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Quantum op/cs with atomically thin 
materials

➡ can have very strong op/cal response 
➡ op/cal response can be engineered 

“atomic metasurfaces”
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a ~ λ
for a/λ = 0.2 

and a/λ = 0.8

Simple example: Reflectivity

cooperative resonances

array of atoms

Shahmoon, Wild, Lukin, Yelin, PRL 118, 113601 (2017) 
cf. Bettles, Gardiner, Adams, PRL 116, 103602
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Dispersion relation of collective surface dipole excitations
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within light cone: couples 
to far-field (perpendicular) 
radiation  
⇒ emission from surface 

outside of light cone  
⇒ surface waves only
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Implementa/ons

Examples: 

• atoms in op/cal labce

• solid state 2D semiconductors

Rui et al., N
ature. 583, 369 (2020)
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Applica/on: 
Impuri/es and 

array QED
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Two interac/ng qubits?
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Exchange population (coherently)
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How good is coupling between impurities 
vs 

decay into space?



Excita/on exchange: Quality factor
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⌃SE =
X
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The self-energy is key to understanding impurity-lattice
interactions as it modifies the e↵ective frequency and de-
cay rate of the impurity to !E↵ = !I + Re[⌃SE] and
�E↵ = �I � 2Im[⌃SE], respectively. These equations
are valid as long as ⌃SE varies little on the interval
�LI + Re[⌃SE] ± �E↵, such that the electromagnetic re-
sponse of the lattice atoms with respect to �LI is approx-
imately constant compared to that of the impurity atom.
Under these same conditions, !E↵ � !L ⇡ �LI. We note
that ⌃SE can vary considerably over broad �E↵, such as
that of the orthogonal configuration near the band edge,
and in such cases non-Markovian analysis may be valu-
able [15, 48].

Fig. 2(a) displays �E↵ in the identical configuration.
Below !BE (red curve), �E↵ is enhanced as the impurity
couples to resonant lattice modes, particularly those in
the light cone. Above !BE, however, the linewidth of
these states is suppressed by orders of magnitude due to
destructive interference between the radiation of the im-
purity and o↵-resonant coupling with these modes. We
can maximize the impurity lifetime (creating a “dark”
state as explained above) due to a particular mode with
momentum k by minimizing the corresponding term in
�E↵ with respect to �LI. As we place impurities at a
plaquette center, J̃(k), �̃(k) are real, and we obtain op-
timized lattice detuning

�
D

LI
(k) = J(k)� J̃(k)�(k)

�̃(k)
. (4)

This quantity is plotted in black in Fig. 2(a) for k = 0 and
corresponds to the curve of smallest �E↵ and largest exci-
tation probability. The correspondence of k = 0 demon-
strates that light cone coupling dominates identical con-
figuration dynamics. In the SM, we show that linewidth
suppression is lattice spacing limited, as �E↵ ! 0 in the
limit a/� ⌧ 1, while �

D

LI
/ 1/a3 [24].

Fig. 2(b) depicts �E↵ in the orthogonal configuration.
Like in the identical configuration, �E↵ is enhanced due
to impurity coupling to resonantly driven lattice modes
for �LI < !BE. In the orthogonal configuration, however,
�E↵ enhancement is greater and occurs near resonance
with band edge states, rather than those of the light cone.

In the presence of an incident driving field with lattice
mode Rabi frequency ⌦L(k) such that ⌦L(k)/�L ⌧ 1,
the impurity is influenced by the driving of the modes to
which it couples and thus experiences a lattice-mediated
field with e↵ective Rabi-frequency
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FIG. 3. The time dependent transfer of excitation between
two impurities in arrays with a = 0.1� in (a) the orthogonal
configuration at distance d = 4a (for d dependence, see Fig.
4) and (c) the identical configuration at d = a. (b) Two-
impurity quality factor Q(2) as a function of lattice spacing a
and detuning �LI for the orthogonal configuration excitation
transfer shown in (a), and (d) Q(2) of the identical configura-
tion shown in (c). In (d), the yellow streak of high Q(2) repre-
sents the minimal e↵ective impurity linewidth �E↵ predicted
by Eq. (4) with k = 0. Likewise, in (a), Q(2) is maximized
for lattice detuning �LI nearest the band edge. The dark blue
bifurcations occur where the free-space and lattice-mediated
components of �E↵ cancel. All arrays are 10⇥ 10.
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2
�(k)
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where ⌦I is the Rabi drive of the impurity in free space
and we assume the drive to be resonant with the impu-
rity. This lattice mediation can be destructive, isolating
the impurity from the incident drive such that ⌦E↵ ! 0.
At the same time, the single-impurity quality factors
Q

(1) = ⌦E↵/�E↵ can be very large, e.g. when identi-
cal configuration �E↵ is optimized by setting detuning
�
D

LI
(k=0). In particular, ⌦E↵/�E↵ � ⌦I/�I for the identi-

cal polarization case for a weak, perpendicularly incident
drive [24].
We now focus on lattice-mediated interactions between

two impurities. When a second impurity is present, the
atoms exchange photons via dipole-dipole interactions.
This exchange has a lattice-independent component �,
which is simply the free-space dipole-dipole interaction
between the impurities [49], and a lattice-mediated com-
ponent, which represents the modification of the dipole-
dipole interactions between two impurities due to their
interactions with the lattice [24]. The impurities thus
experience an e↵ective dipole-dipole interaction

Question: 
How good is coupling between impurities 

vs 
decay into space?
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• single qubit rotation 
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Excita/on exchange: Quality factor
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The self-energy is key to understanding impurity-lattice
interactions as it modifies the e↵ective frequency and de-
cay rate of the impurity to !E↵ = !I + Re[⌃SE] and
�E↵ = �I � 2Im[⌃SE], respectively. These equations
are valid as long as ⌃SE varies little on the interval
�LI + Re[⌃SE] ± �E↵, such that the electromagnetic re-
sponse of the lattice atoms with respect to �LI is approx-
imately constant compared to that of the impurity atom.
Under these same conditions, !E↵ � !L ⇡ �LI. We note
that ⌃SE can vary considerably over broad �E↵, such as
that of the orthogonal configuration near the band edge,
and in such cases non-Markovian analysis may be valu-
able [15, 48].

Fig. 2(a) displays �E↵ in the identical configuration.
Below !BE (red curve), �E↵ is enhanced as the impurity
couples to resonant lattice modes, particularly those in
the light cone. Above !BE, however, the linewidth of
these states is suppressed by orders of magnitude due to
destructive interference between the radiation of the im-
purity and o↵-resonant coupling with these modes. We
can maximize the impurity lifetime (creating a “dark”
state as explained above) due to a particular mode with
momentum k by minimizing the corresponding term in
�E↵ with respect to �LI. As we place impurities at a
plaquette center, J̃(k), �̃(k) are real, and we obtain op-
timized lattice detuning

�
D

LI
(k) = J(k)� J̃(k)�(k)

�̃(k)
. (4)

This quantity is plotted in black in Fig. 2(a) for k = 0 and
corresponds to the curve of smallest �E↵ and largest exci-
tation probability. The correspondence of k = 0 demon-
strates that light cone coupling dominates identical con-
figuration dynamics. In the SM, we show that linewidth
suppression is lattice spacing limited, as �E↵ ! 0 in the
limit a/� ⌧ 1, while �

D

LI
/ 1/a3 [24].

Fig. 2(b) depicts �E↵ in the orthogonal configuration.
Like in the identical configuration, �E↵ is enhanced due
to impurity coupling to resonantly driven lattice modes
for �LI < !BE. In the orthogonal configuration, however,
�E↵ enhancement is greater and occurs near resonance
with band edge states, rather than those of the light cone.

In the presence of an incident driving field with lattice
mode Rabi frequency ⌦L(k) such that ⌦L(k)/�L ⌧ 1,
the impurity is influenced by the driving of the modes to
which it couples and thus experiences a lattice-mediated
field with e↵ective Rabi-frequency
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FIG. 3. The time dependent transfer of excitation between
two impurities in arrays with a = 0.1� in (a) the orthogonal
configuration at distance d = 4a (for d dependence, see Fig.
4) and (c) the identical configuration at d = a. (b) Two-
impurity quality factor Q(2) as a function of lattice spacing a
and detuning �LI for the orthogonal configuration excitation
transfer shown in (a), and (d) Q(2) of the identical configura-
tion shown in (c). In (d), the yellow streak of high Q(2) repre-
sents the minimal e↵ective impurity linewidth �E↵ predicted
by Eq. (4) with k = 0. Likewise, in (a), Q(2) is maximized
for lattice detuning �LI nearest the band edge. The dark blue
bifurcations occur where the free-space and lattice-mediated
components of �E↵ cancel. All arrays are 10⇥ 10.
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where ⌦I is the Rabi drive of the impurity in free space
and we assume the drive to be resonant with the impu-
rity. This lattice mediation can be destructive, isolating
the impurity from the incident drive such that ⌦E↵ ! 0.
At the same time, the single-impurity quality factors
Q

(1) = ⌦E↵/�E↵ can be very large, e.g. when identi-
cal configuration �E↵ is optimized by setting detuning
�
D

LI
(k=0). In particular, ⌦E↵/�E↵ � ⌦I/�I for the identi-

cal polarization case for a weak, perpendicularly incident
drive [24].
We now focus on lattice-mediated interactions between

two impurities. When a second impurity is present, the
atoms exchange photons via dipole-dipole interactions.
This exchange has a lattice-independent component �,
which is simply the free-space dipole-dipole interaction
between the impurities [49], and a lattice-mediated com-
ponent, which represents the modification of the dipole-
dipole interactions between two impurities due to their
interactions with the lattice [24]. The impurities thus
experience an e↵ective dipole-dipole interaction
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Coupling
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Variance

Mechanism: Nonlinearity
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