QED with cooperative atom arrays

Susanne Yelin

Harvard University

SPICE workshop, June 18, 2024

Cooperative 2D arrays

Goals

• Use 2D array...

Goals

• Use 2D array...

Quantum optics with atomically thin materials

can have very strong optical response
optical response can be engineered

"atomic metasurfaces"

array of atoms

Shahmoon, Wild, Lukin, Yelin, PRL **118**, 113601 (2017) cf. Bettles, Gardiner, Adams, PRL **116**, 103602

array of atoms

Shahmoon, Wild, Lukin, Yelin, PRL **118**, 113601 (2017) cf. Bettles, Gardiner, Adams, PRL **116**, 103602

array of atoms

Complete Reflection!

for $a/\lambda = 0.2$ and $a/\lambda = 0.8$

> Shahmoon, Wild, Lukin, Yelin, PRL **118**, 113601 (2017) cf. Bettles, Gardiner, Adams, PRL **116**, 103602

array of atoms

$$\mathsf{E}_{out} = \mathsf{E}_0 \left(e^{ik_z z} + \mathsf{S} e^{ik_z |z|} \right)$$

$$\begin{split} \mathsf{E}_{\text{out}} &= \mathsf{E}_{0} \left(e^{\mathsf{i} k_{z} z} + \mathsf{S} e^{\mathsf{i} k_{z} |z|} \right) \\ \mathsf{S} &= -\frac{\mathsf{i}}{2} \frac{\gamma + \Gamma_{\text{coll}}}{\delta + \Delta_{\text{coll}} + \frac{\mathsf{i}}{2} \left(\gamma + \Gamma_{\text{coll}} \right)} \end{split}$$

where

$$\Delta_{coll} - \frac{1}{2}\Gamma_{coll} = \begin{array}{c} \text{dipolar interaction} \\ \text{between all atoms} \\ \end{array}$$

$$\begin{split} E_{out} &= E_0 \left(e^{ik_z z} + S e^{ik_z |z|} \right) \\ S &= -\frac{i}{2} \frac{\gamma + \Gamma_{coll}}{\delta + \Delta_{coll} + \frac{i}{2} \left(\gamma + \Gamma_{coll} \right)} \\ &\Rightarrow S = -1 \quad \text{for} \quad \delta + \Delta_{coll} = 0 \\ \Delta_{coll} - \frac{i}{2} \Gamma_{coll} = \begin{array}{c} \text{dipolar interaction} \\ \text{between all atoms} \end{array}$$

where

Shahmoon, Wild, Lukin, Yelin, PRL **118**, 113601 (201⁸7)

"Inside lightcone": volume where $\sqrt{k_x^2 + k_y^2} \le k_{vacuum}$

"Inside lightcone": volume where $\sqrt{k_x^2 + k_y^2} \le k_{vacuum}$

lattice constant a $<\lambda \Rightarrow$ lightcone is smaller than Brillouin zone

"Inside lightcone": volume where $\sqrt{k_x^2 + k_y^2} \le k_{vacuum}$

lattice constant a $<\lambda \Rightarrow$ lightcone is smaller than Brillouin zone

Dispersion relation of collective surface dipole excitations

\

Implementations
Examples:

Examples:

• atoms in optical lattice

Examples:

• atoms in optical lattice

Examples:

atoms in optical lattice

Examples:

atoms in optical lattice

solid state 2D semiconductors

Excitons in transition metal dichalcogenides (MoS₂, WSe₂, ...)

Excitons in transition metal dichalcogenides (MoS₂, WSe₂, ...)

Excitons in transition metal dichalcogenides (MoS₂, WSe₂, ...)

Application: Impurities and array QED

Impurity + Array???

Why?

Why?

• classical intuition: dipoles act like antenna arrays quantum explanation: impurity transition (slightly) outside of array resonance window \Rightarrow only virtual excitation of array atoms possible \Rightarrow excitation collects on impurity

Why?

• classical intuition: dipoles act like antenna arrays quantum explanation: impurity transition (slightly) outside of array resonance window \Rightarrow only virtual excitation of array atoms possible \Rightarrow excitation collects on impurity

Why?

• classical intuition: dipoles act like antenna arrays quantum explanation: impurity transition (slightly) outside of array resonance window \Rightarrow only virtual excitation of array atoms possible \Rightarrow excitation collects on impurity

Exchange population (coherently)

Question:

Question: How good is coupling between impurities vs decay into space?

Question:

How good is coupling between impurities vs decay into space?

Question: How good is coupling between impurities vs decay into space?

On-array quantum computer...

Control using 3 levels/EIT

Application: Metrology

Sandberg, Ostermann, Patti, Yelin arXiv:2406.07619 32

www.shutterstock.com · 285359852

Sandberg, Ostermann, Patti, Yelin arXiv:2406.07619 32

Metrology with array QED

 Can be described as non-Hermitian Hamiltonian

- Can be described as non-Hermitian Hamiltonian
- Nonlinear frequency dependence near (not at) a exceptional point

- Can be described as non-Hermitian Hamiltonian
- Nonlinear frequency dependence near (not at) a exceptional point

$$|c_1|^2 = \frac{\gamma_1 \gamma_2 |\kappa|^2}{2|S|^2} e^{-t\bar{\gamma}\Gamma_{\text{coop}}} \left[\cosh(2t \text{Im}(S)) - \cos(2t \text{Re}(S))\right]$$

- Can be described as non-Hermitian Hamiltonian
- Nonlinear frequency dependence near (not at) a exceptional point

Coupling
$$|c_1|^2 = \frac{\gamma_1 \gamma_2 |\kappa|^2}{2|S|^2} e^{-t\bar{\gamma}\Gamma_{\text{coop}}} \left[\cosh(2t \text{Im}(S)) - \cos(2t \text{Re}(S))\right]$$

- Can be described as non-Hermitian Hamiltonian
- Nonlinear frequency dependence near (not at) a exceptional point

- Can be described as non-Hermitian Hamiltonian
- Nonlinear frequency dependence near (not at) a exceptional point

Standard deviation of measurement

What about noise and errors?

Sandberg, Ostermann, Patti, Yelin arXiv:2406.07619

Sandberg, Ostermann, Patti, Yelin arXiv:2406.07619

Outlook:

• Direct comparison to cavity qed?

Sandberg, Ostermann, Patti, Yelin arXiv:2406.07619

Outlook:

- Direct comparison to cavity qed?
- Use isolated system to gauge measurement

Outlook:

- Direct comparison to cavity qed?
- Use isolated system to gauge measurement

Collaborators

Stefan Ostermann

Taylor Patti

Hanzhen Ma

Oriol Rubies Bigorda

Abigail McClain Gomez

Yidan Wang

Oliver Sandberg

Raphael Holzinger

\$\$\$: NSF (CUA, Q-SEnSE)), AFOSR, WellcomeLEAP

