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Diverse set of systems and interactions



Goal: to control LARGE quantum systems

Issue: they are all fundamentally open systems



From a fundamental perspective, systems are always coupled to an environment

vacuum fluctuations cannot be switched off



Vacuum fluctuations generate coherent dynamics, exploited for metrology, 
computing, and sensing applications

Hutson et al., Science 383, 384 (2024)

Cooperative Lamb shifts in a lattice 

Bornet et al., Nature 621, 728 (2023) 
related work (same issue of Nature):  Eckner et al., Franke et al.

Spin squeezing in a Rydberg atom array

However, they also mediate long-range dissipative interactions, leading to correlated decay



as a foe…

The role of correlated dissipation:

as a friend…

Nat. Phys. 19, 1345 (2023)

• Driven-dissipative out-of-equilibrium phase transitions

• New light sources (particularly useful for metrology)

• correlated errors for QC 

Phys. Rev. X 12, 021049 (2022)

• reduced coherence times for metrology, 
quantum simulation…

• To prepare dark (and potentially useful) states



Many-body quantum optics: coherence by dissipation

Roy Glauber 
Nobel prize “for […] the quantum 

theory of optical coherence”

~dissipation

“Irreversibility […] leads to coherence,  
to effects that encompass billions and billions 
of particles”

Ilya Prigogine  
Nobel prize “for […] the theory of 
dissipative structures”

“[…] all of the delicate and ingenious 
techniques of optics are exercises in the 

constructive use of noise”
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Ordered atomic arrays have appeared as a new platform in QO

cavity QED

what is new in these systems?  
how should we describe them?



Recent experimental work on quantum optics with atomic arrays

2D atomic array as a perfect mirror

Rui et al., Nature 583, 369 (2020) M. Zanner et al., Nat. Phys. 18, 538 (2022)

Coherent driving of multi-qubit dark state

+ recent preliminary results by the Greiner group on many-body superradiance in an Erbium lattice



Lecture plan

Lecture 1 - Spin model: spontaneous emission, theoretical description, approximations

Lecture 2 - Few excitation physics: super- and sub-radiance, selective radiance, applications

Lecture 3 - Many body physics: some adventures in the deep(er) Hilbert space



Lecture 1

Setting up the stage

Spin model



Examples of “two-level” systems/spins

SC qubits (transmons)

from J. Knoll thesis, ETH (2022)

NV centers in diamond

from J. Mater. Chem. C 10, 13533 (2022)

Neutral atoms

https://doi.org/10.1039/2050-7534/2013


Examples of environments/baths

Electromagnetic vacuum (3D free space)

Electromagnetic vacuum (engineered)

Li, Marino, Chang, Flebus, arXiv: 2309.08991 (2023)

(potentially-interacting) magnon bath, Yttrium Iron Garnet (YIG) film

Magnetic bath or other collective 
excitation in a material
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Barredo et al., Science 354, 1021 (2016)

Endres et al., Science 354, 1024 (2016)



As system is coupled to the environment, dynamics is no longer of Hamiltonian

Pure state Density operator

Schrödinger equation Master equation

Minimal toy model: spins/qubits/“two-level atoms”

no thermal excitation of excited state, we can take T=0

Setting up the stage: a few basics

at room T (otherwise, cool bath)



excited-state population

time

1

0

“jump operator”

photon

• Stochastic process of photon emission driven by vacuum fluctuations

• Photons are detected in random directions, with an average dipole pattern

Phenomenology: spontaneous emission from a single atom



excited-state population

time

1

0

• Stochastic process of photon emission driven by vacuum fluctuations

• Photons are detected in random directions, with an average dipole pattern

Phenomenology: spontaneous emission from a single atom



excited-state population

time

1

0

spontaneous emission rate 
(determined by environment)
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• Stochastic process of photon emission driven by vacuum fluctuations

• Photons are detected in random directions, with an average dipole pattern

Phenomenology: spontaneous emission from a single atom



Decay properties are dictated by the environment (Purcell)

environment: vacuum

spontaneous 
emission rate in 

vacuum 

vacuum Green’s function



environment: vacuum+mirror

spontaneous 
emission rate

total Green’s function

Decay properties are dictated by the environment (Purcell)



Atom-atom interactions are also dictated by the environment

environment: cavity, all to all-interactions

“bad cavity” limit of cavity QED 
permutational symmetry makes problem “easy”



environment: vacuum, power-law interaction range

interactions depend on distance,  
permutational symmetry is broken 

interference in photon emission and absorption gives rise to non-trivial phenomena

Atom-atom interactions are also dictated by the environment



Lecture 1

Setting up the stage

Spin model



Conventional derivation of the master equation

normal modes  
of EM field (or bosonic excitations 

that mediate interactions)

light-matter coupling 
(field x dipole)

matter Hamiltonian

Under Born-Markov approximation, we integrate out the photonic degrees of freedom:

see for instance Howard Carmichael’s textbook

Lindblad superoperator
• only depends on spin degrees of freedom

• coefficients depend on “bath” correlators 
of the type

master equation 

Problem scales poorly…. dimension of Hilbert space=2Nxdimension Hilbert space of bath dof



When is this valid?

• No retardation (resulting equation is time local)

• Weak coupling (perturbative):

• Memory-less reservoir (akin to broadband). Consider for instance a cavity:

narrow, single mode, Jaynes-Cummings type multimode, broad



Alternatively, solve EM problem first, take care of QM later

• Previous approach is fine if only a few modes are relevant or if dielectric environment is simple

• However, what happens in more complicated reservoirs?

SC waveguide, 
Painter (2019)

nanofiber 
Laurat (2015)

NV in diamond waveguide, Lukin (2016)

photonic crystal, Kimble (2016)

• Solution: quantization in terms of Green’s functions (propagator of EM field)



Propagator of the EM field: Green’s function

pump field scattered field

EM Green’s function

Let’s consider an ensemble of driven classical dipoles. 
The field at dipole i is:

The Green’s tensor is the fundamental solution of the wave equation in the 
medium (obtained from Maxwell’s equations):

boundary conditions

One can write the classical Hamiltonian as (hand wavy!):



Promoting fields to operators

Atoms couple to the EM field via their dipole moment. Since:

dipole matrix elementpositive frequency component 
of field operator

Promoting fields to operators, we find an input-output equation (in time t for spins):

*classical and quantum fields 
propagate identically

Markov approximation

Pretty tempting to do: *not correct, missing parts of 
the evolution!

for rigorous procedure, see extensive work of Welsch, Buhmann et al., for instance Buhmann’s “Dispersion forces”



Spin model in terms of Green’s functions

with:

Starting from spins+field Hamiltonian (in terms of Green’s functions) and integrating out we find a Lindblad master 
equation for the spins:

XY model, but (potentially) long-ranged and open

Arbitrary complications can be incorporated, complex internal structure, non-reciprocal/chiral baths, 
inhomogeneous broadening, etc.

coherent term dissipation

Green’s function is analytical if there is enough symmetry… worst case scenario: numerical solver

see AAG et al, PRX 7, 031024 (2017) 



Li, Marino, Chang, Flebus, arXiv: 2309.08991 (2023)

Similarly, for NV centers coupled to a ferromagnetic bath

correlated absorption

Green’s function can be obtained for other baths via 2-point correlation functions:



Non-Hermitian Hamiltonian and quantum trajectories

We can rewrite the master equation as:

original work on quantum trajectories by Carmichael, and Dalibard, Castin, Molmer

For a single atom:

spontaneous emission rate=local imaginary part of Gf. 
 (+Lamb shift, here taken to zero)

Non-Hermitian Hamiltonian:

system evolve due to acquisition of information 
due to negative measurement population recycling term (quantum jumps)



Recovering the field via input-output equations

Even though we have integrated out photons, we can recover field correlation functions via input-ouput equations

Arbitrary order field correlation functions become correlation function of spin operators



In summary: light-matter interactions as a spin model



Described by a spin model with 
dynamics governed 
by a Lindblad master equation

conserves number of excitations

In summary: light-matter interactions as a spin model



Described by a spin model with 
dynamics governed 
by a Lindblad master equation

conserves number of excitations

In summary: light-matter interactions as a spin model

Eigenvalues  
(collective transition rates)

collective jump operator



Take-home messages and some observations from Lecture 1

• Vacuum fluctuations give rise to interactions between spins

• Different boundary conditions/environments give rise to very different interactions

• all-to-all, long-range, short range

• dissipative vs coherent

• This dramatically impacts the physics, both single-particle (“linear optics”) and many-body

• Emergent behavior: for “close enough” spins, physics is that of a strongly-interacting 
out-of-equilibrium problem
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Recent experimental work on quantum optics with atomic arrays

2D atomic array as a perfect mirror

Rui et al., Nature 583, 369 (2020) M. Zanner et al., Nat. Phys. 18, 538 (2022)

Coherent driving of multi-qubit dark state



Recap from lecture 1: light-matter interactions as a spin model



Described by a spin model with 
dynamics governed 
by a Lindblad master equation

conserves number of excitations

Recap from lecture 1: light-matter interactions as a spin model



Described by a spin model with 
dynamics governed 
by a Lindblad master equation

conserves number of excitations

Eigenvalues  
(collective transition rates)

collective jump operator

Recap from lecture 1: light-matter interactions as a spin model



Recap: non-Hermitian Hamiltonian and quantum trajectories

We can rewrite the master equation as:

Non-Hermitian Hamiltonian:

system evolves due to acquisition of 
information from negative measurement

population recycling term 
(quantum jumps)

photon counts

time

Excitation conserving: Excitation conserving (block-diagonal in excitation sector) 

Quantum trajectories: evolution of pure state with non-Hermitian H and stochastic application of jumps



Lecture 2

Atomic arrays in free space and waveguide QED

Few-excitation sector: super- and sub-radiance

Selective radiance and applications



Green’s function between spins in free space (or bulk medium)

dipole matrix element

Dissipative matrix elements (in 3D vacuum):D=1

D=2

D=3
Single-spin decay rate: 

Lamb shift: (technically diverges, yields 
resonance frequency renormalization)



Γ1D

Γ’Green’s function between spins in 1D vacuum (wQED)

Single-spin decay rate: 

Field does not decay, only relative distance matters (accumulated phase)

Lamb shift: 

Despite looking different, free space and wQED are similar. Non-negligible H, several collective jump operators



Simplest limit (of both situations): d       0

2 spins, single excitation:

2 spins, two excitations:

2 spins, zero excitations:

non-Hermitian H becomes quite trivial:

destructive interference (dark)



Generalizing to arbitrary number of excitations

schematics of possible trajectories in Hilbert space

with permutational symmetry in extended systems

~N2Γ0

trapped in dark states



Accessing dark states via decay in extended atomic ensembles

Storage and release of subradiant 
excitations in a cloud

Ferioli et al., PRX 11, 021031 (2021) 
Featured in Physics

Henriet et al., PRA 99, 023802 (2019)

Power-law behavior



Generalizing to arbitrary number of excitations

schematics of possible trajectories in Hilbert space

with permutational symmetry in extended systems

~N2Γ0

trapped in dark states

what to do in this mess?  
study single-excitation states!
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Selective radiance and applications



(b)
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Dispersion relation
d z

e
g

d

Collective modes of an infinite 1D chain (single excitation sector)

Non Hermitian Hamiltonian:

For an infinite chain, we diagonalize the Hamiltonian in momentum space via spin waves:

dispersion relation 
and decay rate of spin wave

Creation operator: such that:



(b)

(a)

Dispersion relation
d z

e
g

d

Collective modes of an infinite 1D chain (single excitation sector)

Dispersion relation of spin wave:
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Collective modes of an infinite 1D chain (single excitation sector)
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Scaling of dark states for a finite chain
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2D: Patti et al.,  
PRL 126, 223602 (2021)

Ring: Holzinger et al.,  
PRL 124, 253603 (2020)

3D: Brechtelsbauer and Malz, 
Phys. Rev. A 104, 013701 (2021)

1D+dimer: Castell-Graells et al., 
Phys. Rev. A 104, 063707 (2021)

“Atomic-waveguide” QED

(b)

(a) e

d z

g e
g

d

array as a bath:

Masson & AAG, PRR 2, 043213 (2020)



Brillouin zone of 2D arrays,  
showing divergences at the light line

AAG et al., PRX 7, 031024 (2017)

Decay of rates of spin waves in 2D arrays and in wQED

Brillouin zone of 1D arrays,  
coupled to 1D waveguide

Albrecht et al., NJP 21, 025003 (2019)




Two-excitation states in chains: revealing their spin nature

| i / S†|gi⌦N =
NX

i=1

ci|eii

Consider subradiant excitation (with decay 1/N3)

Most subradiant eigenstate of Heff in the 2-ex sector 
is “fermonic”. Ansatz:

| (2)i =
NX

i,j=1

cij |eieji

atom position
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Pauli exclusion principle in space

AAG et al., PRX 7, 031024 (2017)



Two-excitation states in chains: revealing their spin nature

| i / S†|gi⌦N =
NX

i=1

ci|eii

Consider subradiant excitation (with decay 1/N3)

Most subradiant eigenstate of Heff in the 2-ex sector 
is “fermonic”. Ansatz:

| (2)i =
NX

i,j=1

cij |eieji

2-excitation “zoology”

Zhang & Molmer, PRL 122, 203605 (2019)

AAG et al., PRX 7, 031024 (2017)
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Problem: how to access dark states and exploit their properties?

States are dark, do not couple directly to photons in the bath they are dark to. Options:

Two drive fields to overcome momentum mismatch

PRA 104, 033718 (2021) PRL 125, 213602 (2020)

Add additional bath, “selective radiance”

-



Optical depth: figure of merit for performance of protocols

Recall Susanne Yelin’s talk on the “perfect” mirror. Let’s do a trivial example with a waveguide:

Γ1D

Γ’

From input-output plus steady state equation for coherence operator (from Heff) the reflectance on resonance is:

with:



Optical depth: figure of merit for performance of protocols

Recall Susanne Yelin’s talk on the “perfect” mirror. Let’s do a trivial example with a waveguide:

Γ1D

Γ’

From input-output plus steady state equation for coherence operator (from Heff) the reflectance on resonance is:

with:

Fidelity of many quantum protocols (gates, memories, etc) determined by optical depth



Optical depth: figure of merit for performance of protocols

Recall Susanne Yelin’s talk on the “perfect” mirror. Let’s do a trivial example with a waveguide:

Key assumption: emission to free space is uncorrelated. But if we harness selective radiance:

Fidelity of many quantum protocols (gates, memories, etc) can be improved beyond conventional bounds!



Example: exponential improvement of a quantum memory
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Example: exponential improvement of a quantum memory
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Examples of improved light-matter interfaces and applications

PRA 104, 033718 (2021)

Quantum non-linear optics: Photon-photon gates

PRL 127, 263602 (2021) 

Free-space memories

 Nat. Phys. 16, 676 (2020).  Nat. Phys. 19, 714 (2023)

Inf
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Atom number

~(log(N)/N)2

<λ
0

detection 
mode

control field

0

4x4 array ~ fidelity>99.9%

 NJP 21, 025003 (2019)



Overcoming subwavelength-lattice-constant requirement



Take-home messages and some observations from Lecture 2

• Subradiant states are protected from decay

• Selective radiance gives rise to improved light-matter interfaces

• However:

• dark states are not very robust 

• how to access them or harness selective radiance is not exactly trivial

• how to harness multi-excitation dark states is quite unknown



Columbia University

Quantum optics with spins: from 
single-excitation to many-body physics

Ana Asenjo-Garcia

Lecture 3



Described by a spin model with 
dynamics governed 
by a Lindblad master equation

conserves number of excitations

Recap from lecture 1: light-matter interactions as a spin model



Described by a spin model with 
dynamics governed 
by a Lindblad master equation

conserves number of excitations

Eigenvalues  
(collective transition rates)

collective jump operator

Recap from lecture 1: light-matter interactions as a spin model



Recap from lecture 2: evolution in Hilbert space

schematics of possible trajectories in Hilbert space

with permutational symmetry in extended systems

~N2Γ0

yesterday:  
study of single 
excitation sector



(b)

(a)

Dispersion relation
d z

e
g

d
Brillouin zone of 2D arrays,  

showing divergences at the light line

AAG et al., PRX 7, 031024 (2017)

Recap from lecture 2: Emergence of bright and dark states
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Alternatively: explore “few hole” sectors

schematics of possible trajectories in Hilbert space

with permutational symmetry in extended systems

~N2Γ0

what happens if we start 
the dynamics from here?



Many-body superradiance in extended systems (L>>λ0)

2.0

1.5

1.0

0.5

2.01.51.00.0 0.5
0.0

16 atoms, d=0.1λ0

• Computing exact dynamics only possible for 
few spins

• Studying what happens at short times we find 
a minimal condition for a burst:

• Coherence develops by dissipation (akin to 
transient synchronization)

Masson & AAG, Nat. Comm. 13, 2285 (2022) notion of magnetic avalanches in molecular nano 
magnets (Sarachik, Chudnovsky & Garanin)



schematics of possible trajectories in Hilbert space

with permutational symmetry in extended systems

~N2Γ0

however, what 
happens here?

Understanding the dynamics of open many-body systems 
remains a theoretical challenge

+ dynamics

+ many-body

+ long-range interactions

+ open, out of equilibrium

~ hard

Approximation methods have been developed (cumulants, 
phase space methods, etc) but are of limited applicability



All quantum systems are open. We need to understand correlated decay

Nat. Phys. 19, 1345 (2023)

• Out-of-equilibrium (driven-dissipative) phases

• New light sources (particularly useful for metrology)

• correlated errors for QC 

• reduced coherence times for metrology, 
quantum simulation…

properties of phases and thresholds depend on N

Hutson et al., Science 383, 384 (2024)

so many types of qubits, baths, applications!



Today’s lecture:  
what is the maximal decay rate of a quantum system?

Goal: to find scaling laws for correlated decay with system size (N=number of particles)

Hypothesis: the environment and arrangement of particles will affect the scaling

Result: simple, universal scaling laws that can be obtained for a broad class of (Markovian) systems… “easily”

D. Mok, A. Poddar, E. Sierra, C. Rusconi, J. Preskill, AAG, arXiv:2406.00722 (2024)



Generic systems: mapping to a ground-state problem

Scaling laws for atom arrays in free space

“Bonus”: other results, interesting problems



What is the maximum decay rate of a quantum system?

Let’s consider a generic, Markovian,  
many-body dissipative system



NxN matrix      is positive semidefinite  
to ensure evolution as a CPTP map

What is the maximum decay rate of a quantum system?

Let’s consider a generic, Markovian,  
many-body dissipative system

Described by a 
spin model with dynamics governed 
by a Lindblad master equation

conserves number of excitations



Eigenvalues  
(collective transition rates)

What is the maximum decay rate of a quantum system?

Let’s consider a generic, Markovian,  
many-body dissipative system

Described by a 
spin model with dynamics governed 
by a Lindblad master equation

conserves number of excitations

(largest one is            )



What is the maximum decay rate of a quantum system?

Instantaneous decay rate of any state is

total excited state population

“auxiliary/dissipative” Hamiltonian

Finding the maximum decay rate      is equivalent to finding the ground state energy of 

Mok, AAG, Sum, Kwek, Phys. Rev. Lett. 130, 213605 (2023)



Independent (non-interacting) atoms Atoms all at the same point (very small volume)

Two trivial cases/limits:

(Dicke state at half excitation)

How do the environment, interaction range, and dimensionality (encoded in    ) change     ? 

What is the maximum decay rate of a quantum system?



• Finding the ground state of a 2-local Hamiltonian is QMA complete
J. Kempe, A. Kitaev, O. Regev, SIAM 35, 1070 (2006)

Mapping to a ground state problem

Exact diagonalization of                                         is unfeasible for more than a few atoms

• For atoms in free space, this is an XY model with long-range interactions with oscillating sign

Instead, we set bounds:

lower bound

upper bound:  
quantum approximation theory

upper bound:  
variational ansatz

lower bound:  
variational ansatz

If tight, we find scaling laws



Lower bound: variational ansatz

Product state ansatz:

if

sum of dissipative interactions

otherwise

For translationally invariant systems (with delocalized decay) a 
(better) variational ansatz yields:

largest eigenvalue of 



The XY Hamiltonian is traceless and 2-local. Its largest energy can be “well” approximated by a product state(*)   

The upper bound: quantum approximation algorithms

best product-state approximation

Let’s rewrite:

By the triangle inequality:

norm of diagonal Hamiltonian

(*) Bravyi et al. J Math Phys 60, 032203 (2019)

… 



Putting everything together: scaling laws

upper bound,  
quantum approximation theory:

lower bound,  
variational ansatz: for delocalized  

decay

For delocalized decay, and assuming Γmax scales with N, the bounds are tight: 

“universal” scaling law 



Universal scaling law

Intuition: Hamiltonian is 2-local and the reduced two-particle state is similar  
(~quantum deFinetti theorem)

• Scaling is not related to entanglement:  
a product state captures it, even though generically the true state is entangled

• In a cavity, the N2 scaling arises because of the all-to-all interactions, as 

• For non-interacting particles, 
and the maximal decay (per particle) does not grow with system size

C. M. Caves, C. A. Fuchs, and R. Schack, J. Math. Phys. 43, 4537 (2002)



Generic systems: mapping to a ground-state problem

Scaling laws for atom arrays in free space

“Bonus”: other results, interesting problems



Dissipative interactions of ordered atomic lattices in free space

dipole matrix element

Dissipative matrix elements (in 3D vacuum):

How does the largest eigenvalue, Γmax, scale with N for different D?

D=1

D=2

D=3



Finding the scalings analytically

Brillouin zone of an infinite 2D array,  
showing divergences at the light line

Dissipative matrix can be diagonalized in k-space.  
For 2D arrays

In summary (following the same idea):



Universal scaling laws for ordered atomic arrays

In summary, in the large N limit

• 1D arrays behave as non-interacting atoms

• Scaling is independent of lattice geometry, polarization, etc

• Robust to “reasonable” disorder



Framing the problem as a semidefinite program
d=0.4λ0

The problem of finding a lower bound (ground state of the 
classical XY model) can be mapped into a semidefinite 
program*, which can be solved efficiently. 

*see for instance Wang et al. arXiv:2310.05844 for a 
comprehensive discussion on SDPs
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N1.22

2D array

These scaling laws serve as upper bounds for superradiant emission

N2

The scaling is obtained for the total decay rate, which is identical to the integrated photon emission rate

Bounds can be violated directionally. But we can obtain new bounds for directional emission



Outlook and open questions

• Fully disordered systems, connection with random matrix theory

• Decay of “typical” (Haar-random) states is not superlinear

• Error correction: in 2D and above the error scales with system size

• Limit of the coherence time in metrology experiments (clocks, spin-squeezing)

The scaling laws set an upper bound to the decay rate of any state, in particular those achieved dynamically. 
What are the implications/next questions?

• Use of correlated decay to probe material’s properties/phase transitions



Generic systems: mapping to a ground-state problem

Scaling laws for atom arrays in free space

“Bonus”: other results, interesting problems
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“Dynamical” symmetry breaking due to many-body superradiance
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Only 2 collective jump operators: left and right Spontaneous (mirror) symmetry breaking gets dynamically amplified

- Nphoton imbalance, I = N
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Can we stabilize this order in the steady state? Superradiant lasing

Can we have coherent light (g(2)=1) and line narrowing without a cavity?

Is there a lasing phase transition?

What does order mean? Is there directionality?



Exact dynamics: harnessing partial permutation symmetry
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Collective transition quenching due to correlated decay

multiple competing channels 
that decay superrradiantly population density, n1/N
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joint work with Dariel Mok, Stuart Masson, Dan Stamper-Kurn, Tanya Zelevinsky… soon to appear on arXiv



Collective decay acts as a “catalyst” for photochemistry

all channels collective

number of molecules, N
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Some final take-home messages 

• We know almost nothing about the many-body regime

• Yarovslav’s question: What to diagonalize? Answer: needs to be informed by the physics!

• Great time to work on these topics (new theory results, experiments)

• Some interesting open problems: 

- new out-of-equilibrium phases in the presence of competing decay channels 
(is there order, what does order mean in this context?)

- applications: mirrorless lasing, collective transition quenching

- stabilization of many-body dark states

- spin squeezing/metrology in the presence of dissipation, etc.
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