

Quantum Materials by Design

Shawulienu Kezilebieke

SPICE Workshop on Hybrid Correlated States and Dynamics in Quantum Materials, May 14th - 16th 2024

Quantum Materials ?

Materials displaying quantum effects on macroscopic scale, complex emergent phenomena

Method: Designer quantum materials

Coulomb interactions U

Platform 1: Atom by atom

tattice geometry, dimension pairing netractions A spin-orbit coupling A

Design parameters

Atom manipulation

2D- Heterostructures

Molecular beam epitaxy MBE

Scanning tunneling microscope STM

Scanning tunneling spectroscopy STS

Atom Manipulation

 $dI/dV_{b}(V_{b}, x, y) \propto LDOS(eV_{b}, x, y) = \sum_{\delta E} |\psi_{i}(E_{i}, x, y)|^{2}$

Topological superconductor

A topolological superconductors are a class of superconducting materials has a superconducting gap in the bulk but show protected metallic states on its boundaries or surfaces.

Such excitations are the condensed matter realization of Majorana fermions. Due to their topological protection against disorder and their non-Abelian statistics, Majorana modes are a prominent building block for topological quantum computers

Artificial topological superconductor

M. Sato, and Y. Ando, Topological superconductors: a review. Rep. Prog. Phys. 80, 076501(2017)

Topological superconductivity

Standard recipe

- > Start with a simple parabolic band
- \succ Add Rashba spin-orbit coupling α
- Add Zeeman term M (perpendicular to spin-orbit)
- \blacktriangleright Add superconductivity Δ

Condition for the topological phase

$$\left|\epsilon\left(\overrightarrow{k_{0}}\right)-\mu\right|\leq M$$

Mixing magnetism and superconductivity

Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor

Stevan Nadj-Perge,¹* Ilya K. Drozdov,¹* Jian Li,¹* Hua Chen,²* Sangjun Jeon,¹ Jungpil Seo,¹ Allan H. MacDonald,² B. Andrei Bernevig,¹ Ali Yazdani¹+

SCIENCE 602 31 OCTOBER 2014 • VOL 346 ISSUE 6209

Toward tailoring Majorana bound states in artificially constructed magnetic atom chains on elemental superconductors

Howon Kim,¹* Alexandra Palacio-Morales,¹ Thore Posske,¹ Levente Rózsa,¹ Krisztián Palotás,^{2,3} László Szunyogh,⁴ Michael Thorwart,¹ Roland Wiesendanger¹*

Kim et al., Sci. Adv. 2018;4:eaar5251

Topological superconductivity in 2D

PRL 114, 236803 (2015)

PHYSICAL REVIEW LETTERS

week ending 12 JUNE 20

Topological Superconductivity and High Chern Numbers in 2D Ferromagnetic Shiba Lattices

Two-dimensional chiral topological superconductivity in Shiba lattices

Jian Li, Titus Neupert, Zhijun Wang, A. H. MacDonald, A. Yazdani & B. Andrei Bernevig 🖾

Nature Communications **7**, Article number: 12297 (2016) Cite this article

STM topo

5 nm

A. Palacio-Morales et al., Sci. Adv. 5, eaav6600 (2019)

Depends on substrate spin-orbit and magnetic

Potentially a rich variety of different Chern

G. Ménard et al. Nat. Commun. 8, 2040 (2017)

Ŵ

1D edge modes

numbers

texture of the lattice

Outline

CrBr₃ monolayer on NbSe₂

- ✓ Compound source MBE on freshly cleaved (under vacuum) NbSe₂ in UHV.
- ✓ Samples characterized with low-temperature STM, magneto-optical Kerr effect measurements.
- \checkmark CrBr₃ monolayer ferromagnetic with out-of-plane magnetization. Curie temperature ca. 16 K.

S. Kezilebieke et al. Adv. Mater. 2021, 2006850

Topological phase VS chemical potential

Topological phase diagram for a triangular lattice (NbSe₂)

M-point closest to Fermi according to

50-100 meV below E_{F} for bulk NbSe₂

Nat. Phys. 12, 92–97 (2016)

Shift of the NbSe₂ states under CrBr₃

NbSe₂ + Rashba + Zeeman

Overall shift makes it more plausible

Low-bias spectroscopy

- Combining the required ingredients for topological superconductivity
- On the island, there is signal inside the SC gap: formation of Shiba bands due to the magnetic layer
- Gap between the Shiba bands

<u>lli</u>

STM experiments at T = 350

Distinct zero bias signature at the island edges

Spatial mapping: localized edge modes

Is it topological superconductivity?

Appears on all island edges

Is it topological superconductivity?

• Appears on all island edges

<u>ll</u>

 Removing superconductivity (quenching with an external magnetic field) also removes the edge state completely

• Not Kondo, not standard edge state

External field 4T

Comparison with theory at the edge

Experiment: grid spectroscopy over an edge of a $CrBr_3$ island

Ŵ

The edge modes coexist with Shiba bands at higher energies

Quantitative match between theory and experiment:

- 1. the correct edge mode penetration depth of ~2.5nm (orders of magnitude smaller than simple estimates)
- 2. the specific form of the subgap local density of states (depends on system-specific dispersion of the topological edge modes)
- 3. coexistence of the topological edge modes and bulk states in a substantial energy window
- 4. non-uniform distribution of the edgemode spectral weight (stems from geometric irregularities of the island boundary)

Does the moiré modulation lead to a new emergent response in designer topological superconductors?

S. Kezilebieke et al. Nano Lett. 2022, 22, 1, 328-333

Moiré superlattice

- A moiré pattern results from the projection of one periodic pattern to another with relative lattice constant or misalignment.
- It creates periodic potential to modify the electronic properties of pristine materials.

Moiré folds the bands (moiré Brillouin zone)

Schematic of the moiré pattern set up by the lattice mismatch

1D moiré-driven topological superconductivity

Ŵ

Topological phase diagram

Moiré modulation open topological regions in the phase diagram at parameter values corresponding to the trivial state in the absence of the moiré

Modulation χ of exchange coupling, electrostatic potential etc..

2D moiré-driven topological superconductivity

Band structure for a triangular lattice

5 1) 1) 1) 2.5 0 -2.5 Г К М К' Г

Topological phase diagram

Close to charge neutrality no topological state appears by increasing the exchange coupling.

Topological phase diagram with moiré

It is clearly observed that as the modulation is switched on, a new topological state appears

Large bias *dl/dV* spectroscopy of CrBr₃ monolayer on NbSe₂

(b) dI/dV (a.u.) low high 1.5 1.5 1.0 0.5 0 10 20 30 Distance (nm)

The conduction band edge of $CrBr_3$ is modulated with exactly the periodicity of the moiré pattern of $CrBr_3/NbSe_2$ heterostructure, with magnitude of the modulation around 50mV

Correlation between moiré pattern and YSR bands

Correlation between moiré pattern and YSR bands Experiment

A clear correlation between the moiré pattern and dl/dV map only appears at the energy of the YSR bands.

The modulations of the YSR band LDOS due to the modulated exchange J.

Edge states of the topological superconductor with a moiré pattern

high

- Moiré-modulations also modulate the edge modes.
- Simple" modelling predicts modulation with the moiré period.
- More details Nano Lett. 2022, 22, 1, 328–333

25

Acknowledgements

Experiments:

Atomic scale physics group at Aalto

Peter Liljeroth

NanoSpin group at Aalto

Sebastiaan van dijken

Theory collaborators:

Teemu Ojanen (Tampere), Jose Iado (Aalto), Szczepan Głodzik (Lublin)

DFT (Aalto): Orlando Silveira, Adam Foster

European Research Council

