C)
Phase diagram observed under zero-field cooling (zfc). The skyrmion lattice is confined to a small phase
pocket (red) just below Tc. The field scale corresponds to the externally applied field for the geometry of
the sample studied by MFM. (D) Phase diagram observed under field cooling (fc). For field values in the
range of the skyrmion lattice as observed under zfc, the skyrmion lattice phase persists under field cooling
as a metastable state down to the lowest T (red shading).
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New approach

3D distribution of local M is estimated from 
2D images taken from various angles

Traditional approach

quantizedmagneticwhirls (3–8). A single skyrmion
is a linelike structure oriented parallel to a small
external magnetic field, where the magnetization
winds once around the unit sphere in the plane
perpendicular to the field. Skyrmion lattices are
regular arrangements of skyrmion lines. They are
ideally suited to explore the question of topolog-
ical phase conversion experimentally. They occur
in all B20 compounds with helimagnetic order
comprisingmetallic, semiconducting, and insulating
systems such asMnSi, Fe1−xCoxSi, and Cu2OSeO3,
respectively. As the distance of skyrmions varies
strongly among these systems, one may select
compounds amenable to the experimental question
of interest. In addition, skyrmion lattices in chiral
magnets have been studied microscopically in
great detail bymeans of neutron scattering (3, 4, 8)
and transmission electron microscopy (TEM)
(5, 6, 9, 10). All properties, including themagnetic
phase diagram, are in excellent agreement with
theory, providing a sound basis for studies of the
topological unwinding. Beyond these fundamen-

tal aspects, there is also great interest in skyrmions
in chiral magnets as a new route toward spintronics
applications (9, 11, 12).

The complex magnetic texture of skyrmions
causes the electron spin to pick up a Berry phase,
which allows for an efficient coupling of currents
to the magnetic structure (11, 12). This coupling
may be elegantly described by associating to each
skyrmion an artificial “emergent” magnetic field
(12–14), which is, because of the topology of the
skyrmion, quantized to one flux quantum per
skyrmion. The corresponding forces on electrons
can be observed directly in theHall effect (12,15,16).
As skyrmion lines have a one-to-one association
with a quantized magnetic flux, their creation or
destruction is naturally associated with quantized
sources or sinks of emergent magnetic flux.
These can be identified with “emergent magnetic
monopoles.” Quantized magnetic monopoles
were originally introduced as a hypothetical par-
ticle by Dirac (17) to explain the quantization of
electric charge.Whereas magnetic monopoles have

so far not been found experimentally as elementary
particles, the concept has been used to describe
spin-flip excitations in so-called spin-ice (18, 19).

Combiningmagnetic forcemicroscopy (MFM),
numerical calculations, and topological arguments,
we study the transition of a skyrmion lattice in
Fe1−xCoxSi (x = 0.5) to conventional magnetic
order. Our central result is that the skyrmions
unwind by means of hedgehog point defects,
which can directly be interpreted as emergent
magnetic monopoles and antimonopoles. Figure
1B shows schematically how such a singular point
defect merges two skyrmion lines like the slider
of a zipper.

For our study, we selected Fe1−xCoxSi (x =
0.5) because the periodicity of the magnetic mod-
ulations of ∼90 nm for this composition is large
as compared with the resolution of ∼20 nm of the
MFM (20). Figure 1, C and D, displays the phase
diagram of Fe1−xCoxSi, inferred from magnetiza-
tion, ac susceptibility, and small-angle neutron
scattering in bulk samples (4, 20). Under zero-
field cooling (zfc) (Fig. 1C) helimagnetic order
(h) appears below the critical temperature, Tc ≈
45 K, with a modulation vector parallel to 〈100〉.
Well below Tc, the helimagnetic order undergoes
a spin-flop transition to conical order (c) at Bc1 ∼
30 mTwith the modulation vector parallel to the
magnetic field, followed by a transition to a spin-
polarized state (fm) at Bc2 ∼ 60 mT. For tem-
peratures T just below Tc, an additional phase (s)
stabilizes, the skyrmion lattice.

Under field cooling (fc) (i.e., cooling while
keeping the applied field constant), the phase dia-
gram (Fig. 1D) exhibits several important differ-
ences with respect to zfc. First, for field values
outside the range of the skyrmion lattice, there is
only a paramagnetic to conical transition. Second,
for field values in the range of the skyrmion
lattice, the skyrmion lattice survives as a meta-
stable state down to the lowest T with the same
reversible phase boundaries near Tc as for zfc but
irreversible phase boundaries well below Tc.

This metastable skyrmion lattice state made it
possible to take measurements at T << Tc, which
was helpful in two ways. First, as the magnetic
moment increases considerably toward low T, the
contrast of the MFM data increases substantially,
providing unambiguous information. Second, the
topological stability of skyrmions relies on the
fact that the modulus of the local magnetization
is finite everywhere. Close to Tc, strong thermal
fluctuations may in principle weaken the topo-
logical stability, which is not the case for T << Tc,
thereby exposing the generic mechanism of the
topological unwinding.

Typical MFM data for decreasing applied
fields after initial field cooling in +20mT to 10 K
are summarized in Fig. 2 [see (20) for details].
Each row is composed of the real-space image,
an enlarged section of the same image, and a fast
Fourier transform (FFT) (see bottom of Fig. 2 for
scales). The MFM measurements reveal a hex-
agonally ordered pattern (Fig. 2, A1 and B1) with
one of the reciprocal lattice vectors approximate-

Fig. 1. Phase diagram of Fe1−xCoxSi for x = 0.5 inferred from magnetization, susceptibility,
and neutron scattering. The diagram comprises skyrmion-lattice (s), helimagnetic (h), conical (c),
ferromagnetic (fm), and paramagnetic (pm) phases. (A) Typical spin configuration of a skyrmion lattice
(from MC data). (B) Sketch of a magnetic configuration describing the merging of two skyrmions. At the
merging point the magnetization vanishes at a singular point (arrow). This defect can be interpreted as an
emergent magnetic antimonopole, which acts like the slider of a zipper connecting two skyrmion lines. (C)
Phase diagram observed under zero-field cooling (zfc). The skyrmion lattice is confined to a small phase
pocket (red) just below Tc. The field scale corresponds to the externally applied field for the geometry of
the sample studied by MFM. (D) Phase diagram observed under field cooling (fc). For field values in the
range of the skyrmion lattice as observed under zfc, the skyrmion lattice phase persists under field cooling
as a metastable state down to the lowest T (red shading).
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Only 2D information is obtained 
(averaged over depth direction)



3D distribution of local M is estimated from 
2D images taken from various angles

factor is made, a conventional reconstruction algorithm can
be directly applied for reconstruction of the 3D magnetic
domains. We preprocessed the recorded projected XMCD
images, as follows:

gðX; !Þ ¼ !"ðX; !Þ
cos !

:

By dividing the original projection image by a factor of cos θ,
one may obtain a corrected projection of gðX; !Þ, which can be
regarded as the Radon transform of the distribution of the
uniaxial magnetization, myðx; yÞ. The standard algebraic re-
construction technique19) was applied to 29 projected images
taken in the angular range of −70 to 70° with ∼50 iterations.
No extrapolation or complement procedure was applied for
lacking angles of −90° < θ < −70° and 70° < θ < 90°.

Figure 3 shows selected images of the (a) XAS projection
and the (b) corresponding XMCD projection of the GdFeCo
disc recorded at different angles. The origin of θ was defined
as the angle at which the normal of the sample substrate was
parallel to the X-ray beam direction. As shown in the XAS
image taken at θ = 0°, the sample shape differs from the
designed circular shape. The observed diameter of approx-
imately 7 µm was smaller than the designed value of 10 µm,
probably because of over-etching in the Ar ion-milling
process. Nevertheless, the outline shapes of the disc agreed

well between the XAS and XMCD projected images. The
XMCD images demonstrate the clear magnetic contrasts
of magnetic domains with the typical width of ∼1 µm. The
magnetic contrast is the highest in the image taken at 0° and
decreases at lager angles. This result provides evidence in
support of the perpendicular magnetic domains.

Figure 4(a) shows a birds-eye view of the 3D reconstruc-
tion of the XAS, which corresponds to distributions of the
X-ray linear absorption coefficient or the mass density. The
images in Fig. 4 were generated using the software ImageJ
with the 3D Viewer plugin.20,21) The reconstructed results
shown in Figs. 4(a)–4(g) have been trimmed for clarity. In the
original reconstructed results, artifacts remain, mostly in the
outside regions of the disc, owing to the limited angular range
of the projections (see the online supplementary data at http://
stacks.iop.org/APEX/11/036601/mmedia). To eliminate the
artifacts, voxels having X-ray absorption coefficient values
smaller than 25% of the maximum value are masked in the
presented images to demonstrate the internal distributions of
X-ray absorption and magnetization in the sample.

The XAS reconstruction revealed the trapezoidal shape
of the GdFeCo disc, which had diameter of 6.7 µm and a
thickness of 2.5 µm. The sample was mostly homogeneous in
composition. In Fig. 4(b), a cutaway view of the XMCD
reconstruction result demonstrates the 3D distribution of
the magnetization inside the GdFeCo disc. The color scales
correspond to the direction and the amplitude of magnetiza-
tion perpendicular to the film. Five striped magnetic domains
were observed: three positive and two negative.

The sliced images of the x–Z plane at different y positions,
which are shown in Figs. 4(c)–4(f), reveal that the magnetic
domain structures and the boundaries are similar in the planes
perpendicular to the film (easy magnetization direction).
The cross sections in the y–Z [Fig. 4(g)] and x–y planes
[Fig. 4(h)] clearly indicate the straight domain boundaries
along the easy axis. This is a direct observation that the
perpendicular magnetic domains are formed through the

Fig. 2. Principle of the tomographic reconstruction of the magnetization
distribution from the projected image of XMCD.

(a)

(b)

Fig. 3. Selected images of the 2D projections of a GdFeCo disc at
different rotation angles obtained using (a) polarization-averaged X-ray
absorption and (b) XMCD signals.

Fig. 4. Tomographic reconstructions of (a) the X-ray absorption coeffi-
cient and (b) the magnetization of the GdFeCo disc. (c)–(f) Slices of the 3D
magnetization distribution, myðx; y; Z Þ, in the x–Z plane perpendicular to the
magnetization easy axis, y. (g) Slice in the y–Z plane at the center of the disc
[section along the vertical line in (f)] with vertical lines at which the x–Z
slices (c)–(f) are made. (h) Slice in the x–y plane at the center of the disc
[section along the horizontal line in (f)]. (i), ( j) Cross-sectional profile of the
magnetization slice (e) along the dotted lines in the x (A–AA ) and Z (B–B A )
directions, respectively.
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GdFeCo

characteristic hysteresis loop with perpendicular magnetiza-
tion and the formation of multiple domain structures. The
coercivity of the unpatterned film was estimated to be
∼50Oe.

Magnetic X-ray computed tomographic imaging measure-
ment was performed using the scanning hard X-ray nano-
probe at BL39XU of the SPring-8 synchrotron radiation
facility.16) Figure 1 shows the experimental setup. The X-ray
energy was tuned at the L3 resonance of Gd (7.247 keV), at
which the maximum XMCD contrast was obtained, using
a Si 111 double-crystal monochromator. A 0.45-mm-thick
diamond X-ray phase retarder was used to generate circularly
polarized X-ray beams of switchable photon helicity. The
degree of circular polarization was greater than 99% for both
helicities. A Kirkpatrick–Baez mirror was used to focus the
circularly polarized X-ray beam. The spot size was estimated
to be 130 (horizontal) × 140 (vertical) nm2 in full width at
half maximum (FWHM) via the knife-edge scan method. The
distance between the mirror end and the sample was 100mm.
The depth of focus was 100 µm, which was much greater than
the sample diameter and the eccentric radius of the sample
rotation stage.

The GdFeCo microdisc on the SiN membrane substrate
was placed at the focal point of the X-ray beam, mounted on
a stepping motor-driven X–Z translation stage and a rotation
stage along the vertical (Z ) axis. The X translation stage was
equipped with the optical encoder and closed-loop feedback.
The Z translation stage was in open-loop control with a
resolution of 50 nm. The rotation stage was equipped with an
air-bearing mechanism of extremely low wobble, ensuring an
eccentric radius of <1 µm for a full 360° of rotation.

Projected magnetic images were collected via scanning
XMCD microscopy as a function of the angle of sample rota-
tion. A 2D XMCD image was recorded via raster scanning of
the sample position in the plane perpendicular to the direc-
tion of the incoming X-ray beam. The sample position in
the horizontal (X ) direction was scanned continuously for
acquisition of the one-pixel line, at a velocity of 1 µm=s,
while the vertical (Z ) position of the sample was moved by a
100-nm step. The intensity of the X-ray beam incident on the
sample (I0) was monitored using an ionization chamber. The
transmitted X-ray intensity (I ) was measured using a silicon
PIN photodiode detector. The XMCD magnetic contrast is
defined as Δμ = μ+ − μ−, where !þ ¼ lnðIþ0 =IþÞ [!% ¼

lnðI%0 =I%Þ] is the absorption coefficient determined from the
incident Iþ0 (I%0 ) and transmitted I+ (I−) X-ray intensities, for
right (left) circular polarizations, respectively. The polari-
zation-averaged X-ray absorption spectroscopy (XAS) signal,
which corresponds to the density contrast of the sample, is
defined by !! ¼ ð!þ þ !%Þ=2. The photon helicity was
switched at 37Hz, and the lock-in detection technique17)

was used to improve the signal-to-noise ratio of the dichroic
signal. The time constant of the low-pass filter was 30ms.
The output of voltages of the lock-in amplifier were con-
verted into transistor–transistor logic pulses at the corre-
sponding frequency using a voltage–frequency converter and
then counted at a 100-ms duration synchronously with the
position encoder output pulses of the X stage. These data-
acquisition conditions ensured that the spatial resolution
for the X-direction was approximately 100 nm, assuming the
scan velocity, sampling rate, and time constant of the lock-in
amplifier. The mechanical spatial resolution for the Z-direc-
tion was 100 nm, as determined by the scan step of the
translation stage. The mechanical resolutions in the X- and
Z-directions were smaller than the focused X-ray beam size
(130 × 140 nm2 in FWHM), and the practical resolution was
determined by the focused X-ray beam size. The projected
images of XMCD, "!ðX; Z; "Þ and XAS !!ðX; Z; "Þ were
collected at angles of −70 to +70° with a step of 5°. The
blind regions (−90° < θ < −70°, 70° < θ < 90°) were due to
the window size of the membrane substrate. The XAS and
XMCD projections were acquired simultaneously, and the
acquisition time was 30min for each projection angle.

We show that conventional reconstruction algorithms can
be applied for reconstructing the 3D magnetic domain
structure in the case where the sample has strong uniaxial
anisotropy and a domain structure with uniaxial magnetiza-
tion is formed. The bottom of Fig. 2 shows a one-pixel slice of
the distribution of the sample magnetization in the X–Y plane,
which is perpendicular to the Z-axis for rotation. The X–Y
coordinate system is fixed to the X-ray beam and the experi-
mental system, whereas the x–y coordinate system is assumed
to be fixed at the sample and rotates about the Z-axis by an
angle of θ. In this geometry, the XMCD amplitudes Δμi from
a local part of the sample are proportional to the magnetization
of the local volume—mðx; yÞ ¼ ðmx;my; mzÞ— projected
to the direction of the incident X-ray beam; i.e., "!i /
mxðx; yÞ sin " þ myðx; yÞ cos ". As shown in the top of Fig. 2,
the XMCD projection is given by an integral of Δμi along
the X-ray path, which is parallel to the Y-direction:

"!ðX; "Þ ¼
Z

"!iðx; yÞ dY

¼
Z
½mxðx; yÞ sin " þmyðx; yÞ cos "' dY:

We assume that the sample has strong magnetic uniaxial
anisotropy so that only the magnetization component is
parallel to the y-direction and the other components are zero;
i.e., mðx; yÞ ¼ ð0; my; 0Þ. In this case, XMCD projection is
given by

"!ðX; "Þ ¼
Z

myðx; yÞ cos " dY:

This formula is similar to the Radon transform18) but includes
an additional factor of cos θ. If a proper correction for this

Fig. 1. Experimental setup of the magnetic tomography measurement
based on the scanning hard X-ray nanoprobe.
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Sample

New approach

X-ray magnetic tomography

Traditional approach

quantizedmagneticwhirls (3–8). A single skyrmion
is a linelike structure oriented parallel to a small
external magnetic field, where the magnetization
winds once around the unit sphere in the plane
perpendicular to the field. Skyrmion lattices are
regular arrangements of skyrmion lines. They are
ideally suited to explore the question of topolog-
ical phase conversion experimentally. They occur
in all B20 compounds with helimagnetic order
comprisingmetallic, semiconducting, and insulating
systems such asMnSi, Fe1−xCoxSi, and Cu2OSeO3,
respectively. As the distance of skyrmions varies
strongly among these systems, one may select
compounds amenable to the experimental question
of interest. In addition, skyrmion lattices in chiral
magnets have been studied microscopically in
great detail bymeans of neutron scattering (3, 4, 8)
and transmission electron microscopy (TEM)
(5, 6, 9, 10). All properties, including themagnetic
phase diagram, are in excellent agreement with
theory, providing a sound basis for studies of the
topological unwinding. Beyond these fundamen-

tal aspects, there is also great interest in skyrmions
in chiral magnets as a new route toward spintronics
applications (9, 11, 12).

The complex magnetic texture of skyrmions
causes the electron spin to pick up a Berry phase,
which allows for an efficient coupling of currents
to the magnetic structure (11, 12). This coupling
may be elegantly described by associating to each
skyrmion an artificial “emergent” magnetic field
(12–14), which is, because of the topology of the
skyrmion, quantized to one flux quantum per
skyrmion. The corresponding forces on electrons
can be observed directly in theHall effect (12,15,16).
As skyrmion lines have a one-to-one association
with a quantized magnetic flux, their creation or
destruction is naturally associated with quantized
sources or sinks of emergent magnetic flux.
These can be identified with “emergent magnetic
monopoles.” Quantized magnetic monopoles
were originally introduced as a hypothetical par-
ticle by Dirac (17) to explain the quantization of
electric charge.Whereas magnetic monopoles have

so far not been found experimentally as elementary
particles, the concept has been used to describe
spin-flip excitations in so-called spin-ice (18, 19).

Combiningmagnetic forcemicroscopy (MFM),
numerical calculations, and topological arguments,
we study the transition of a skyrmion lattice in
Fe1−xCoxSi (x = 0.5) to conventional magnetic
order. Our central result is that the skyrmions
unwind by means of hedgehog point defects,
which can directly be interpreted as emergent
magnetic monopoles and antimonopoles. Figure
1B shows schematically how such a singular point
defect merges two skyrmion lines like the slider
of a zipper.

For our study, we selected Fe1−xCoxSi (x =
0.5) because the periodicity of the magnetic mod-
ulations of ∼90 nm for this composition is large
as compared with the resolution of ∼20 nm of the
MFM (20). Figure 1, C and D, displays the phase
diagram of Fe1−xCoxSi, inferred from magnetiza-
tion, ac susceptibility, and small-angle neutron
scattering in bulk samples (4, 20). Under zero-
field cooling (zfc) (Fig. 1C) helimagnetic order
(h) appears below the critical temperature, Tc ≈
45 K, with a modulation vector parallel to 〈100〉.
Well below Tc, the helimagnetic order undergoes
a spin-flop transition to conical order (c) at Bc1 ∼
30 mTwith the modulation vector parallel to the
magnetic field, followed by a transition to a spin-
polarized state (fm) at Bc2 ∼ 60 mT. For tem-
peratures T just below Tc, an additional phase (s)
stabilizes, the skyrmion lattice.

Under field cooling (fc) (i.e., cooling while
keeping the applied field constant), the phase dia-
gram (Fig. 1D) exhibits several important differ-
ences with respect to zfc. First, for field values
outside the range of the skyrmion lattice, there is
only a paramagnetic to conical transition. Second,
for field values in the range of the skyrmion
lattice, the skyrmion lattice survives as a meta-
stable state down to the lowest T with the same
reversible phase boundaries near Tc as for zfc but
irreversible phase boundaries well below Tc.

This metastable skyrmion lattice state made it
possible to take measurements at T << Tc, which
was helpful in two ways. First, as the magnetic
moment increases considerably toward low T, the
contrast of the MFM data increases substantially,
providing unambiguous information. Second, the
topological stability of skyrmions relies on the
fact that the modulus of the local magnetization
is finite everywhere. Close to Tc, strong thermal
fluctuations may in principle weaken the topo-
logical stability, which is not the case for T << Tc,
thereby exposing the generic mechanism of the
topological unwinding.

Typical MFM data for decreasing applied
fields after initial field cooling in +20mT to 10 K
are summarized in Fig. 2 [see (20) for details].
Each row is composed of the real-space image,
an enlarged section of the same image, and a fast
Fourier transform (FFT) (see bottom of Fig. 2 for
scales). The MFM measurements reveal a hex-
agonally ordered pattern (Fig. 2, A1 and B1) with
one of the reciprocal lattice vectors approximate-

Fig. 1. Phase diagram of Fe1−xCoxSi for x = 0.5 inferred from magnetization, susceptibility,
and neutron scattering. The diagram comprises skyrmion-lattice (s), helimagnetic (h), conical (c),
ferromagnetic (fm), and paramagnetic (pm) phases. (A) Typical spin configuration of a skyrmion lattice
(from MC data). (B) Sketch of a magnetic configuration describing the merging of two skyrmions. At the
merging point the magnetization vanishes at a singular point (arrow). This defect can be interpreted as an
emergent magnetic antimonopole, which acts like the slider of a zipper connecting two skyrmion lines. (C)
Phase diagram observed under zero-field cooling (zfc). The skyrmion lattice is confined to a small phase
pocket (red) just below Tc. The field scale corresponds to the externally applied field for the geometry of
the sample studied by MFM. (D) Phase diagram observed under field cooling (fc). For field values in the
range of the skyrmion lattice as observed under zfc, the skyrmion lattice phase persists under field cooling
as a metastable state down to the lowest T (red shading).
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Only 2D information is obtained 
(averaged over depth direction)

How to visualize 3D spin texture ?



S. Seki, M. Suzuki, T. Ono et al., Nature Materials 21, 181 (2022).
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T. Ono 
(Kyoto Univ.)
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Mn1.4Pt0.9Pd0.1Sn : Reconstructed 3D distribution of m[001]



Top view Side-view (Cross-section of reconstructed m[001](r)) 

3D shape of skyrmion strings is directly visualized! 

Interrupted and Y-shaped strings are also identified 
(“Emergent magnetic monopole”)

Mn1.4Pt0.9Pd0.1Sn : 3D shape of skyrmion strings

XMCD投影像の生データ
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Skyrmion String as Signal Transmission Line ?

How about propagation characteristics 
of excitation on skyrmion strings ?
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How to evaluate their 
propagation characteristics ?

M. Mochizuki et al., Phys. Rev. Lett. 108, 017601 (2012). 
Y. Onose, S. Seki et al., Phys. Rev. Lett. 109, 037603 (2012).

T. Schwarze, M. Garst et al., Nature Mater. 14, 478 (2015). 
Y. Okamura, S. Seki et al., Nature Commun. 4, 2391 (2013).

Propagating excitation modes on skyrmion strings
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Propagating Spin Wave Spectroscopy

Wavelength : λ~12μm 
Propagation gap : d ~ 20 μm

Figures
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FIG. 1: (A)-(D) Spin waves for the uniform collinear ferromagnetic state, characterized

by various combinations of the wave vector !k and the uniform magnetization component

!M0, which can be considered as the flow of magnetic moment (i.e. spin current). Such

a spin wave spin current belongs to chiral (polar) symmetry for the !k ‖ !M0 (!k ⊥ !M0)

configuration, and the reversal of !k gives opposite sign of chirality (polarity). The red and

gray arrows represent the directions of local magnetization and its precession, respectively.

(E) The optical microscope image and (F) schematic illustration of the device structure

used for spin wave spectroscopy. In (E), the directions for positive sign of !H and !k are also

indicated.
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Vector Network Analyzer 
+ Probe Station 

Self-inductance (ΔL11) : Magnon Excitation efficiency 
Mutual-inductance (ΔL21) : Magnon Propagation

Vn =
�

m

Lnm
dIm

dt

Photo lithography 
+ FIB micro-fabrication
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Three excitation modes are identified (i.e. consistent with theory) 
Decay length is more than 1000 times longer than skyrmion string diameter
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S. Seki, M. Garst et al., Nature Communications 11, 256 (2020).

Propagating excitation on skyrmion strings



Theory

Mode-dependent asymmetric dispersion 

CCW mode hosts largest asymmetry

M. Garst & J. Waizner

Nonreciprocal propagation of skyrmion string excitation
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FIG. 2: Propagation character of spin excitations on skyrmion strings. (A)-(C) The spectra of

mutual inductance ∆L21 and ∆L12, which represent the propagation character of spin excitation

with the wave vector +kSW and −kSW, respectively. The data were measured in the SkX state

under the configuration shown in (D) at 25 K with µ0H = +25 mT. (A), (B), and (C) represent the

CCW, B and CW modes, respectively. (E)-(H) The corresponding data measured with µ0H = −25

mT. (I)-(K) Dispersion relation for various spin excitations on skyrmion strings, theoretically
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Skyrmion string as information transmission line ?
Robust and flexible (due to topological protection) 

Excitation modes propagating through string path

Ideal for information 
 transmission line?

Signal processing component

Signal transmission line (Skyrmion String)

Skyrmion string networkSkyrmion string network

Signal processing component

Signal transmission line (Skyrmion String)

Skyrmion string network



Outline
Nanometric skyrmions in 

centrosymmetric magnets
3D visualization and dynamics  

of skyrmion strings

S. Seki et al., Nature Materials 21, 181 (2022).  
S. Seki et al., Nature Comm. 11, 256 (2020).

N. D. Khanh, …, S. Seki, Nature Nanotech. 15, 444 (2020). 
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FIG. 4: Experimentally deduced magnetic structures for GdRu2Ge2. a-e, The magnetic

structure m(r) for Phases I, II, III, IV and V, reconstructed based on Eq. (5) and m̃α(Qν) (Qν =

QA, QA′ , QB, QB′ , QC and QC′) deduced by RXS experiments as summarized in Supplementary

Table 1. The relative phase θQν
α is determined so as to realize the most uniform |m(r)| distribution

(See Supplementary Note III for the detail). The black arrows and background color represent the

in-plane and out-of-plane component of local magnetic moment m(r), respectively. f-j, Schematic

illustration of spin textures in a-e. k-m, The spatial distribution of |m(r)| for the spin textures

in b-d. The small amount of non-uniform component remaining in the |m(r)| profile is associated

with the higher-order harmonics neglected in the present model.
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FIG. 4: Experimentally deduced magnetic structures for GdRu2Ge2. a-e, The magnetic

structure m(r) for Phases I, II, III, IV and V, reconstructed based on Eq. (5) and m̃α(Qν) (Qν =

QA, QA′ , QB, QB′ , QC and QC′) deduced by RXS experiments as summarized in Supplementary

Table 1. The relative phase θQν
α is determined so as to realize the most uniform |m(r)| distribution

(See Supplementary Note III for the detail). The black arrows and background color represent the

in-plane and out-of-plane component of local magnetic moment m(r), respectively. f-j, Schematic

illustration of spin textures in a-e. k-m, The spatial distribution of |m(r)| for the spin textures

in b-d. The small amount of non-uniform component remaining in the |m(r)| profile is associated

with the higher-order harmonics neglected in the present model.
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