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From building blocks, we design qubits and connections

What are bottleneck in superconducting hardware? How to overcome them?

What it this talk about?
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- R. A. Mencía, … Manucharyan
ArXiv:2403.16780 (2024)

- W. Ardati, … N. Roch 
ArXiv:2402.0449 (2024)

Brick: superconducting qubit

- I like flux and fluxonium qubits:

- Hita-Pérez, Orellana, 
García-Ripoll M. Pino PRA (2023)

 Flux qubits 

- Orlando, Mooij,... Mazo 
PRB (1999)  

- F. Yan, …. W. D. Oliver
 Nat. Comm (2016)
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- Gate model 

- Solovay-Kitaev theorem
(Kitaev 1997, Solovay 1995)

- Universal set of gates 
{CNOT + 1qRotations} 
A. Barenco, et al., PRA (1995)

- We need minimum complexity for qubit-qubit interactions! For instance:

  This is all about the first part of the talk: Strength and form of qubit-qubit couplings

- Adiabatic quantum computing:

- Hamiltonian with two body interactions 
(Julia Kempe, Alexei Kitaev & Oded Regev )

- Minimal form of 2 qubit coupling
(Biamonte, Love 2008, ...)
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Goal: Flux qubits with complex couplings
     

Qubit-qubit:

Strong coupling
Quantum Monte-Carlo suffers sign problem (non-stoquastic)

Qubit-resonator: 

New phenomena for LC-qubit strongly coupled in two directions

Harris et. al. (D-wave) PRB (2009)
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Charge-charge coupling

- Does this projections work well? Sure for small coupling. For larger, Schreiffel-Wolf:  

Qubit-resonator coupling. YES! Qubit-qubit coupling. NO! – > Need to sum up full series 
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- At strong coupling
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Summary of qubit-qubit and qubit-resonator

- Using theory and numeric Schreiffel-Wolf for capacitive and inductive couplings:

Ultra-strong coupling with 1st order SW

- Strong and Non-Stoquastic couplings

Hita-Pérez, Jaumá, Pino, García-Ripoll PRApp (2022), 
Hita-Pérez, Jaumá, Pino, García-Ripoll. Appl. Phys. Lett (2021) 
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- Future work: similar technics to understand effective qubits coupling in other setups
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Summary of qubit-qubit and qubit-resonator

- Non-stoquastic, yes, but what about universal quantum computing?

- Coupled flux-qubit simulated with Monte-Carlo, no-matter sign-problem in qubit base!
   (A. Ciani B. M. Terhal. PRA 2021) and (Halverson, I. Hen PRA 2021):

- This should not apply to our circuits of 3JJ. We are working on this

- Another way to induce complexity via the couplings. See next
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- We anneal the final Hamiltonian to get the ground state of 

  
      1D nearest-neighbours --- > Trivial  

Fully connected --- >  Spin-glass (NP-hard)

A. D. King, … Amin (2023),  Computational supremacy in quantum simulation (2024)
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- Try to look for spin-glasses not fully connected:

Non-complanar qasi-2D graphs

- Spin-glass state at T=0.   Fernandez et al  JPA (2019)

   Low-energy may be easy to approxmate

- Chimera, Pegasus, Zaphyr (d-wave graphs)

Mean field glasses               

- Random regular graphs 

- Small-world networks    
   Katzgraber PRAPP(2018)
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- Is there any change to obtain classically difficult problems in a 2D Ising? Yes!

Time to perform Paralell Tempering “exploit” below the pseudo-critical temperature

Look for higher pseudo-critical temperature!  Jaumá,  García-Ripoll,Pino. Adv. Quant. Tech. (2023)
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-  Noise may not be the limiting factor in quantum computer hardware

- Quantum hardware is limited by the available form and range of qubit connections

- Move from mproving 1qubit lifetime to improve couplings!

- Two paths for quantum advantages in Adiabatic Quantum Computing

- General form of qubit couplings (Non-stoquastic)
   We worked to analyze and understand capacitive couplings in flux qubits 

- Long-range but simpler qubit couplings (spin-glasses)
  Our work shows that planar graphs connections may be usefull
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The end
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- First order work up to ultra-strong coupling!
 
Hita-Pérez, Jaumá, Pino, García-Ripoll PRApp (2022)

Different conclussion in Yoshiara, … Semba Nat. Comm. (2022) 



Numerical Analisis of qubit-qubit

Numerical results for coupling extracted with full SW transformation
Hita-Pérez, Jaumá, Pino, García-Ripoll PRApp (2022),  

- First order does not work! Diagrams

Hita-Pérez, Jaumá, Pino, García-Ripoll PRApp (2022)- Strong coupling
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- We compute spin-glass phase transition via Paralell Tempering

Mean field glasses Non-complanar 2D graphs D-wave

- There is no phase spin-glass in D-wave lattice 

  Are D-wave lattice very bad!?  Katzgraber, et al. PRX (2015)
  Additional problems, temperature Chaos. Martin-Mayor et al. Sci. Rep. (2015)
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