Hardware requirements for useful superconducting quantum computers

Manuel Pino García, 22/05/2024 Universidad de Salamanca

QUANTUM MATTER FOR QUANTUM TECHNOLOGIES

In collaboration:

J. J. García Ripoll, G. Jaumá Quinfog CSIC (Madrid), M. Hita-Pérez Quilimanjaro Quantum Tech.

Quantum materials for quantum technologies

Quantum materials for quantum technologies

Superconducting circuits

Quantum materials for quantum technologies

Superconducting circuits

What are bottleneck in superconducting hardware? How to overcome them?

- Superconducting qubit use Josephson junction

- Superconducting qubit use Josephson junction

I. Siddiqi, Nat. Rev. Mat. 6.10 (2021): 875-891

- Superconducting qubit use Josephson junction

I. Siddiqi, Nat. Rev. Mat. 6.10 (2021): 875-891

- I like flux and fluxonium qubits:

- I like flux and fluxonium qubits:

- I like flux and fluxonium qubits:

<u>Flux qubits</u> $T \approx 85 \mu s$

- Orlando, Mooij,... Mazo PRB (1999)

 F. Yan, W. D. Oliver Nat. Comm (2016)

<u>Fluxoniums</u> $T \approx 0.1 ms$

- R. A. Mencía, ... Manucharyan ArXiv:2403.16780 (2024)

- W. Ardati, ... N. Roch ArXiv:2402.0449 (2024)

- I like flux and fluxonium qubits:

<u>Flux qubits</u> $T \approx 85 \mu s$

- Orlando, Mooij,... Mazo PRB (1999)

 F. Yan, W. D. Oliver Nat. Comm (2016)

<u>Fluxoniums</u> $T \approx 0.1 ms$

- R. A. Mencía, ... Manucharyan ArXiv:2403.16780 (2024)

- W. Ardati, ... N. Roch ArXiv:2402.0449 (2024)

$|\pm angle=rac{|1 angle\pm|-1 angle}{\sqrt{2}}$

- Hita-Pérez, Orellana, García-Ripoll <u>M. Pino</u>PRA (2023)

What are hardware contraints?

- Is qubit decoherence the bottleneck?

What are hardware contraints?

- Is qubit decoherence the bottleneck?

- Is qubit decoherence the bottleneck?
- No at the level 1 qubit. Problems comes when coupling qubts
- Sensibility to external fields --- > Open the door to noise
 - Topological (ptotection + manipulation) Kitaev (2001), Kouwenhoven Nature (2023), R. Aguado, La Rivista del Nuovo Cimento (2017)
 - Partial solutions: Fast tuning on-off noise protection <u>M. Pino</u>, L. B. Ioffe, Tsvelik PRL 2015

Transmon0.5Fluxonium0.1Flux qubit0.05

- Is qubit decoherence the bottleneck?
- No at the level 1 qubit. Problems comes when coupling qubts
- Sensibility to external fields --- > Open the door to noise
 - Topological (ptotection + manipulation) Kitaev (2001), Kouwenhoven Nature (2023), R. Aguado, La Rivista del Nuovo Cimento (2017)
 - Partial solutions: Fast tuning on-off noise protection <u>M. Pino</u>, L. B. Ioffe, Tsvelik PRL 2015
- Weak or too "simple" qubit-qubit couplings

Transmon0.5Fluxonium0.1Flux qubit0.05

- Is qubit decoherence the bottleneck?
- No at the level 1 qubit. Problems comes when coupling qubts
- Sensibility to external fields --- > Open the door to noise
 - Topological (ptotection + manipulation) Kitaev (2001), Kouwenhoven Nature (2023), R. Aguado, La Rivista del Nuovo Cimento (2017)
 - Partial solutions: Fast tuning on-off noise protection <u>M. Pino</u>, L. B. Ioffe, Tsvelik PRL 2015
- <u>Weak or too "simple" qubit-qubit couplings</u> This talk is all about this

	× ×	/
Transmon	0.5	
Fluxonium	0.1	
Flux qubit	0.05	

T(ms)

- How to implement universal quantum computing?

- How to implement universal quantum computing?
 - Gate model

- How to implement universal quantum computing?
 - Gate model
 - Solovay-Kitaev theorem

- How to implement universal quantum computing?
 - <u>Gate model</u>
 - Solovay-Kitaev theorem (Kitaev 1997, Solovay 1995)

- How to implement universal quantum computing?
 - Gate model
 - Solovay-Kitaev theorem (Kitaev 1997, Solovay 1995)
 - Universal set of gates

- How to implement universal quantum computing?
 - Gate model
 - Solovay-Kitaev theorem (Kitaev 1997, Solovay 1995)
 - Universal set of gates {CNOT + 1qRotations}

- How to implement universal quantum computing?
 - Gate model
 - Solovay-Kitaev theorem (Kitaev 1997, Solovay 1995)
 - Universal set of gates {CNOT + 1qRotations} A. Barenco, et al., PRA (1995)

- How to implement universal quantum computing?
 - Gate model

- Adiabatic quantum computing:

- Solovay-Kitaev theorem (Kitaev 1997, Solovay 1995)
- Universal set of gates {CNOT + 1qRotations} A. Barenco, et al., PRA (1995)

- How to implement universal quantum computing?
 - <u>Gate model</u>
 - Solovay-Kitaev theorem (Kitaev 1997, Solovay 1995)
 - Universal set of gates {CNOT + 1qRotations} A. Barenco, et al., PRA (1995)

- Adiabatic quantum computing:
- Hamiltonian with two body interactions

- How to implement universal quantum computing?
 - <u>Gate model</u>
 - Solovay-Kitaev theorem (Kitaev 1997, Solovay 1995)
 - Universal set of gates {CNOT + 1qRotations} A. Barenco, et al., PRA (1995)

- Adiabatic quantum computing:
- Hamiltonian with two body interactions (Julia Kempe, Alexei Kitaev & Oded Regev)

- How to implement universal quantum computing?
 - <u>Gate model</u>
 - Solovay-Kitaev theorem (Kitaev 1997, Solovay 1995)
 - Universal set of gates {CNOT + 1qRotations} A. Barenco, et al., PRA (1995)

- Adiabatic quantum computing:
- Hamiltonian with two body interactions (Julia Kempe, Alexei Kitaev & Oded Regev)
- Minimal form of 2 qubit coupling

- How to implement universal quantum computing?
 - <u>Gate model</u>
 - Solovay-Kitaev theorem (Kitaev 1997, Solovay 1995)
 - Universal set of gates {CNOT + 1qRotations} A. Barenco, et al., PRA (1995)

- Adiabatic quantum computing:
- Hamiltonian with two body interactions (Julia Kempe, Alexei Kitaev & Oded Regev)
- Minimal form of 2 qubit coupling (Biamonte, Love 2008, ...)

- How to implement universal quantum computing?
 - <u>Gate model</u>
 - Solovay-Kitaev theorem (Kitaev 1997, Solovay 1995)
 - Universal set of gates {CNOT + 1qRotations} A. Barenco, et al., PRA (1995)

- Adiabatic quantum computing:
- Hamiltonian with two body interactions (Julia Kempe, Alexei Kitaev & Oded Regev)
- Minimal form of 2 qubit coupling (Biamonte, Love 2008, ...)
- We need minimum complexity for qubit-qubit interactions! For instance:

$$\mathbf{H} = \sum \Delta_i \sigma_i^z + \sum J_{ij}^{yy} \sigma_i^y \sigma_j^y + \sum J_{ij}^{xx} \sigma_i^x \sigma_j^x$$

This is all about the first part of the talk: <u>Strength and form of qubit-qubit couplings</u>

<u>Qubit-qubit</u>:

Strong coupling Quantum Monte-Carlo suffers sign problem (non-stoquastic)

<u>Qubit-resonator</u>:

New phenomena for LC-qubit strongly coupled in two directions

<u>Qubit-qubit</u>:

Strong coupling Quantum Monte-Carlo suffers sign problem (non-stoquastic)

$$\mathbf{H} = \sum \Delta_i \sigma_i^z + \sum J_{ij}^{xx} \sigma_i^x \sigma_j^x + \sum J_{ij}^{yy} \sigma_i^y \sigma_j^y$$

Qubit-resonator:

New phenomena for LC-qubit strongly coupled in two directions

$$\mathbf{H} = \Delta \sigma^{z} + \omega b^{\dagger} b + g^{x} \sigma^{x} \left(a + a^{\dagger} \right) + i g^{y} \sigma^{y} \left(a - a^{\dagger} \right)$$

<u>Qubit-qubit</u>:

Strong coupling Quantum Monte-Carlo suffers sign problem (non-stoquastic)

$$\mathbf{H} = \sum \Delta_i \sigma_i^z + \sum J_{ij}^{xx} \sigma_i^x \sigma_j^x + \sum J_{ij}^{yy} \sigma_i^y \sigma_j^y$$

Qubit-resonator:

New phenomena for LC-qubit strongly coupled in two directions

$$\mathbf{H} = \Delta \sigma^{z} + \omega b^{\dagger} b + g^{x} \sigma^{x} \left(a + a^{\dagger} \right) + i g^{y} \sigma^{y} \left(a - a^{\dagger} \right)$$

<u>Qubit-qubit</u>:

Strong coupling Quantum Monte-Carlo suffers sign problem (non-stoquastic)

$$\mathbf{H} = \sum \Delta_i \sigma_i^z + \sum J_{ij}^{xx} \sigma_i^x \sigma_j^x + \sum J_{ij}^{yy} \sigma_i^y \sigma_j^y$$

Qubit-resonator:

New phenomena for LC-qubit strongly coupled in two directions

$$\mathbf{H} = \Delta \sigma^{z} + \omega b^{\dagger} b + g^{x} \sigma^{x} \left(a + a^{\dagger} \right) + i g^{y} \sigma^{y} \left(a - a^{\dagger} \right)$$

Harris et. al. (D-wave) PRB (2009)

Ozfidan, ...Amin (D-wave) PRApp (2020)

Yamamoto,... Nakamura NJP 2014

Charge-charge coupling

- Only focuss on charge coupling

$$H = H_0 + \frac{q_1 q_2}{\overline{c}_g}$$

- Only focuss on charge coupling

$$H = H_0 + \frac{q_1 q_2}{\overline{c}_g}$$

$$q_q = \frac{\Phi_0}{2\pi} \frac{C_q \Delta \varphi_\star}{\hbar} \sigma_i^y$$

$$q_r = \sqrt{\frac{\hbar}{2Z}}i(b - b^{\dagger})$$

$$H_0 = \Delta \sigma^z + \omega_r a_r^{\dagger} a_r$$

- Only focuss on charge coupling

$$H = H_0 + \frac{q_1 q_2}{\overline{c}_g}$$

$$q_r = \sqrt{\frac{\hbar}{2Z}}i(b - b^{\dagger})$$

$$H_0 = \Delta \sigma^z + \omega_r a_r^{\dagger} a_r$$

Usual approach, project on non-interacting qubit subspace

- Only focuss on charge coupling

$$H = H_0 + \frac{q_1 q_2}{\overline{c}_g}$$

$$q_q = \frac{\Phi_0}{2\pi} \frac{C_q \Delta \varphi_\star}{\hbar} \sigma_i^y$$

$$q_r = \sqrt{\frac{\hbar}{2Z}}i(b-b^{\dagger})$$

$$H_0 = \Delta \sigma^z + \omega_r a_r^{\dagger} a_r$$

Usual approach, project on non-interacting qubit subspace

- Qubit-qubit coupling $H_{qq} pprox g^{yy} \sigma_1^y \sigma_2^y$

$$\frac{g^{yy}}{\Delta} = \frac{\overline{c}_q \varphi_\star^2}{\overline{c}_g} \frac{\Delta}{4E_C^q}$$

- Only focuss on charge coupling

$$H = H_0 + \frac{q_1 q_2}{\overline{c}_g}$$

$$H_0 = \Delta \sigma^z + \omega_r a_r^{\dagger} a_r$$

Usual approach, project on non-interacting qubit subspace

- Qubit-qubit coupling $\,H_{qq}pprox g^{yy}\sigma_1^y\sigma_2^y\,$

$$\frac{g^{yy}}{\Delta} = \frac{\overline{c}_q \varphi_\star^2}{\overline{c}_g} \frac{\Delta}{4E_C^q}$$

- Qubit-resonator $H_{qr} \approx i g^{yy} \sigma_1^y (a - a^{\dagger})$ $\frac{g_{qr}}{\Delta} = \frac{c_g}{\overline{c}_g} \frac{\varphi^{\star}}{2} \sqrt{\frac{1}{G_0 \mathcal{Z}}}$

$$\mathbf{H}_q = P_0 H_c P_0 + \sum_{n=1,\dots} \gamma^n \mathcal{M}_n$$

$$|\mathcal{M}_n| \sim \left(\frac{V_{qe}}{\hbar\omega_q}\right)^m$$

$$\mathbf{H}_q = P_0 H_c P_0 + \sum_{n=1,\dots} \gamma^n \mathcal{M}_n$$

$$|\mathcal{M}_n| \sim \left(\frac{V_{qe}}{\hbar\omega_q}\right)^m$$

$$H_q = P_0 H_c P_0 + \sum_{n=1,\dots} \gamma^n \mathcal{M}_n$$
$$|\mathcal{M}_n| \sim \left(\frac{V_{qe}}{\hbar\omega_q}\right)^m$$

- <u>At strong coupling</u> $\gamma \sim 1$

- Does this projections work well? Sure for small coupling. For larger, Schreiffel-Wolf:

$$\begin{aligned} \mathbf{H}_{q} &= P_{0}H_{c}P_{0} + \sum_{n=1,\dots} \gamma^{n}\mathcal{M}_{n} \\ |\mathcal{M}_{n}| \sim \left(\frac{V_{qe}}{\hbar\omega_{q}}\right)^{m} \end{aligned}$$

- <u>At strong coupling</u> $\gamma \sim 1$

Qubit-resonator coupling. <u>YES</u>!

$$\bigcirc V_{qe} \sim \hbar \sqrt{\omega_r \omega_q} \\ \mathcal{M}_n \ll 1$$

- Does this projections work well? Sure for small coupling. For larger, Schreiffel-Wolf:

$$H_q = P_0 H_c P_0 + \sum_{n=1,\dots} \gamma^n \mathcal{M}_n$$
$$|\mathcal{M}_n| \sim \left(\frac{V_{qe}}{\hbar\omega_q}\right)^m$$

- <u>At strong coupling</u> $\gamma \sim 1$

Qubit-resonator coupling. <u>YES</u>!

$$\bigcirc V_{qe} \sim \hbar \sqrt{\omega_r \omega_q} \\ \mathcal{M}_n \ll 1$$

Qubit-qubit coupling. $\underline{NO!} - > Need to sum up full series$

$$\begin{array}{|c|c|} \hline & V_{qe} \sim \hbar \omega_q \\ \hline & \mathcal{M}_n \sim 1 \end{array}$$

- Using theory and numeric Schreiffel-Wolf for capacitive and inductive couplings:

- Using theory and numeric Schreiffel-Wolf for capacitive and inductive couplings:

$$\mathbf{H} = \Delta \sigma^z + \omega b^{\dagger} b + i g^y \sigma^y (a - a^{\dagger})$$

<u>Ultra-strong coupling with 1st order SW</u>

Summary of qubit-qubit and qubit-resonator

- Using theory and numeric Schreiffel-Wolf for capacitive and inductive couplings:

$$\mathbf{H} = \Delta \sigma^z + \omega b^{\dagger} b + i g^y \sigma^y (a - a^{\dagger})$$

<u>Ultra-strong coupling with 1st order SW</u>

Summary of qubit-qubit and qubit-resonator

- Using theory and numeric Schreiffel-Wolf for capacitive and inductive couplings:

$$\mathbf{H} = \Delta \sigma^z + \omega b^{\dagger} b + i g^y \sigma^y (a - a^{\dagger})$$

<u>Ultra-strong coupling with 1st order SW</u>

$$J^{cap}(\sigma_1^y \sigma_2^y \pm \sigma_1^z \sigma_2^z) + (J^{cap}_{xx} + J^{JJ}_{xx})\sigma_1^x \sigma_2^x$$
- Strong and Non-Stoquastic couplings

Summary of qubit-qubit and qubit-resonator

- Using theory and numeric Schreiffel-Wolf for capacitive and inductive couplings:

$$\mathbf{H} = \Delta \sigma^z + \omega b^{\dagger} b + i g^y \sigma^y (a - a^{\dagger})$$

<u>Ultra-strong coupling with 1st order SW</u>

$$J^{cap}(\sigma_1^y \sigma_2^y \pm \sigma_1^z \sigma_2^z) + (J^{cap}_{xx} + J^{JJ}_{xx})\sigma_1^x \sigma_2^x$$
- Strong and Non-Stoquastic couplings

- Future work: similar technics to understand effective qubits coupling in other setups

Hita-Pérez, Jaumá, Pino, García-Ripoll PRApp (2022), Hita-Pérez, Jaumá, Pino, García-Ripoll. Appl. Phys. Lett (2021)

- We have not gotten full tuneable two directions qubit couplings

- We have not gotten full tuneable two directions qubit couplings
 - Non-stoquastic, yes, but what about universal quantum computing?

- We have not gotten full tuneable two directions qubit couplings
 - Non-stoquastic, yes, but what about universal quantum computing?
- Coupled flux-qubit simulated with Monte-Carlo, no-matter sign-problem in qubit base!

- We have not gotten full tuneable two directions qubit couplings
 - Non-stoquastic, yes, but what about universal quantum computing?
- Coupled flux-qubit simulated with Monte-Carlo, no-matter sign-problem in qubit base! (A. Ciani B. M. Terhal. PRA 2021) and (Halverson, I. Hen PRA 2021):

- We have not gotten full tuneable two directions qubit couplings
 - Non-stoquastic, yes, but what about universal quantum computing?
- Coupled flux-qubit simulated with Monte-Carlo, no-matter sign-problem in qubit base! (A. Ciani B. M. Terhal. PRA 2021) and (Halverson, I. Hen PRA 2021):
 - This should not apply to our circuits of 3JJ. We are working on this

- We have not gotten full tuneable two directions qubit couplings
 - Non-stoquastic, yes, but what about universal quantum computing?
- Coupled flux-qubit simulated with Monte-Carlo, no-matter sign-problem in qubit base! (A. Ciani B. M. Terhal. PRA 2021) and (Halverson, I. Hen PRA 2021):
 - This should not apply to our circuits of 3JJ. We are working on this

- Another way to induce complexity via the couplings.

- We have not gotten full tuneable two directions qubit couplings
 - Non-stoquastic, yes, but what about universal quantum computing?
- Coupled flux-qubit simulated with Monte-Carlo, no-matter sign-problem in qubit base! (A. Ciani B. M. Terhal. PRA 2021) and (Halverson, I. Hen PRA 2021):
 - This should not apply to our circuits of 3JJ. We are working on this

- Another way to induce complexity via the couplings.

- We have not gotten full tuneable two directions qubit couplings
 - Non-stoquastic, yes, but what about universal quantum computing?
- Coupled flux-qubit simulated with Monte-Carlo, no-matter sign-problem in qubit base! (A. Ciani B. M. Terhal. PRA 2021) and (Halverson, I. Hen PRA 2021):
 - This should not apply to our circuits of 3JJ. We are working on this

- Another way to induce complexity via the couplings. See next

- Let's forget Universal Quantum Computing, it is too difficult. Only "simpler" models

Graph of connections in quantum annealers

- Let's forget Universal Quantum Computing, it is too difficult. Only "simpler" models

 $H = sH_{p} + (1 - s) \sum \sigma_{i}^{z}$ $H_{P} = \sum \Delta_{i}\sigma_{i}^{x} + \sum J_{ij}\sigma_{i}^{x}\sigma_{j}^{x}$

- We anneal the final Hamiltonian to get the ground state ${
m H}_P$

- Let's forget Universal Quantum Computing, it is too difficult. Only "simpler" models

 $H = sH_{p} + (1 - s) \sum \sigma_{i}^{z}$ $H_{P} = \sum \Delta_{i}\sigma_{i}^{x} + \sum J_{ij}\sigma_{i}^{x}\sigma_{j}^{x}$

- We anneal the final Hamiltonian to get the ground state ${
 m H}_P$
 - 1D nearest-neighbours --- > Trivial

- Let's forget Universal Quantum Computing, it is too difficult. Only "simpler" models

 $H = sH_{p} + (1 - s) \sum \sigma_{i}^{z}$ $H_{P} = \sum \Delta_{i}\sigma_{i}^{x} + \sum J_{ij}\sigma_{i}^{x}\sigma_{j}^{x}$

- We anneal the final Hamiltonian to get the ground state ${
m H}_P$

1D nearest-neighbours --- > Trivial

Fully connected --- > Spin-glass (NP-hard)

A. D. King, ... Amin (2023), Computational supremacy in quantum simulation (2024)

- Try to look for spin-glasses not fully connected:

Non-complanar qasi-2D graphs

- Spin-glass state at T=0. Fernandez et al JPA (2019) Low-energy may be easy to approxmate
- Chimera, Pegasus, Zaphyr (d-wave graphs)

Mean field glasses $D{\approx\infty}$

- Random regular graphs
- Small-world networks Katzgraber PRAPP(2018)

- Is there any change to obtain classically difficult problems in a 2D Ising? Yes!

- Is there any change to obtain classically difficult problems in a 2D Ising? Yes!

- Is there any change to obtain classically difficult problems in a 2D Ising? Yes!

Time to perform Paralell Tempering "exploit" below the pseudo-critical temperature

Look for higher pseudo-critical temperature! Jaumá, García-Ripoll, Pino. Adv. Quant. Tech. (2023)

- Noise may not be the limiting factor in quantum computer hardware

- Noise may not be the limiting factor in quantum computer hardware

- Quantum hardware is limited by the available form and range of qubit connections

- Noise may not be the limiting factor in quantum computer hardware
- Quantum hardware is limited by the available form and range of qubit connections
 - Move from mproving 1qubit lifetime to improve couplings!

- Noise may not be the limiting factor in quantum computer hardware

- Quantum hardware is limited by the available form and range of qubit connections
 - Move from mproving 1qubit lifetime to improve couplings!
- Two paths for quantum advantages in Adiabatic Quantum Computing

- Noise may not be the limiting factor in quantum computer hardware
- Quantum hardware is limited by the available form and range of qubit connections
 - Move from mproving 1qubit lifetime to improve couplings!
- Two paths for quantum advantages in Adiabatic Quantum Computing
 - General form of qubit couplings (Non-stoquastic)

- Noise may not be the limiting factor in quantum computer hardware
- Quantum hardware is limited by the available form and range of qubit connections
 - Move from mproving 1qubit lifetime to improve couplings!
- Two paths for quantum advantages in Adiabatic Quantum Computing
 - General form of qubit couplings (Non-stoquastic) We worked to analyze and understand capacitive couplings in flux qubits

- Noise may not be the limiting factor in quantum computer hardware
- Quantum hardware is limited by the available form and range of qubit connections
 - Move from mproving 1qubit lifetime to improve couplings!
- Two paths for quantum advantages in Adiabatic Quantum Computing
 - General form of qubit couplings (Non-stoquastic) We worked to analyze and understand capacitive couplings in flux qubits
 - Long-range but simpler qubit couplings (spin-glasses)

- Noise may not be the limiting factor in quantum computer hardware
- Quantum hardware is limited by the available form and range of qubit connections
 - Move from mproving 1qubit lifetime to improve couplings!
- Two paths for quantum advantages in Adiabatic Quantum Computing
 - General form of qubit couplings (Non-stoquastic) We worked to analyze and understand capacitive couplings in flux qubits
 - Long-range but simpler qubit couplings (spin-glasses) Our work shows that planar graphs connections may be usefull

The end

.

.

- First order work up to ultra-strong coupling!

- First order work up to ultra-strong coupling!

- First order work up to ultra-strong coupling!

Hita-Pérez, Jaumá, Pino, García-Ripoll PRApp (2022)

- First order work up to ultra-strong coupling!

Hita-Pérez, Jaumá, Pino, García-Ripoll PRApp (2022)

Different conclussion in Yoshiara, ... Semba Nat. Comm. (2022)

Numerical results for coupling extracted with full SW transformation Hita-Pérez, Jaumá, Pino, García-Ripoll PRApp (2022),

- <u>First order does not work</u>! Diagrams

Hita-Pérez, Jaumá, Pino, García-Ripoll PRApp (2022)

- We compute spin-glass phase transition via Paralell Tempering

- There is no phase spin-glass in D-wave lattice

Are D-wave lattice very bad!? Katzgraber, et al. PRX (2015) Additional problems, temperature Chaos. Martin-Mayor et al. Sci. Rep. (2015)