Multiferroic van der Waals Materials

Adolfo O Fumega

adolfo.oterofumega@aalto.fi

Researchers

The first 2D Multiferroic

Adolfo O. Fumega and Jose L. Lado 2D Materials 9, 025010 (2022)

Mohammad Amini,* Adolfo O Fumega,* Héctor González-Herrero, Viliam Vaňo, Shawulienu Kezilebieke, Jose L Lado⁺, Peter Liljeroth⁺ Advanced Materials 2311342 (2024)

Artificial Moiré Multiferroics

Adolfo O. Fumega and Jose L. Lado 2D Materials 10, 025026 (2023)

Adolfo O. Fumega and Jose L. Lado 2D Materials 9, 025010 (2022)

Mohammad Amini,* Adolfo O Fumega,* Héctor González-Herrero, Viliam Vaňo, Shawulienu Kezilebieke, Jose L Lado⁺, Peter Liljeroth⁺ Advanced Materials 2311342 (2024)

Adolfo O. Fumega and Jose L. Lado 2D Materials 10, 025026 (2023)

Aalto University

Amini

Mohammad J

Jose L Lado

Peter Liljeroth

Princeton University

Viliam Vaňo

<u>Autonomous</u> <u>University</u> of Madrid

Héctor González Herrero

<u>University</u> of Jyväskylä

Shawulienu Kezilebieke

Multiferroics Materials with more than one Ferroic order

Layered van der Waals

Weak van der Waals bonding

Graphite

Layered van der Waals

Evidence for a single-layer van der Waals multiferroic Song et al., Nature 602, 601-605 (2022)

Evidence for a single-layer van der Waals multiferroic Song et al., Nature 602, 601-605 (2022)

New methods to prove and characterize 2D multiferroics!

9*a*

Monolayer NiI_2 on top of Highly-oriented pyrolytic Graphite (HOPG)

Experiment

Atomic resolution STM scan

Experiment

Red peaks → Atomic lattice

Theory

Experiment

Red peaks → Atomic lattice Green peaks → Half of the spin spiral periodicity q = (0.057, 0.057, 0)

Theory

0.5 Å Height 0 Å е Red peaks \rightarrow Atomic lattice FFT Green peaks → Experiment Half of the spin spiral periodicity $\mathbf{q} = (0.057, 0.057, 0)$ n \bigcirc $J_3/J_1 = -0.263$ FFT Theory Characterization of the spin spiral magnetic order!

Experiment

Line spectra showing the conduction band

Inhomogeneous Polarization \rightarrow Band bending of the conduction band

Underestimation of the band gap in DFT, but the ferroelectric modulation is well captured!

conduction band

Inhomogeneous Polarization \rightarrow Band bending of the conduction band

STM characterization of monolayer Nil,

STM characterization of monolayer Nil,

Inhomogeneous Polarization \rightarrow Band bending of the conduction band 0 Height 0.8 Å а d 570 → Fitting Experiment Experiment 550 Band bending (mV) 530 $E = E_0 + E_P \sin \left(\frac{2\pi x}{L_S} + \phi \right)$ 510 490 470 $E_{P} = 16.8 \text{ mV}$ 450 20 30 Distance (Å) 30 0 10 40 50 g 250 DFT data Theory Fitting 245 E (meV) $P \sim 10^{-12} \text{ C/m}$ 240 235 2 nm Characterization of the 230^L 10 40 50 20 30 Distance (Å) ferroelectric order!

Voltage pulses

9a/2

STM tip

Manipulation of multiferroic domains!

→ The multiferroic order of NiI₂ can stems from the combination of a spin-spiral order + a strong spin-orbit coupling from I atoms Adolfo O. Fumega and Jose L. Lado 2D Materials 9, 025010 (2022)

 \rightarrow The multiferroic order of NiI₂ can be demonstrated, characterized and manipulated with an STM

Mohammad Amini,* Adolfo O Fumega,* Héctor González-Herrero, Viliam Vaňo, Shawulienu Kezilebieke, Jose L Lado⁺, Peter Liljeroth⁺ Advanced Materials 2311342 (2024)

Motivation

Motivation

Twisted CrCl₃, CrBr₃ and CrI₃ bilayers

Twisted CrCl₃, CrBr₃ and CrI₃ bilayers

Stacking-dependent Interlayer Magnetic Exchange

Twisted CrCl₃, CrBr₃ and CrI₃ bilayers

Intralayer terms

$$\mathcal{H} = -\frac{J}{2} \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j - \frac{A_v}{2} \sum_{\langle i,j \rangle} S_i^z S_j^z - A_u \sum_i \left(S_i^z\right)^2$$

Intralayer terms

$$\mathcal{H} = -\frac{J}{2} \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j - \frac{A_v}{2} \sum_{\langle i,j \rangle} S_i^z S_j^z - A_u \sum_i \left(S_i^z\right)^2$$

First Neighbor Ferromagnetic Exchange

Intralayer terms

$$\mathcal{H} = -\frac{J}{2} \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j - \frac{A_v}{2} \sum_{\langle i,j \rangle} S_i^z S_j^z - A_u \sum_i \left(S_i^z\right)^2$$

Anisotropic Magnetic Exchange

Intralayer terms

$$\mathcal{H} = -\frac{J}{2} \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j - \frac{A_v}{2} \sum_{\langle i,j \rangle} S_i^z S_j^z - A_u \sum_i \left(S_i^z\right)^2$$

Single Ion Anisotropy

solve the spin Hamiltonian → Ground State

Spin Texture

Solve the Spin Hamiltonian \rightarrow Ground State

Electric Polarization $\mathbf{P}_{ij} = \alpha \lambda_{SOC} \left(\mathbf{r}_{ij} \times (\mathbf{S}_i \times \mathbf{S}_j) \right)$

Inverse Dzyaloshinskii-Moriya interaction

solve the spin Hamiltonian \rightarrow Ground State

Considering the different parameters: λ_{soc} and A_{v}

Which CrX, displays the strongest multiferroic order?

Electric Polarization $\mathbf{P}_{ij} = \alpha \lambda_{SOC} \left(\mathbf{r}_{ij} \times (\mathbf{S}_i \times \mathbf{S}_j) \right)$

$$N_v \rightarrow Collinearity \rightarrow Decrease P$$

Ab initio calculations

Ab initio calculations

Electric polarization in a spin texture of CrX,

Ab initio calculations

Electric polarization in a spin texture of CrX,

Electric polarization in a spin texture of CrX_3

Ferroelectric force difference

Considering the different parameters: λ_{soc} and A_{v}

CrBr, displays the strongest multiferroic order

Magnetoelectric Coupling

Transitions between magnetic skyrmion phases as a function of the electric field (1-10 V)

Take home messages

 \rightarrow The strongest Artificial moiré multiferroic order is displayed by twisted CrBr₃ bilayers

→ Accessible magnetic skyrmion phases with electric fields

Adolfo O. Fumega and Jose L. Lado, 2D Materials 10, 025026 (2023)

Multiferroic van der Waals Materials are promising for Novel Technological Applications

adolfo.oterofumega@aalto.fi

Back-Up Slides

Manipulation of multiferroic domains in monolayer NiI2

Manipulation of multiferroic domains in monolayer NiI2

Manipulation of multiferroic domains!

STM characterization of monolayer Nil2

Ab initio calculations

Electric polarization in a spin texture of CrX,

