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a simple but nontrivial model

e (General Hamiltonian

H = Z XX +Y.Y.,,+AZZ ) — Hxxy = (O’ UZ+1+hc)H

allows up-spins (particles)
to hop

o 1ot i i Kills processes that change
Ballistic energy transport due to integrability S

» Separate conservation of charge and DW'’s



a simple but nontrivial model

e General Hamiltonian

A — 00
H = Z (X Xiy1 + VYo + AZZ; ) — Hxxyz = 1(o; Uz+1 + h.c.)II

allows up- s,o/ns (part/c/es)
to hop

Kills processes that change

. : number of domain walls
« Separate conservation of charge and DW'’s

e ...l Ll TT1T1 ] ...cannot grow or shrink or break — so it’s stuck

 But a single flipped spinlike ... } | T | | ... can move around
freely

* Model is integrable:
Magnons move ballistically even at finite density

Magnons and frozen domains are separately conserved



why is there no ballistic spin transport?
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What happens when a small mobile domain hits a large immobile domain?

Ganahl et al., 2013

Small domain is stripped of spin, hence no ballistic spin transport (but still ballistic energy transport)

Large domain undergoes Brownian motion from repeated collisions



intuitive argument lor diffusion
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« Intime 7 a magnon “sees” a system of size x ~ ¢

80

. Positive and negative domains in this finite-size region cancel only up to a factor ~ 1/\/;

. Residual magnetization carried by quasiparticle: m% ~ 1/\/;

* Amount of magnetization transported:

(0 (

dr

V22

mz)?) ~ ~ vt

vt

SG, Vasseur, 2019



SG, Vasseur, 2019

away from large-A limit

 Domains of all sizes are (somewhat) mobile and contribute to transport
» Extracting domain size distributions is a nontrivial task, fortunately Bethe ansatz exists

ps ~ exp(—pus)/s®,  vs ~exp(—ns)/s, ms~ min(us*,s) (A = cos 1)

o Strategy: repeat previous calculation for all s

2.0

* Yields closed-form high-temperature diffusion constant

1.5}

2 sinh 1 «— s+ 2 S
D = E (14 s) | = . -
om = sinhns  sinhn(s+ 2) D o
 As Heisenberg point is approached, D ~ 1/\/A — 1 03|

* Only exactly known diffusion constant for interacting H

0.0
1

« But is this “conventional” diffusion? A\



full counting statisties (les)

* Single-site resolved projective measurement of all atoms
* Lots of data, need good summary statistics going beyond exp. vals.

* One way to organize the data: full counting statistics (fcs)
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full counting statistics (les)

e Single-site resolved projective measurement of all atoms
* Lots of data, need good summary statistics going beyond exp. vals.
 One way to organize the data: full counting statistics (fcs)

* EXxperimental protocol for fcs:

* Initialize two half-systems separated by a barrier, at (sharp) particle numbers

0 O
Or, Or
 Lower barrier and run the dynamics to time t, measure all particle positions

. This gives conditional distribution P(Q%, O} | Qp, O7)

. Compute particle transfer as P(Q% — OF — (Qp — O))
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measuring les in solid-state quantum systems

* Old idea (Levitov-Lee-Lesovik 1996): qubit coupled to
fluctuating field via H, , « ¢,J(X,)

* If the current is classical, qubit picks up phase

[

P(t) ~ J' dtJ(X, 7)

0

« (lassically, integrated current = charge transfer

* For guantum systems, can define fcs via this protocol

* Matches previous definition of fcs in 1D

e NV centers In diamond have been used as nanoscale
sensors in this mode



fes for conventional diffusion

« All cumulants of the charge transfer scale as \/;

From nonequilibrium initial condition, mean ~ \/;

Standard deviation ~ /4 equilibration over scale \/; fluctuations 4 / \/;

* Recent result (Mallick et al. 2022): Derrida-Gerschenfeld result rederived by solving
macroscopic fluctuation theory (MFT)

* Full distribution function follows from solving the fluctuating hydro equations with white noise

on=a. (D(n)dxn + /Dy g)

* Only cares about density-dependent transport/thermodynamic coefficients




how could this go wrong?

 Basic MFT thesis is that all fluctuations are set by density-dependent diffusion constant:

on=a. (D(n)dxn + /Dy g)

« Much of MFT is unchanged if D(n) is a smooth function of density
 Why would this ever fail?
* |n the XXZ model, the diffusion constant is infinite away from half filling

* Also nonintegrable models with this feature (e.g., graphene at charge neutrality)



xxz. at large polarization
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* Big immobile domain has intermittent collisions with magnons
* Domain edge undergoes random walk due to collisions

* Relation between domain motion and Q(t):
When the domain wall moves toward the origin, Q decreases

When the domain wall moves away from the origin, Q increases

« Domain wall starts at the origin, so O(f) = | x(¢) | —
absolute value of displacement of a random walker
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xxz. at large polarization
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 Domain wall starts at the origin, so probability distribution of magnetization transfer is the absolute
value of a random walk

 Two implications:

Strongly skewed distribution

Mean and standard deviation scale the same way as \/;:
mean and variance scale with different powers

Main reason: not independent walkers, just one giant walker

cf. standard diffusive systems

particles equilibrate across a distance \/;

so distribution width is 1//1



crossovers near equilibrium state
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» At half filling, pattern of frozen domains that rigidly shifts whenever a magnon traverses the system

. The pattern moves by an amount ~ \/;; that region has net magnetization density 1/\ / \/; SO we recover
the conventional ¢!/*

 Anomalous probability distribution even here (not a gaussian!) — also seen in classical spin chains [Krajnik,
Prosen, llievski...] and derived in solvable classical automata

. Away from equilibrium, asymptotically approaches the polarized result, but on timescale t.(m) ~ 1/m*

« Note that the m — 0, — oo limits fail to commute



summary ol xxz model

o Solution generalizes to all | A | > 1 using the tools of generalized hydrodynamics (GHD)

* Two nontrivial distributions, corresponding to equilibrium and domain-wall initial states

* Equilibrium distribution has cusp; out-of-equilibrium distribution is skewed and its variance scales anomalously

* Extends to single-file diffusion, stochastic XNOR model, various other systems... (Krajnik, Prosen, llievski, Pasquier)

* One interpretation: shot noise is a way to count carrier charge, and the carrier charge here is infinite
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general case: three-mode hydrodynamies



hydro with a conserved energy current

. Continuity equation for energy: d,e + 0.¢p. = 0

. Continuity equation for energy current: d,¢p; + 0.q; = 0
. Constitutive relation for g;;: g; = Bed;; + ...

. Continuity equation for energy current, at Euler scale: 0,¢); + Bd.e = ...



hydro with a conserved energy current

. Continuity equation for energy: d,e + 0.¢p. = 0

. Continuity equation for energy current: d,¢; + 0.q;; = 0
. Constitutive relation for g;;: q; = Beo;; + ...

. Continuity equation for energy current, at Euler scale: 0,¢p; + Bd.e = ...

 These two equations describe sound waves; how do the sound waves couple to charge?



hydrodynamics ol charge

o Previously: d,e + 0., = 0, 0,¢; + Bd,e = 0 (at Euler scale)

« Continuity equation for charge: 0.n + 0,j. = 0

« Only Euler-scale term allowed in j; = ng,

. Away from states with particle-hole symmetry, 0j; ~ n,0¢;: particles carry energy + charge

* At charge neutrality this coupling is absent, so linearized hydro of charge is purely diffusive:
jo~=—Don+¢& + ...

* But nonlinear fluctuations matter, so general hydro is



hydrodynamie decoupling

» Effect of “Brownian coupling™:

» Fluctuations in ¢, are rapidly moving sound waves that
impart random kicks to n

lime

« Because n is slowly fluctuating these kicks on a particular
fluid element are effectively uncorrelated in time: Brownian
motion

* Nonlinearity reduces to tackling multiplicative noise with postion

ballistic correlations

(P(x, Dp(0)) ~ o6(x — vr)

 These correlations matter for FCS since all the particles
are feeling the same noise

* FCS exactly the same as in toy model (at “Euler scale”)



suminary

 Even systems with diffusive linear-response transport can have anomalous fluctuations (and
nonlinear transport)

* |[n 1D, FCS is a useful way to characterize this behavior: open Q, howtodo d > 1?

* Basic ingredient in anomalous fluctuations:
 Existence of some ballistic/drifting mode with thermal fluctuations

 (Generalizes to two-component Galilean fluids, and also to nonequilibrium systems with drift



