

Hybrid moiré excitons and trions

Anvar Baimuratov

anvar.baimuratov@lmu.de

Monolayer 2D semiconductors

- Direct semiconductors at K valleys
- Huge exciton binding energies

van der Waals Lego for material engineering

Geim et al., Nature 499, 419 (2013)

Chaves et al., npj 2D Mater. Appl. 4, 29 (2020)

Moiré superlattice formation in bilayers

Moiré theory

F. Wu, T. Lovorn, and A. H. MacDonald, PRL 118, 147401 (2017)

D. A. Ruiz-Tijerina and V. I. Fal'ko, PRB 99, 125424 (2019)

Heterobilayer MoSe₂/WS₂

- Lattice mismatch ~ 4%
 MoSe₂ and WS₂ have (almost) resonant CBs,
- allowing for intra- & interlayer exciton hybridization
- Holes are in MoSe₂ layer

Figure 2. Position of band edges for stable semiconducting TMDs with respect to vacuum. The band edge of DFT-PBE data and G_0W_0 data are indicated by filled navy blue gradient column and pink solid column, respectively. The vacuum level is set to 0 eV.

Zhang et al., 2D Mater. 4, 015026 (2016)

Rotationally aligned MoSe₂/WS₂ in anti-parallel stacking (H-type) in a dual-gate field-effect device

Polovnikov, ..., Baimuratov, PRL 32, 076902 (2024)

E-field dependence of white light DR

 $\Delta V_{TB} = V_B - V_T$

Band folding in periodic lattices

60 brillouin zones of a hexagonal lattice

https://github.com/hamdav/brillouinzones

Effective model for intra- and interlayer moiré excitons

Four mini Brillouin zones

https://github.com/hamdav/brillouinzones

13-miniband Hamiltonian for moiré excitons

Fitting to E-field dependent data

Making the interlayer excitons visible

16

Making the interlayer excitons visible

<u>Dotted Lines</u>: Eigenvalues of the Hamiltonian irrespective of the oscillator strength

<u>Colors of the data points</u>: deviations of the exciton Landé g-factor from the intralayer value g = -4

Band alignment

 At electic field ~0.05 V/nm the intra- and interlayer states exciton are resonant

Spatial distribution of bright moiré excitons

19

LUDWIG-

MAXIMILIANS MÜNCHEN

UM

Charge doping effects on moiré excitons

- A simple effective model combining phenomenological moiré potentials with resonant interlayer hopping describes intra- and interlayer moiré excitons simultaneously;
- MoSe₂/WS₂ is of type I alignment, and the first IX state lies ~30meV above the intralayer ground state exciton;
- A field of ~0.05 V/nm is sufficient to bring the intra- and interlayer excitons into resonance, and beyond that type II alignment can be reached;
- Moiré excitons localize in real space and can act as reporters on band alignment or charge order.

Editors' Suggestion

Field-Induced Hybridization of Moiré Excitons in MoSe₂/WS₂ Heterobilayers

Borislav Polovnikov, Johannes Scherzer, Subhradeep Misra, Xin Huang, Christian Mohl, Zhijie Li, Jonas Göser, Jonathan Förste, Ismail Bilgin, Kenji Watanabe, Takashi Taniguchi, Alexander Högele, and Anvar S. Baimuratov Phys. Rev. Lett. **132**, 076902 – Published 16 February 2024

Heterobilayer MoTe₂ / MoSe₂

- Lattice mismatch ~ 7%
- MoTe₂ and MoSe₂ have (almost) resonant CBs, allowing for intra- & interlayer exciton hybridization
- Holes are in MoTe₂ layer

Zhao, Huang, ..., Högele, Baimuratov, Nano Lett. 24, 4917 (2024)

Zhang et al., 2D Mater. 4, 015026 (2016)

Heterobilayer MoTe₂ / MoSe₂

Heterobilayer MoTe₂ / MoSe₂

Х

MoTe₂

5 µm

1.15

Energy (eV)

1.20

1.10

1.15

Energy (eV)

1.20

1.10

IX

MoSe₂

MoSe₂

(a)

Energy (eV)

(b

MoTe₂

Anvar Baimuratov

10

Twist angle (°)

50 55 60

0

Theory for hybridization

Twist angle tuning

g-factors of hybrid excitons

	m_c/m_0	m_{c+1}/m_0	m_v/m_0	$\Delta_{\rm SO}$	L_c	L_{c+1}	L_v
$MoTe_2$	0.58	0.67	-0.68	69	1.586	1.204	3.872
$MoSe_2$	0.55	0.63	-0.64	23	1.798	1.526	3.977

$$g_{\rm A} = 2(L_c - L_v)$$

$$g_i^{(R)} = 2\left(f_i^{(X)}L_c + f_i^{(IX)}L_{c'} - L_v\right)$$
$$g_i^{(H)} = 2\left(f_i^{(X)}L_c - f_i^{(IX)}L_{c'+1} - L_v\right)$$

Twist angle	Exciton X ₁		Exciton X ₂	
	Exp.	Theory	Exp.	Theory
14°(R-type) and ML MoTe ₂	4.7	4.6	-	-
2° (R-type)	4.0	4.2	4.3	4.4
58° (H-type)	7.3	8.0	6.0	6.8

Doping and trion formation

- We study properties of MoTe₂/MoSe₂ heterobilayer and compare our data with the developed model; ٠
- Heterobilayer MoTe₂/MoSe₂ demonstrates strong effect of hybridization without additional application ٠ of electric field;
- Our work provides fundamental understanding of hybrid moiré excitons and trions in MoTe₂/MoSe₂ ٠ heterobilayers and establishes the material system as a prime candidate for optical studies of correlated phenomena in moiré lattices.

Letter

pubs.acs.org/NanoLett Hybrid Moiré Excitons and Trions in Twisted MoTe₂–MoSe₂ **Heterobilayers** Shen Zhao,[△] Xin Huang,^{*, △} Roland Gillen, Zhijie Li, Song Liu, Kenji Watanabe, Takashi Taniguchi, Janina Maultzsch, James Hone, Alexander Högele,* and Anvar S. Baimuratov*

Remote excitons as sensors of correlations

Magnetization of the electron lattice

V 0.31 K

3.7 K

2.15 K 🕨

0.16 K

1.0 K

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

Т