Artificial electrostatic crystals: a new platform for electronic quantum matter

Daisy Q. Wang†, Zeb Krix†, Oleg P. Sushkov†, Chong Chen[¶], Ian Farrer[¶], David A. Ritchie[¶], Alexander R. Hamilton†, and **Oleh Klochan**† † **UNSW** & ¶University of Cambridge

QED Group Research Projects

Fast Si *hole* **spin qubits (imec, Diraq)**

• **Scott Liles** *A singlet-triplet hole-spin qubit in MOS silicon*, arXiv:2310.09722 (2023).

 $Bx(mT)$

los

20

Electrical control of the g-tensor of the first hole in a silicon MOS quantum dot, Phys. Rev. B 104, 235303 (2022).

• **Ik Kyeong Jin**

Combining n-MOS Charge Sensing with p-MOS Silicon Hole Double Quantum Dots in a CMOS platform

Chiral spin-gap in hole quantum wires

Karina Hudson, **Krittika Kumar** *New signatures of the spin gap in quantum point contacts*, Nature Comms 12, 5 (2021).

Hydrodynamic current flow

Keser 11, 031030 (2021).

Daisy Wang & **Aydin** *Geometric control of universal hydrodynamic flow in a 2D electron fluid*, Phys. Rev. X,

Alex **Hamilton SPICE** Mainz

May 2024

Artificial Quantum Matter

2

Outline and acknowledgments

OUTLINE

- Superlattices & Moiré physics
- New approach to making bands
- **Precursor to band-structure:** Creating a new Fermi surface in a triangular lattice
- **Creating a new band-structure**
	- o Opening a band -gap in the artificial lattice
	- o Turning electrons into holes
	- o Turning massive electrons into massless Dirac particles
- **Flat bands & non-trivial insulator**

UNSW TEAM +

Alex **Hamilton SPICE** Mainz May 2024

3

Theory Zeb Krix Oleg Sushkov O. Tkachenko

Experiment

Wafers David Ritchie Andreas Wieck Werner Wegscheider

Motivation: Quantum Simulation

COMMUNICATIONS

Received 4 Dec 2015 | Accepted 16 Mar 2016 | Published 20 Apr 2016

OPEN DOI: 10.1038/ncomms11342

Quantum simulation of the Hubbard model with dopant atoms in silicon

J. Salfi¹, J.A. Mol¹, R. Rahman², G. Klimeck², M.Y. Simmons¹, L.C.L. Hollenberg³ & S. Rogge¹

nature communications

Article

https://doi.org/10.1038/s41467-022-34220-w

Experimental realization of an extended Fermi-Hubbard model using a 2D lattice of dopant-based quantum dots

Received: 20 October 2021

Accepted: 14 October 2022

Xiqiao Wang ®^{1,2,5}, Ehsan Khatami ®³, Fan Fei^{1,4}, Jonathan Wyrick¹, Pradeep Namboodiri¹, Ranjit Kashid^{1,6}, Albert F. Rigosi ®¹, Garnett Bryant ®^{1,2} & **Richard Silver [®]**

Published online: 11 November 2022

nature

Publish with us v Explore content Y About the journal \vee

nature > articles > article

Article | Open Access | Published: 22 June 2022

Engineering topological states in atom-based semiconductor quantum dots

M. Kiczynski, S. K. Gorman, H. Geng, M. B. Donnelly, Y. Chung, Y. He, J. G. Keizer & M. Y. Simmons Nature 606, 694-699 (2022) Cite this article

$ar\langle iv \rangle$ quant-ph > arXiv:2208.11505

Quantum Physics

(Submitted on 24 Aug 2022)

Probing resonating valence bonds on a programmable germanium quantum simulator

Chien-An Wang, Corentin Déprez, Hanifa Tidjani, William I, L. Lawrie, Nico W. Hendrickx, Amir Sammak, Giordano Scappucci, Menno Veldhorst

FTTER

doi:10.1038/nature23022

Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array

T. Hensgens¹, T. Fujita¹, L. Janssen¹, Xiao Li², C. J. Van Diepen³, C. Reichl⁴, W. Wegscheider⁴, S. Das Sarma² & L. M. K. Vandersvpen¹

Alex **Hamilton**

SPICE

Mainz

Motivation: Artificial quantum matter

a

nature

nanotechnology

282 | NATURE | VOL 483 | 15 MARCH 2012

CONDENSED-MATTER PHYSICS

A duo of graphene mimics

The synthesis of analogues of graphene by two different means provides insight into the origins of massless particles and paves the way for studies of materials with exotic topological properties. SEE LETTERS P.302 & P.306

Requirements:

REVIEW ARTICLE

PUBLISHED ONLINE: 4 SEPTEMBER 2013 I DOI: 10.1038/NNANO.2013.16

- Lattice constant $a \sim 100$ nm
- Mean free path $\gg a$
- Low disorder regular artificial lattice
- Strong modulation: $ΔU$ >> E_F

Artificial honeycomb lattices for electrons, atoms and photons

Marco Polini¹*, Francisco Guinea², Maciej Lewenstein^{3,4}, Hari C. Manoharan^{5,6} and Vittorio Pellegrini^{1,7}

 $:10mK$

 500 nm

Alex **Hamilton SPICE**

Mainz

Background – Periodic lattice in MATBG

Moire superlattice due to twisted graphene layers produces a flat band \Rightarrow strong correlations and superconductivity

Hexagonal boron nitride **Twisted bilaver** SiO.

Opportunities:

- Angle control, deformation, uniformity, domains…
- Improve control of superlattice potential – two graphene sheets interact via VdW forces
- Fixed symmetry triangular lattice

Y. Cao doi.org/10.1038/nature26154 Y. Cao doi:10.1038/nature26160

Hamilton SPICE Mainz May 2024

6

Alex

2D superlattices in Graphene

 -1

 -2

 $V_{c}(V)$ Ponomarenko … Geim," Nature (2013). Hunt … Ashoori, Nature (2013) Dean…Kim, Nature (2013) Lee. …Goldhaber-Gordon, Science (2016). Forsythe…Dean, Nat. Nano (2018) Wang … Schönenberger, Nano Lett.(2019) Jessen … Bøggild., Nat. Nano (2019) Huber…Weiss, Eroms Nat Comms (2022)

Alex **Hamilton**

SPICE

Mainz

TRANSPORT IN SEMICONDUCTOR ARTIFICIAL LATTICES

Figure 1. Scanning electron micrographs of one of our samples, showing the honeycomb gate pattern of 150 nr prich, namely 87 nm distance between adjacent vertices The PdAu gates (brighter areas) are patterned on the GaAs surface by electron beam lithography and lift-of

Soibel *Semi. Sci. Tech.* (1996)

Chen et al *ACS Nano* **15**, 13703(2021) Patterned lattice on Si/SiGe

Previous studies

- Weak modulation: Classical commensurability oscillations
- **Strong modulation: Disorder prevents experiments**

Singha et al *Science* **332**, 1176 (2011) Etched modulation doped GaAs/AlGaAs dot array

Albrecht et al *PRL* **83**, 2234(1999) Patterned modulation doped GaAs/AlGaAs with PMMA

Alex **Hamilton SPICE** Mainz

Optical studies

S. Wang et al., *Observation of Dirac bands in artificial graphene in small-period nanopatterned GaAs quantum wells*,

Nature Nano. 13, 29 (2018). L. Du et al, *Observation of Flat Bands in Gated Semiconductor Artificial Graphene*, Phys. Rev. Lett. 126, 106402 (2021).

Alex **Hamilton SPICE** Mainz May 2024

OUTLINE

- Superlattices & Moiré physics
- New approach to making bands
- **Precursor to band-structure:** Creating a new Fermi surface in a triangular lattice
- **Creating a new band-structure**
	- o Opening a band -gap in the artificial lattice
	- o Turning electrons into holes
	- o Turning massive electrons into massless Dirac particles
- **Flat bands & non-trivial insulator**

Experiment **Daisy Wang Oleh Klochan** Alex Hamilton

+

Theory Zeb Krix Oleg Sushkov O. Tkachenko

Wafers David Ritchie Andreas Wieck Werner Wegscheider

Hamilton SPICE Mainz May 2024

10

Our approach – Lateral Superlattice on GaAs 2DEG

- Metal Top-gate: TG controls modulation strength **ΔU**
- Thin dielectric
	- Patterned gate: PG controls 2DEG density *n*
- **2D electron gas (2DEG)** in GaAs heterostructure

Requirements:

- Lattice constant $a \sim 100$ nm
- Mean free path \gg *a* (*mfp* ~10 μm)
- Low disorder regular artificial lattice (EBL)
- Strong modulation: $\Delta U >> E_F$

Comparison with other solid state approaches

Normalized modulation strength U/E.

To be in quantum regime where bands exist need: Large energy scales \Rightarrow small lattice constant Low disorder \implies high mobility

To see new bandstructure need: Form new bands \Rightarrow large potential modulation Sweep E_F through multiple bands

Alex **Hamilton**

SPICE

Mainz

Outline and acknowledgments

OUTLINE

- Superlattices & Moiré physics
- New approach to making bands
- Creating a new Fermi surface in a triangular lattice
- Forming an artificial Dirac point for massive electrons
- Opening a band -gap in the artificial lattice
- Honeycomb to Kagome lattice
- Non-trivial insulator

UNSW TEAM + Collaborators

Experiment Daisy Wang Alex Hamilton **Oleh Klochan**

Oleg Sushkov **Theory** Zeb Krix

Wafers David Ritchie Andreas Wieck Werner Wegscheider

Peak-to-peak

 U_{p-p} >> E_F

▪ Increase potential: **Up-p= 18 meV**

But getting strong, uniform modulation in a 2DEG is not easy.

FIRST ARTIFICIAL GRAPHENE ATTEMPT

Acc.V SpotMagn Det WD | $+1$ sm 18.0 KV 3.0 86611x SE 5.0 ANFF-NSW Sirian

Alex **Hamilton SPICE** Mainz May 2024

SECOND GENERATION DEVICES

Alex **Hamilton**

SPICE

Mainz

May 2024

More complex devices, better lithography

Uniformity better than 10%

Strange insulating behaviour

NEED LOWER DISORDER: 3rd GENERATION

Screening and inhomogeneities matter

2D Materials

 -3

PAPER

Effects of Coulomb screening and disorder on an artificial graphene based on nanopatterned semiconductor

 K_2 M K_3

NEED STRONG MODULATION: 3rd GENERATION

- Metal Top-gate TG controls modulation ΔU
- Thin dielectric
- Patterned gate PG controls 2DEG density *n*
- **2D electron gas (2DEG) in GaAs heterostructure**

Applied Physics Letters

ARTICLE achation.org@ouma

Two-dimensional lateral surface superlattices in GaAs heterostructures with independent control of carrier density and modulation potential

Cite as: Appl. Phys. Lett. 117, 032102 (2020); doi: 10.1063/5.0009462 Submitted: 31 March 2020 · Accepted: 8 July 2020 Published Online: 20 July 2020 **Toma (Tellow)** D. Q. Wang, ^{12, 2} D. Reuter, ^{2 b)} A. D. Wieck, ³ (b) A. R. Hamilton, ¹² (b) and O. Klochan^{12, 4}

Parameters:

- 2DEG depth: 37nm 25nm
- $a = 120$ nm 100nm

Modulation potential decays exponentially with 2DEG depth

Extremely shallow 2DEGs: Sacrifice mobility for depth

2DEG depth d=37nm

n up to $5.4x10^{11}$ cm⁻²⁺ μ up to 2.5 million cm²/Vs limited by surface charge

OUTLINE

- Superlattices & Moiré physics
- New approach to making bands
- **Precursor to band-structure:** Creating a new Fermi surface in a triangular lattice
- **Creating a new band-structure**
	- o Opening a band -gap in the artificial lattice
	- o Turning electrons into holes
	- o Turning massive electrons into massless Dirac particles
- **Flat bands & non-trivial insulator**

Experiment **Daisy Wang Oleh Klochan** Alex Hamilton

+

Theory Zeb Krix Oleg Sushkov O. Tkachenko

Wafers David Ritchie Andreas Wieck Werner Wegscheider

Alex **Hamilton SPICE** Mainz May 2024

Starting with "weak" modulation

• What would we see with "weak" modulation? (weak ≡ quite strong by many standards)

Daisy Q. Wang et al, Nano Lett 23, 1705 (2023).

- (a) Weak Potential Potential Energy (b) E_{ν} k_y/g $rac{1}{g}$ (c) g
	- Free electrons single circular Fermi surface
	- Electrons in periodic potential $$ many Fermi surfaces.

Alex **Hamilton**

SPICE

Mainz

May 2024

2

4

Weak modulation I

- Wafer W916, $z = 37$ nm, $a = 80$ nm. $V_{PG} = +0.5V$. T=20mK
- Multiple oscillation frequencies

Daisy Q. Wang et al, Nano Lett 23, 1705 (2023).

Weak modulation II

 $CO₁$ and $CO₂$ are classical commensurability oscillations

Quantum Interference in Artificial Band Structures

R. A. Deutschmann, W. Wegscheider, M. Rother, M. Bichler, G. Abstreiter, C. Albrecht, and J. H. Smet Phys. Rev. Lett. 86, 1857 - Published 26 February 2001

Daisy Q. Wang et al, Nano Lett 23, 1705 (2023).

Alex **Hamilton SPICE** Mainz May 2024

Weak modulation IV – slightly stronger modulation, 20mK

• Increased modulation strength V_{TG} = -1V

- $\,$ 2 extra lines are classical commensurability oscillations of new Fermi surface A_1 **.**
- ➢ **We have made artificial Fermi surface & scattered it off 2D lattice**

OUTLINE

- Superlattices & Moiré physics
- New approach to making bands
- **Precursor to band-structure:** Creating a new Fermi surface in a triangular lattice

• Creating a new band-structure

- o Opening a band -gap in the artificial lattice
- o Turning electrons into holes
- o Turning massive electrons into massless Dirac particles
- **Flat bands & non-trivial insulator**

Experiment **Daisy Wang Oleh Klochan** Alex Hamilton

+

Theory Zeb Krix Oleg Sushkov O. Tkachenko

Wafers David Ritchie Andreas Wieck Werner Wegscheider

Mainz May 2024

Moving to higher modulation strength

Band-gaps open

- Should see electrons and holes in the minibands
- Should see change of sign of Hall slope D.Q. Wang...ARH, arXiv:2403.07273 (2024)

UNSW

Alex **Hamilton**

SPICE

Mainz

Turning electrons into holes

Hall effect with modulation off (positive V_{TG})

- Linear in B,
- Positive slope
- $dR_{xy}/dB > 0 \Rightarrow$ electrons (blue)

Alex **Hamilton SPICE** Mainz May 2024

30

JNSW

Turning electrons into holes

Even stronger modulation: miniband identification

Challenge:

Relate measurements to calculated bandstructure

Alex **Hamilton**

SPICE

Mainz

Strong modulation: Honeycomb lattice

Reduce a to 100nm.

Band-gaps open

- Count changes of Hall sign: Blue=electrons, red=holes.
- Identify band filling
- Calculations with U_{p-p} = 4.05meV
- Charge distribution at $E_F = 1.5$ meV, for states below E_F
- Peak in resistance at Dirac Point cf graphene
- Band disorder ~ 0.2 meV

 $g_2 = \frac{4\pi}{\sqrt{3}a}(1/2, \sqrt{3}/2),$ D.Q. Wang…ARH, arXiv:2403.07273 (2024)

 $U(\mathbf{r}) = 2W \sum \cos(\mathbf{g}_i \cdot \mathbf{r}),$

 $g_1 = \frac{4\pi}{\sqrt{3}a}(0, 1),$

33

Strongest potential modulation: U_{p-p}=9meV

 1.0

1.0

Alex **Hamilton SPICE** Mainz May 2024

Blue=electrons

red=holes

Stronger modulation $V_{TG} = -3V$

- $U_{\text{p-p}}$ =9 meV
- Charge distribution at E_F = 3.4 meV, for bands 3 & 4 only
- **Kagome charge distribution**

Magnetoresistance oscillations: evidence for artificial lattice

For artificial lattice

• Properties must be gauge invariant to 1 flux / lattice site (Zak Phys. Rev. 1964)

(Magnetic breakdown of crystal structure)

- c.f. Hofstadter butterfly: fractional filling 1 flux / *m* lattice sites (PRB 1974)
- 2T here is equivalent to 320,000T in graphene; over 100T in MATBG

Alex **Hamilton SPICE** Mainz May 2024

35

Zak oscillations in R_{xy}

Alex **Hamilton SPICE** Mainz

May 2024

R

UNSW

Zak oscillations in dR_{xy}/dB

Alex **Hamilton SPICE** Mainz

Red=holes This provides absolute calibration of gate voltage to band filling X periodicity: # electrons / band Y periodicity: # flux / lattice

Phase shift: change in band topology ?

Reproducibility: 2 devices on different wafers with 2 different lattice periods

Alex **Hamilton SPICE** Mainz May 2024

Wafer W916, $z = 25$ nm, $a=100$ nm. T = 1.5 K. TG = 0 V now very similar to TG=-2.5V before.

39

OUTLINE

- Superlattices & Moiré physics
- New approach to making bands
- **Precursor to band-structure:** Creating a new Fermi surface in a triangular lattice
- **Creating a new band-structure**
	- o Opening a band -gap in the artificial lattice
	- o Turning electrons into holes
	- o Turning massive electrons into massless Dirac particles
- **Flat bands & non-trivial insulator**

Experiment **Daisy Wang Oleh Klochan** Alex Hamilton

UNSW TEAM

+

Theory Zeb Krix Oleg Sushkov O. Tkachenko

Wafers David Ritchie Andreas Wieck Werner Wegscheider

Longitudinal resistance: Insulator after Dirac bands filled

Alex **Hamilton SPICE** Mainz

May 2024

Not disorder:

- Same flux periodicity as lattice
- Killed with increasing *and* decreasing density

Longitudinal resistance: Insulator after Dirac bands filled

Alex **Hamilton SPICE**

Mainz

May 2024

Not disorder:

- Same flux periodicity as lattice
- Killed with increasing *and* decreasing density
- Width of insulator in gate bias = one full band \Rightarrow from flat band, not bandgap
- Theory: $\mathcal{U}_{\text{onsite}}/t \approx 50 \Rightarrow$ strong correlations

42

Summary

- Artificial bandstructure
- Tune E_F and U over many bands
- Turn electrons into holes
- Band filling: Dirac bands
- Transition Dirac Kagome lattice
- Created band gap
- Non-trivial insulator

Future:

- Ultra-low disorder (ask)
-

Alex

SPICE

Mainz

43

Outline and acknowledgments

OUTLINE

- Superlattices & Moiré physics
- New approach to making bands
- Creating a new Fermi surface in a triangular lattice
- Forming an artificial Dirac point for massive electrons
- Opening a band -gap in the artificial lattice
- Honeycomb to Kagome lattice
- Non-trivial insulator

UNSW TEAM + Collaborators

Experiment **Daisy Wang Oleh Klochan** Alex Hamilton

Oleg Sushkov **Theory** Zeb Krix

Wafers David Ritchie Andreas Wieck Werner Wegscheider

Ambipolar accumulation mode GaAs nanowires / QPCs

J.C.H Chen..ARH. APL 2012 & APL 2015.

8

Reducing disorder and noise

Alex **Hamilton SPICE** Mainz

- **Problem:** Small quantum devices, Large transconductance => channel close to gate
- Surface of semiconductor exposed to air => oxidation, adsorbates
	- => surface charge
	- => scattering of electrons in channel
- Issue for Ge, III-V's, II-VI's, etc
- **Solution:** Grow gate as part of the heterostructure
- Semiconductor surface never sees air
- Eliminates unwanted surface charge, surface contaminants

47

Y. Ashlea Alava, D.Q. Wang, C. Chen, D.A. Ritchie, A. Ludwig, J. Ritzmann, A.D. Wieck, O. Klochan, and A.R. Hamilton,

Ultra-shallow all-epitaxial aluminium gate GaAs/AlGaAs transistors with high electron mobility, Advanced Functional Materials (2021)

Ultra low noise quantum point contacts

Hamilton SPICE Mainz May 2024

- Etch Aluminium to define quantum point contact => Clear conductance steps
- Hold gate V_G on steep "risers" & monitor I(t) => See 1/f noise

• **Noise 20x lower than non-epitaxial gates**

Y. Ashlea Alava, D. Q. Wang, C. Chen, D. A. Ritchie, O. Klochan, and A. R. Hamilton, *High electron mobility and low noise quantum point contacts in an ultra-shallow all-epitaxial metal gate GaAs/AlxGa1−xAs heterostructure*, Appl. Phys. Lett. 119, 063105 (2021).

