Novel materials with magnetic skyrmions and their three-dimensional dynamics

Shinichiro Seki

Department of Applied Physics, University of Tokyo, Japan

Today's Topic

"Magnetic Skyrmion"

Today's Topic

What kind of function can be expected from magnetic vortices?

Particle

String

What is magnetic skyrmion?

Particle nature + Nanometric scale = New information carrier for memory device?

cf. Racetrack memory, bubble memory etc...

Skyrmion Particle as Information Bit

Outline

† c

S

S4

h

Nanometric skyrmions in centrosymmetric magnets

3D visualization and dynamics of skyrmion strings

Nature Materials **21**, 181 (2022). Nature Comm. **11**, 256 (2020).

N. D. Khanh, ..., <u>S.</u> H. Takagi, ..., <u>S. Se</u> H. Yoshimochi, ...,

Magnetic skyrmions in noncentrosymmetric system

Skyrmions mediated by itine

S. Hayami, Y. Motome *et al.*, Phys. Rev. B **95**, 224424 (2017). Z. Wang, S.-Z. Lin, C. D. Batista *et al.*, Phys. Rev. Lett. **124**, 207201 (2020). J. Bouaziz *et al.*, Phys. Rev. Lett. **128**, 157206 (2022). S. Hayami *et al.*, J. Phys. Soc. Jpn. **91**, 023705 (2022).

Skyrmion can be stabilized even in **centrosymmetric system**

Skyrmion size is determined by nesting vector (~ a few nm)

Rare-earth alloys with highly-symmetric lattice

Gd-based Centrosymmetric Skyrmion-hosting Magnets

ubiquitously host skyrmions with small diameter

GdRu₂Si₂ : Skyrmions in centrosymmetric tetragonal magnet

N. D. Khanh, X. Z. Yu, ..., <u>S. Seki</u>, Nature Nanotech. **15**, 444 (2020).

GdRu₂Si₂ : Lorentz TEM (Real-space spin texture)

N. D. Khanh, X. Z. Yu, ..., <u>S. Seki</u>, Nature Nanotech. **15**, 444 (2020).

X.Z.Yu

Skyrmion-hosting compounds with ThCr₂Si₂ structure

Multiple skyrmion phases are observed in EuAl₄ and GdRu₂Ge₂

Skyrmion-hosting compounds with ThCr₂Si₂ structure

GdRu₂Ge₂ : Multiple-step metamagnetic transition

M profile shows **three** intermediate steps

 ρ_{yx} shows **two** peak structure (Phase II & IV : topological Hall effect ?)

GdRu₂Ge₂ : Magnetic structure (Resonant X-ray scattering)

⊕→

GdRu₂Ge₂ : Magnetic structure (Resonant X-ray scattering)

Magnetic structure : $\mathbf{m}(\mathbf{r}) = \sum_{i} \mathbf{m}_{\mathbf{Q}_{i}} \exp(i\mathbf{Q}_{i} \cdot \mathbf{r}) + c.c.$

$$I(\mathbf{Q}_i) \propto |(\mathbf{e}_i imes \mathbf{e}_f) \cdot \mathbf{m}_{\mathbf{Q}_i}|^2$$

Incident X-ray polarization **Scattered** X-ray polarization

\rightarrow Each m_{Qi} can be identified by polarization analysis

GdRu₂Ge₂ : Magnetic structure (Resonant X-ray scattering)

H. Yoshimochi, ..., <u>S. Seki</u>, Nature Physics (2024).

Summary

N. D. Khanh, …, <u>S. Seki</u> R. Takagi, …, <u>S. Seki</u> H. Yoshimochi, …, <u>S. Seki</u> Nature Nanotech. **15**, 444 (2020). Nature Comm. **13**, 1472 (2022). Nature Physics (2024).

Further search of RKKY-induced multi-q spin order

CoTa₃S₆ : Intercalated van der Waals antiferromagnet

n m n

CoTa₃S₆ : Giant spontaneous Hall effect

Magnetic Structure Analysis by Neutron Scattering

> JRR-3

https://jrr3.jaea.go.jp/

> J-PARC

https://mlfinfo.jp/ja/

5G PONTA

Materials and Life Science Experimental Facility

BL15 (TAIKAN)

BL18 (SENJU)

Polarized Neutron Scattering

CROSS YouTube

T. Nakajima, H. Saito (ISSP, University of Tokyo)

K. Ohishi (CROSS)

R. Kiyanagi (J-PARC)

CoTa₃S₆: Polarized neutron scattering

CoTa₃S₆: Represent

CoTa₃S₆: "All-in-all-out" non-coplanar AFM order

CoTa₃S₆: RKKY-driven triple-Q sp

RKKY-driven mechanism also works well in 3*d* electron systems !

Outline

Nanometric skyrmions in centrosymmetric magnets

3D visualization and dynamics of skyrmion strings

Nature Materials **21**, 181 (2022). Nature Comm. **11**, 256 (2020).

N. D. Khanh, ..., <u>S.</u> H. Takagi, ..., <u>S. Se</u> H. Yoshimochi, ...,

h

Skyrmion Particle and Skyrmion String

How to visualize 3D spin texture ?

Mn_{1.4}Pt_{0.9}Pd_{0.1}Sn: Reconstructed 3D distribution of m_[001]

<u>S. Seki</u>, M. Suzuki, T. Ono *et al.*, Nature Materials **21**, 181 (2022).

M. Suzuki (SPring8)

T. Ono (Kyoto Univ.)

BL39XU@Spring8

Skyrmion String as Signal Transmission Line ?

Propagating excitation modes on skyrmion strings

M. Mochizuki *et al.*, Phys. Rev. Lett. **108**, 017601 (2012). Y. Onose, <u>S. Seki *et al.*</u>, Phys. Rev. Lett. **109**, 037603 (2012). T. Schwarze, M. Garst *et al.*, Nature Mater. **14**, 478 (2015). Y. Okamura, <u>S. Seki *et al.*</u>, Nature Commun. **4**, 2391 (2013).

 V. Vlaminck and M. Bailleul, Science 322, 410 (2008).
Phys. Rev. B 81, 014425 (2010).

Vector Network Analyzer + Probe Station

$$V_n = \sum_m L_{nm} \frac{dI_m}{dt}$$

Self-inductance (ΔL_{11}) : Magnon Excitation efficiency Mutual-inductance (ΔL_{21}) : Magnon **Propagation**

Propagating excitation on skyrmion strings

S. Seki, M. Garst et al., Nature Communications 11, 256 (2020).

Nonreciprocal propagation **Grany**

Skyrmion string as information transmission line?

- Robust and flexible (due to topological protection)
- Excitation modes propagating through string path

Ideal for information transmission line?

Outline

† c

S4

h

Nanometric skyrmions in centrosymmetric magnets

3D visualization and dynamics of skyrmion strings

Nature Materials **21**, 181 (2022). Nature Comm. **11**, 256 (2020).

N. D. Khanh, ..., <u>S.</u> H. Takagi, ..., <u>S. Se</u> H. Yoshimochi, ...,

Summary

Acknowledgemen

Our team

R. Takagi (ex. staff)

H. Yoshimochi (D3)

N. D. Khanh (staff)

(theory)

M. Mochizuki M. Garst J. S. White (Diffraction) (theory)

S. Hayami Y. Motome T. Nakajima Y. Otani (diffraction) (theory) (theory) (spin wave)

T. Ono M. Suzuki (Tomography)

JASRI

T. Hanaguri Y. Tokura X.Z.Yu (STM) (TEM)

Y. Yasui K. Kondou

& etc etc...

R. Arita T. Kurumaji T. Arima T. Koretsune

K. Ishizaka T. Nomoto

Thank you!

e-mail: seki@ap.t.u-tokyo.ac.jp