Graphene-based magnetic heterostructures for spintronic devices

Talieh Ghiasi

Delft University of Technology University of Groningen

Young Research Leaders Group Workshop | 2024

Spintronic devices

Injection

Transport

Detection

spin relaxation length $\sim 30 \; \mu m$

M. Drögeler, et al. Nano letters 16. 3533 (2016)

Tailoring graphene band structure

3

Proximity effect

J.F. Sierra, et al. Nat. Nano. 16.8 (2021)

Proximity-induced magnetism in graphene

Proximity-induced magnetism

TS Ghiasi, et al. Nat. Nano. 16, 788 (2021)

Spin-injection by magnetic graphene

Spin-dependent Seebeck effect

Electrical and thermal generation of spin currents by the magnetic graphene

TS Ghiasi, et al. Nat. Nano. 16, 788 (2021)

Anomalous Hall effect

TS Ghiasi, et al. Nat. Nano. 16, 788 (2021)

Quantum anomalous Hall effect?

Z. Qiao, et al. *PRB*, 82. 161414 (2010) Y. Yang, Y., et al. *PRL*, *107*. 066602 (2011)

2D magnet: CrPS₄ (CPS)

10 um

Magnetic behavior of CrPS₄

12

Magnetic behavior of CrPS₄

Magnetic behavior of CrPS₄

Spin-flop detection by graphene!

Spin-flop detection by graphene!...through the anomalous Hall effect $R_{AHE} \propto M_z$

С

Anomalous Hall effect in magnetized graphene

 $(R_{AHE} \propto M_z)$

Anomalous Hall effect in magnetized graphene

90° canted \vec{M} : 700 Ω AHE

W Zhu, et al. "Interface-enhanced room-temperature Curie temperature in CrPS4/graphene van der Waals heterostructure." *PRB* 108, L100406 (2023).

T Ghiasi, et al. arXiv:2312.07515 (2023)

T Ghiasi, et al. arXiv:2312.07515 (2023)

T Ghiasi, et al. arXiv:2312.07515 (2023)

M Onodera, et al. *Nano Lett.* 19, 7282 (2019)

 $E_N = \sqrt{\alpha |N_{\rm LL}| B_{\rm T}}$ N: LL number $E^2 \propto n \propto V_{tg} \propto B_{\rm T}$ $B_{\rm T} = B_{\rm Z} + B_{\rm ps}$

Houmes, et al., "Highly Anisotropic Mechanical Response of the Van der Waals Magnet CrPS₄" *Adv. Funct. Mater.* 34.3 (2024): 2310206. *15* (2023)

Chiral states

Chiral states vs. helical states

Spin-polarized (helical) quantum Hall states

T Ghiasi, et al. arXiv:2312.07515 (2023)

Quantum anomalous spin Hall effect

Spin-polarized (helical) quantum Hall states

T Ghiasi, et al. arXiv:2312.07515 (2023)

Quantum anomalous spin Hall effect $B_z = 0$ $R_{2t} = \frac{h}{e^2} \left(\frac{1}{N_L} + \frac{1}{N_R} \right)^{-1}$

T Ghiasi, et al. arXiv:2312.07515 (2023)

Quantum anomalous spin Hall effect

Spin-polarized (helical) quantum Hall states

T Ghiasi, et al. arXiv:2312.07515 (2023)

Quantum anomalous spin Hall effect

Graphene-based magnetic heterostructures for spintronic devices

Spin-dependent ٠ Seebeck effect

Quantum Hall regime Anomalous Hall effect 9.00 Halphale Rose 0.6 0 ΔR_{xy} (Ω) 6.25 6 0.4 40 4.00 G (e²/h) 2 (kΩ) 0.2 $B_{z}(T)$ -1 0 B_z (T) R_{xy} (kΩ) 00 2.25 0 -2 1.00 -0.2 -4 Trace 0.25 -6 -0.4 Retrace -8 -20 -10 0 10 20 30 0 0.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 B_7 (T) $V_{\rm tg}$ (V) 0.8 B_z (T) 0.2 **•** -9 18 9 🕴 0.1 0.2 16 R_{AH} (kΩ) $|B_T|$ (T) 0 20 40 60 80 100 T (K) 14 -0.1 $V_{\rm tg} = 0 \,\rm V$ T = 300 K12 $= R - B^{(8to9T)}/ne$ -0.2 10 -9 9 -6 6 -7 -4 -3 -2 0 1 2 -6 -5 -1 В_z (Т)

 N_{LL}

Helical states at B = 03

bulk

edge

٠

Acknowledgment

Alexey Kaverzin

Dennis de Wal

Bart van Wees

Davit Petrosyan Josep Ingla Aynés

Herre van der Zant

TUDelft

Klaus Zollner

Jaroslav Fabian

Avalon Dismukes

Xavier Roy

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK Samuel Mañas-Valero

Eugenio Coronado

Philip Kim

Graphene-based magnetic heterostructures for spintronic devices

• Spin-dependent Seebeck effect

Quantum Hall regime Anomalous Hall effect ٠ 9.00 Hold have the 0.6 0 6.25 6 ΔR_{xy} (Ω) 3 0.4 -40 4.00 ρ_{xx} (kΩ) G (e²/h) 2 0.2 B_{z} (T) о В_z (Т) -1 2.25 R_{xy} (kΩ) 00 0 -2 1.00 -4 -0.2 1 0.25 -6 Trace -0.4 Retrace -8 0 -10 -30 -20 0 10 20 30 0.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 $V_{\rm tg}$ (V) B_7 (T) • 0.8 B_z (T) 0.2 **•** -9 18 9 🕴 0.1 0.2 16 R_{AH} (kΩ) $|B_T|$ (T) σ_{xy} (e²/h) 0 20 40 60 80 100 T (K) 14 -0.1 $V_{\rm tg} = 0 \,\rm V$ T = 300 K12 $..= R - B^{(8to9T)}/ne$ -0.2 10 -9 9 -6 6 -7 -4 -3 -2 0 1 2 -6 -5 -1 В_z (Т)

NLL

Helical states at B = 0bulk edge 12 14 16 18 $V_{\rm tg}$ (V) **RT QH conductance** Device B $B_{7} = 9 T$ T = 2 K

