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Quantum fluctuations classical∼ e−S/ℏ ≪ 1 →

Cavity QED

Collective interactions

H ∼ (a + a†)∑
i

σx
i

S
ℏ

∼ 105

 Mean field classical dynamics→

Quantum effects are typically suppressed 
Small spins 

Strong but non-collective interactions

S

= (a + a†) Sx
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Jij = 0, JijJij = J2/N
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Conflicting couplings 
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T/
J

h/J
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PM

``Generic” phase transition Glass phase transition
Rugged free energy landscape
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(Quasi) ergodicity at short times

Effective temperature  of 
quick fluctuations

T1

Equilibration becomes slower 
with time (aging)

Energy barriers obstruct more ``flips” 
 Slow thermalization→

Effective temperature  for fluctuations 
over longer timescales

T2
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Spin glasses in solid state systems

Noble metals (Cu, Ag, Au) doped with transition metal ions 
(Fe, Mn, …)

RKKY coupling of moments      J(R) ∼
cos(2kf R + θ0)

(kf R)3

Figure: Binder ‘77

• Short range interactions 

• Lack of control 

• Only access to certain macroscopic quantites

From Mulder et al. ‘81

Peak of magnetic susceptibility
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For large spins ( )  direct imaging of spin configuration.S ∼ 105 →
Kroeze et al., arXiv:2311.04216 
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= η
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To solve for non-eq. dynamics 

Disordered systems are very complicated, but averaging makes life easier 

Write spins in terms of fermions                    σα = − iϵαβγψβψγ {ψα, ψβ} = δαβ (α, β = x, y, z)

Use non-equilibrium field theory



Quench dynamics

quenchi
f



Quench dynamics

Start from    | → ⟩ | → ⟩ … | → ⟩

Sudden change of coupling     gi → gf

paramagnet

``Ferromagnet”

g2/Δωc

η = M/N

ηc ∼ 0.1

paramagnet

spin glass

quenchi
f



Quench dynamics

Start from    | → ⟩ | → ⟩ … | → ⟩

Sudden change of coupling     gi → gf

paramagnet

``Ferromagnet”

g2/Δωc

η = M/N

ηc ∼ 0.1

paramagnet

spin glass

quenchi
f

Let’s try different spin sizes

Long lasting prethermal plateau 

Quantum fluctuation accelerate relaxation

Non-eq. Field theory



Quench dynamics

Benchmark with 

TWA for large S

Start from    | → ⟩ | → ⟩ … | → ⟩

Sudden change of coupling     gi → gf

paramagnet

``Ferromagnet”
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η = M/N

ηc ∼ 0.1
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quenchi
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Let’s try different spin sizes

Long lasting prethermal plateau 

Quantum fluctuation accelerate relaxation

Non-eq. Field theory
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Measurement

A×B A×B

Finite overlap
Q ≠ 0, SG

No net overlap
Q = 0, PM

Similar disorder pattern

Overlapping
spins

Non-overlapping
spins

Take two copies with the same profile 

of disorder.

Q(t) =
1
S2

⟨Sx
i,A(t)Sx

i,B(t)⟩c

How much do they look similar after 

evolution?

Quantum fluctuation can completely melt the 

spin glass (without cavity loss)
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The cavity side of the story

Loss rate of the cavity modes → κ

(∂tρ)loss = κ∑
α

(2aαρa†
α − {a†

αaα, ρ})

Loss is good, but not too much!

Playing with the cavity frequency

Dissipation vs interactions 

Both are stronger for slow photons

Photon Frequency

Glass Order

ωph ≈ ∆

Heating Coherent Photons

Resonant enhancement of spin 

glass order



Summary

•clean/controlled dynamics of SG vs solid state experiments  

(access to certain macroscopic quantities only/short range interactions - RKKY) 

•possibility to engineer tunable range interactions (from long to short) 

(open problems in theory of spin glasses) 

• role of (controlled) dissipation  

(moderate cavity loss helps SG formation) 

• tunable quantum fluctuations at the network nodes  

(un-thinkable in solid state) 

•quantum-to-classical crossover in a many body system  
   (in general: intractable/very few examples/ purely phenomenological) 

• broad applicability: programmable interactions & dissipation in c-QED 
with tweezers, correlated emission in atomic arrays, Rydbergs in cavities.


