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Chiral spin-gap in 

hole quantum wires

Fast Si hole spin qubits 
(imec, Diraq)

• Scott Liles
A singlet-triplet hole-spin qubit in MOS 
silicon, arXiv:2310.09722 (2023).

Electrical control of the g-tensor of the 
first hole in a silicon MOS quantum 
dot, Phys. Rev. B 104, 235303 (2022).

• Ik Kyeong Jin
Combining n-MOS Charge Sensing with 
p-MOS Silicon Hole Double Quantum 
Dots in a CMOS platform

Hydrodynamic 

current flow

Karina Hudson, 
Krittika Kumar
New signatures of the spin 
gap in quantum point 
contacts, 
Nature Comms 
12, 5 (2021). 

Daisy Wang & Aydin 
Keser
Geometric control of 
universal hydrodynamic 
flow in a 2D electron 
fluid, Phys. Rev. X, 
11, 031030 (2021).

Artificial Quantum Matter

Daisy Wang & 
Oleh Klochan

T1  ~20us 
T2*  ~500ns
T2echo ~ 10us
fRabi ~ 500MHz

Q ~ 80
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OUTLINE

• Superlattices & Moiré physics

• New approach to making bands

• Precursor to band-structure: 
Creating a new Fermi surface in a 
triangular lattice

• Creating a new band-structure

o Opening a band-gap in the 
artificial lattice

o Turning electrons into holes

o Turning massive electrons into 
massless Dirac particles

• Flat bands & non-trivial insulator
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Motivation: Quantum Simulation
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Motivation: Artificial quantum matter

• Lattice constant a ~ 100nm

• Mean free path >> a

• Low disorder - regular artificial lattice

• Strong modulation: ΔU >> EF

Requirements:
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Background – Periodic lattice in MATBG 
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Y. Cao doi.org/10.1038/nature26154
Y. Cao doi:10.1038/nature26160

Moire superlattice due to twisted graphene layers produces a flat band 
 strong correlations and superconductivity

Opportunities:
• Angle control, deformation, uniformity, 

domains…
• Improve control of superlattice potential 

– two graphene sheets interact via VdW forces
• Fixed symmetry – triangular lattice
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2D superlattices in Graphene

Ponomarenko … Geim,” Nature (2013).
Hunt … Ashoori, Nature (2013)
Dean…Kim, Nature (2013)
Lee. …Goldhaber-Gordon, Science (2016).
Forsythe…Dean, Nat. Nano (2018)
Wang … Schönenberger, Nano Lett.(2019)
Jessen … Bøggild., Nat. Nano (2019)
Huber…Weiss, Eroms Nat Comms (2022)

Forsythe…Dean, 
Nat. Nano (2018).

Huber…Weiss, Eroms
Nat Comms (2022).
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TRANSPORT IN SEMICONDUCTOR ARTIFICIAL LATTICES

Albrecht et al PRL 83, 2234(1999)
Patterned modulation doped 
GaAs/AlGaAs with PMMA

Singha et al Science 332, 1176 (2011)
Etched modulation doped GaAs/AlGaAs
dot array

Chen et al ACS Nano 15, 13703(2021)
Patterned lattice on Si/SiGe

Soibel Semi. Sci. Tech.  (1996)

Previous studies
• Weak modulation:

Classical commensurability 
oscillations

• Strong modulation:
Disorder prevents experiments
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Optical studies

S. Wang et al., Observation 
of Dirac bands in artificial 
graphene in small-period 
nanopatterned GaAs 
quantum wells, 
Nature Nano. 13, 29 (2018). L. Du et al, Observation of Flat Bands in Gated 

Semiconductor Artificial Graphene, 
Phys. Rev. Lett. 126, 106402 (2021).

Etched samples  Stronger modulation, but modulation cannot be tuned
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• Creating a new band-structure

o Opening a band-gap in the 
artificial lattice

o Turning electrons into holes

o Turning massive electrons into 
massless Dirac particles
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Our approach – Lateral Superlattice on GaAs 2DEG
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Metal Top-gate: TG controls 

modulation strength ΔU

Patterned gate:

PG controls 2DEG density n

2D electron gas (2DEG)

in GaAs heterostructure

Thin dielectric

• Lattice constant a ~ 100nm

• Mean free path >> a (mfp ~10 μm)

• Low disorder - regular artificial lattice (EBL)

• Strong modulation: ΔU >> EF

Requirements:
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Comparison with other solid state approaches
Strong lattice modulation by etching

To be in quantum regime where bands exist need:
Large energy scales small lattice constant
Low disorder  high mobility

Low disorder approaches: tuneability

To see new bandstructure need:
Form new bands  large potential modulation
Sweep EF through multiple bands
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Outline and acknowledgments 
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OUTLINE

• Superlattices & Moiré physics

• New approach to making bands

• Creating a new Fermi surface in 
a triangular lattice

• Forming an artificial Dirac point 
for massive electrons

• Opening a band-gap in the 
artificial lattice

• Honeycomb to Kagome lattice

• Non-trivial insulator



Massive Dirac Fermions in a triangular lattice

Free electrons E vs k

Apply potential U(r)

Peak-to-peak amplitude Up-p= 9W
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Massive Dirac Fermions in a triangular lattice
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▪ Increase potential: Up-p=0.9 meV



▪ Increase potential: Up-p= 4.5 meV

▪ Peak-to-peak
comparable to
typical EF ~ 3meV

Massive Dirac Fermions in a triangular lattice
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Massive Dirac Fermions in a triangular lattice
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▪ Increase potential: Up-p= 18 meV

But getting strong, uniform 

modulation in a 2DEG is not easy. 

Peak-to-peak

Up-p >> EF
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FIRST ARTIFICIAL GRAPHENE ATTEMPT
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SECOND GENERATION DEVICES

More complex devices, better 
lithography

Uniformity better than 10%

Strange insulating behaviour
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NEED LOWER DISORDER: 3rd GENERATION
Screening and inhomogeneities 
matter
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1

Metal Top-gate 
TG controls modulation ΔU

Patterned gate 
PG controls 2DEG density n

2D electron gas (2DEG)
in GaAs heterostructure

Thin dielectric

NEED STRONG MODULATION: 3rd GENERATION

Parameters:
• 2DEG depth: 37nm - 25nm
• a=120nm – 100nm
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Modulation potential decays exponentially with 2DEG depth

Extremely shallow 2DEGs: Sacrifice mobility for depth

2DEG depth d=37nm

n up to 5.4x1011 cm-2+

µ up to 2.5 million cm2/Vs

limited by surface charge

2DEG depth d=25nm

n up to 2.4x1011 cm-2+

µ up to 0.8 million cm2/Vs

limited by surface charge

Carrier density (1011 cm-2)

M
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cm
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• Superlattices & Moiré physics

• New approach to making bands

• Precursor to band-structure: 
Creating a new Fermi surface in a 
triangular lattice

• Creating a new band-structure

o Opening a band-gap in the 
artificial lattice

o Turning electrons into holes

o Turning massive electrons into 
massless Dirac particles

• Flat bands & non-trivial insulator
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Starting with “weak” modulation

• Free electrons – single circular Fermi 
surface

• Electrons in periodic potential –
many Fermi surfaces.  

• What would we see with “weak” 
modulation?
(weak ≡ quite strong by many standards)

2
4

Daisy Q. Wang et al, Nano Lett 23, 1705 (2023).
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Weak modulation I

• Wafer W916, z =37 nm,  a=80 nm. VPG= +0.5V. T=20mK 

• Multiple oscillation frequencies

Daisy Q. Wang et al, Nano Lett 23, 1705 (2023).
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Weak modulation II

A0 – original Fermi surface; A1 and 2A0-A1 – reconstructed Fermi surfaces, 

CO1 and CO2 are classical commensurability oscillations   

CO2 CO1

Daisy Q. Wang et al, Nano Lett 23, 1705 (2023).



Alex
Hamilton

SPICE

Mainz

May 2024

2
7

Weak modulation IV – slightly stronger modulation, 20mK

Take home:

• 2 extra lines are classical commensurability oscillations of new Fermi surface A1.

➢ We have made artificial Fermi surface & scattered it off 2D lattice 

• Increased modulation strength VTG= -1V

Wang, Nano Lett 23, 1705 (2023).
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Moving to higher modulation strength

Band-gaps open
• Should see electrons and holes  in the minibands
• Should see change of sign of Hall slope D.Q. Wang…ARH, arXiv:2403.07273 (2024)



Alex
Hamilton

SPICE

Mainz

May 2024

Turning electrons into holes

30

Hall effect with modulation off 
(positive VTG) 
• Linear in B, 
• Positive slope
• dRxy/dB>0 => electrons (blue)

Wafer W916, z =37 nm,  a=120 nm. T = 1.5 K D.Q. Wang…ARH, arXiv:2403.07273 (2024)
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Turning electrons into holes

31

Hall effect with increasing 
potential modulation
(VTG → -1V) 

• Negative slope

• dRxy/dB<0 => holes (red)

Key point:
• Created 2D minibands
• Changed electrons into 

holes



Alex
Hamilton

SPICE

Mainz

May 2024

Even stronger modulation: miniband identification

Challenge:
Relate measurements to calculated bandstructure
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Strong modulation: Honeycomb lattice

33

Reduce a to 100nm. 
Band-gaps open
• Count changes of Hall sign: Blue=electrons, red=holes.
• Identify band filling
• Calculations with Up-p= 4.05meV
• Charge distribution at EF = 1.5 meV, for states below EF

• Peak in resistance at Dirac Point – cf graphene
• Band disorder ~ 0.2 meV
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D.Q. Wang…ARH, arXiv:2403.07273 (2024)
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Strongest potential modulation: Up-p=9meV

34
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Stronger modulation 
VTG=-3V
• Up-p=9 meV
• Charge distribution 

at EF = 3.4 meV, for 
bands 3 & 4 only

• Kagome charge 
distribution

Blue=electrons

red=holes
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Magnetoresistance oscillations:
evidence for artificial lattice

35

For artificial lattice

• Properties must be gauge invariant to 1 flux / lattice site (Zak Phys. Rev. 
1964)
(Magnetic breakdown of crystal structure)

• c.f. Hofstadter butterfly: fractional filling 1 flux / m lattice sites (PRB 1974)

• 2T here is equivalent to 320,000T in graphene; over 100T in MATBG
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Zak oscillations in Rxy
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Zak oscillations in dRxy/dB
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Blue=electrons

Red=holes
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Zak oscillations in dRxy/dB
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Blue=electrons

Red=holes This provides absolute calibration of gate voltage to band filling

X periodicity: # electrons / band

Y periodicity: # flux / lattice

Phase shift: change in band topology ?
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Reproducibility: 2 devices on different wafers with 2 different lattice periods 

39

• Wafer W916, z =25 nm,  a=100 nm. T = 1.5 K. TG = 0 V now very similar to TG=-2.5V before. 
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• Flat bands & non-trivial insulator
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Longitudinal resistance: Insulator after Dirac bands filled

41
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Not disorder:

• Same flux periodicity as lattice

• Killed with increasing and decreasing 
density
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Longitudinal resistance: Insulator after Dirac bands filled
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Not disorder:

• Same flux periodicity as lattice

• Killed with increasing and decreasing 
density

• Width of insulator in gate bias = one full 
band  from flat band, not bandgap

• Theory: Uonsite/t ~ 50  strong 
correlations
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Summary
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• Artificial bandstructure

• Tune EF and U over many bands

• Turn electrons into holes

• Band filling: Dirac bands

• Transition Dirac – Kagome lattice

• Created band gap

• Non-trivial insulator

Future:

• Ultra-low disorder (ask)

• Add band topology L•S D.Q. Wang…ARH, arXiv:2403.07273 (2024)
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Outline and acknowledgments 

44

Oleg Sushkov

Experiment 
Daisy Wang
Oleh Klochan
Alex Hamilton

UNSW TEAM
+ 
Collaborators

Theory
Zeb Krix

Wafers
David Ritchie

Andreas Wieck

Werner Wegscheider

OUTLINE

• Superlattices & Moiré physics
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• Creating a new Fermi surface in 
a triangular lattice

• Forming an artificial Dirac point 
for massive electrons

• Opening a band-gap in the 
artificial lattice

• Honeycomb to Kagome lattice

• Non-trivial insulator
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Ambipolar accumulation mode GaAs nanowires / QPCs

J.C.H Chen..ARH. APL 2012 & APL 2015.

Electrons

Holes

μe = 5,000,000 cm2/Vs

μh = 800,000 cm2/Vs

• GaAs – very 
low disorder

• Easy to 
nanofabricate 
devices

• Electrons – no 
SOI

• Holes – strong 
SOI (>1 meV)
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Reducing disorder and noise

46

• Problem: Small quantum devices, Large transconductance 
=> channel close to gate

• Surface of semiconductor exposed to air 
=> oxidation, adsorbates
=> surface charge 
=> scattering of electrons in channel

• Issue for Ge, III-V’s, II-VI’s, etc

• Solution: Grow gate as part of the 

heterostructure

• Semiconductor surface never sees air

• Eliminates unwanted surface charge, 

surface contaminants
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Perfect metal-semiconductor interface

47

GaAs (1μm)

AlGaAs (33 nm)

Epitaxial Aluminium gate (8nm)

Before anneal After anneal
DEVICE 

STRUCTURE

Y. Ashlea Alava, D.Q. Wang, C. Chen, D.A. Ritchie, A. Ludwig, J. Ritzmann, 
A.D. Wieck, O. Klochan, and A.R. Hamilton, 
Ultra-shallow all-epitaxial aluminium gate GaAs/AlGaAs transistors with high electron mobility, Advanced Functional Materials (2021)
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Ultra low noise quantum point contacts

48

• Etch Aluminium to define quantum point contact => Clear conductance steps
• Hold gate VG on steep “risers” & monitor I(t) => See 1/f noise

• Noise 20x lower than non-epitaxial gates

Y. Ashlea Alava, D. Q. Wang, C. Chen, D. A. Ritchie, O. Klochan, and A. R. Hamilton, 
High electron mobility and low noise quantum point contacts in an ultra-shallow all-epitaxial metal gate GaAs/AlxGa1−xAs 
heterostructure, Appl. Phys. Lett. 119, 063105 (2021). 
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