Nonlinear Hall effect from hidden magnetic octupoles

Sopheak Sorn

Karlsruhe Institute of Technology

16 July 2024

Karlsruher Institut für Technologie

Collaborator

Dr. Adarsh S. Patri Massachusetts Institute of Technology

<u>S.S.</u>, A. S. Patri, arXiv: 2311.03435

Anomalous Hall effect

Equations of motion for electron wave packets (R. Karplus, J. M. Luttinger, Phys. Rev. 95, 1154, 1954)

$$\frac{d\vec{r}_n}{dt} = \frac{1}{\hbar} \vec{\nabla}_{\vec{k}} \varepsilon_{\vec{k}n} + \frac{e}{\hbar} \vec{E} \times \vec{\mathcal{B}}_{\vec{k}n}$$
$$\frac{d\vec{k}}{dt} = -\frac{e}{\hbar} \vec{E}$$

$$\sigma_{xy} = \sigma_{xy}^B + \sigma_{xy}^{int} + \sigma_{xy}^{ext}$$

$$\sigma_{ab}^{H,int} = \frac{e^2}{h} \quad \frac{(2\pi)^3}{V} \sum_{\boldsymbol{k}n \in occ.} \varepsilon_{abc} \, \boldsymbol{\mathcal{B}}_{\vec{k}n,c}$$

Berry curvature

$$\vec{\boldsymbol{\mathcal{B}}}_{\vec{k}n} = \vec{\nabla}_{\vec{k}} \times i \left\langle \vec{k}n \middle| \vec{\nabla}_{\vec{k}} \middle| \vec{k}n \right\rangle \underbrace{}_{\text{Vector potential}}_{\text{Berry connection}}$$

For a review of AHE: see e.g. NA Sinitsyn, J. Phys. Condens. Matter 20, 023201, 2007; N. Nagaosa, et al, RMP 82, 1539, 2010 3

Properties of anomalous Hall effect

$$\sigma_{ab}^{H,int} = \frac{e^2}{h} \quad \frac{(2\pi)^3}{V} \sum_{\boldsymbol{k}n \in occ.} \varepsilon_{abc} \, \boldsymbol{\mathcal{B}}_{\vec{k}n,c}$$

Local Berry curvature

$$\vec{\boldsymbol{\mathcal{B}}}_{\vec{k}n} = \vec{\nabla}_{\vec{k}} \times \vec{\boldsymbol{\mathcal{A}}}_{\vec{k}n}$$

Relation with topology

 $\sum_{n=occupied} \int_{T^2} d^2 k \ \mathcal{B}_{\vec{k}n} = Chern \ number$

 $\vec{\mathcal{A}}_{\vec{k}n}$ = U(1) gauge field & Brillouin zone is a torus Relation with symmetry $\sigma_{ab}^{H,int} \sim \varepsilon_{abc} \mathcal{M}_{c}^{Hall \, \text{vector}}$ Order parameter \mathcal{M}_{c}

- Break time reversal
- Axial vector

 \mathcal{M}_{c} activates a net Berry curvature; vice versa

Activation of net Berry curvature in magnets

 $\sigma_{ab}^{H,int} \sim \varepsilon_{abc} \mathcal{M}_{c}$

In antiferromagnets, <u>combination of crystal and</u> <u>magnetic order</u> can sufficiently lower the symmetry

For a review of AHE in antiferromagnets: see e.g. L. Šmejkal, et al, Nat. Rev. Mater. 7, 482, (2022)

What if such magnetic-dipole-like order parameters are absent?

What happens to Hall effect?

Nonlinear Hall response becomes relevant!

Outline

- Multipolar ordering in heavy-fermion compounds
- From octupolar order to Berry curvature quadrupole & 3rd order Hall effect
- Aspects of the 3rd order Hall effect
- 3rd order Hall effect in other systems

Multipolar ordering in heavy-fermion systems

• Heavy-fermion systems supporting multipolar orders

Unit cell of Pr-1-2-20 family compounds Ex: Pr(Ti,V)₂Al₂₀, PrIr₂Zn₂₀ Pr³⁺ ion surrounded by a cage with octahedral crystal field environment

4f² electronic configuration

Evidence from inelastic neutron exp that Γ_3 is the ground state

$$| \Gamma_{3}^{(1)} \rangle = \frac{1}{2} \sqrt{\frac{7}{6}} |4\rangle - \frac{1}{2} \sqrt{\frac{5}{3}} |0\rangle + \frac{1}{2} \sqrt{\frac{7}{6}} |-4\rangle, \qquad | \Gamma_{3}^{(2)} \rangle = \frac{1}{\sqrt{2}} |2\rangle + \frac{1}{\sqrt{2}} |-2\rangle \qquad 8$$

Multipolar ordering in heavy-fermion systems

• Quenching of dipole moment in Γ_3 subspace

$$(J_i)^{\Gamma_3} = \begin{pmatrix} \left\langle \Gamma_3^{(1)} \middle| \hat{J}_i \middle| \Gamma_3^{(1)} \right\rangle & \left\langle \Gamma_3^{(1)} \middle| \hat{J}_i \middle| \Gamma_3^{(2)} \right\rangle \\ \left\langle \Gamma_3^{(2)} \middle| \hat{J}_i \middle| \Gamma_3^{(1)} \right\rangle & \left\langle \Gamma_3^{(2)} \middle| \hat{J}_i \middle| \Gamma_3^{(2)} \right\rangle \end{pmatrix} = 0$$

$$|\Gamma_{3}^{(1)}\rangle = \frac{1}{2}\sqrt{\frac{7}{6}} |4\rangle - \frac{1}{2}\sqrt{\frac{5}{3}} |0\rangle + \frac{1}{2}\sqrt{\frac{7}{6}} |-4\rangle$$
$$|\Gamma_{3}^{(2)}\rangle = \frac{1}{\sqrt{2}}|2\rangle + \frac{1}{\sqrt{2}}|-2\rangle$$

• Using representation theory, one can show Γ_3 supports higher moments

$$\hat{J}_x^2 - \hat{J}_y^2 \qquad 2\hat{J}_z^2 - \hat{J}_x^2 - \hat{J}_y^2$$

 $\overline{\hat{j}_x \hat{j}_y \hat{j}_z} = \frac{1}{3!} (\hat{j}_x \hat{j}_y \hat{j}_z + permute \ x, y, z)$

Charge quadrupole moments

Magnetic octupole moments

Multipolar ordering in heavy-fermion systems

 $| \Gamma_{3}^{(1)} \rangle = \frac{1}{2} \sqrt{\frac{7}{6}} |4\rangle - \frac{1}{2} \sqrt{\frac{5}{3}} |0\rangle + \frac{1}{2} \sqrt{\frac{7}{6}} |-4\rangle$

 $|\Gamma_{3}^{(2)}\rangle = \frac{1}{\sqrt{2}}|2\rangle + \frac{1}{\sqrt{2}}|-2\rangle$

• Γ_3 doublet supports an octupolar moment

• Odd under time reversal

 $\phi \propto \langle \overline{J_x J_y J_z} \rangle$

- Even under inversion
- Possible to develop a long-ranged ferroic ordering
- Hard to detect using conventional local probes, e.g. neutron scattering or magnetic resonance
- Proposal for probably most direct probe of ferro-octupolar order is angular dependence of magnetostriction (A.S.Patri, et al, Nat. Commun. 10, 4092, 2019.) $F \sim \phi_{abc} \varepsilon_{ij} h_k$

Outline

- Multipolar ordering in heavy-fermion compounds
- From octupolar order to Berry curvature quadrupole & 3rd order Hall effect
- Aspects of the 3rd order Hall effect
- 3rd order Hall effect in other systems

Cubic lattice model

- Slater-Koster tight-binding e_g orbital $\{d_{x^2-y^2}, d_{3z^2-r^2}\}$
- Coupling to order parameter ϕ (A. Patri et al, PRX 2020; A.Patri et al, PRR 2020)

$$\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_{\phi}$$

$$\mathcal{H}_0(\vec{k}) = h_0(\vec{k}) \tau^0 + h_3(\vec{k}) \tau^z + h_1(\vec{k}) \tau^x$$

$$\mathcal{H}_{\phi}(\vec{k}) = \phi \tau^{y}$$

Octupolar order parameter breaking time reversal symmetry

Ordered state has $m\overline{3}m'$ magnetic point group

Ferro-octupole ordering on cubic lattice

Band structure and gap opening

Berry curvature quadrupole

For
$$\phi \propto \langle \overline{J_x J_y J_z} \rangle \neq 0$$

Berry curvature quadrupole structure

Consistent with the symmetry of the order parameter: $C_{4z}T$

Berry curvature quadrupole

$$Q_{abc} = \int f_0 \,\partial_{k_a} \partial_{k_b} \,\boldsymbol{\mathcal{B}}_c$$

The only independent component of the Berry curvature quadrupole is Q_{xyz}

 $\begin{aligned} & \text{Hall conductivity tensor} \\ \sigma^{H}_{abcd} \sim \ \epsilon_{abh} Q_{cdh} + \epsilon_{ach} Q_{dbh} + \epsilon_{adh} Q_{bch} \end{aligned}$

Schematically: $j_H = \sigma^H E E E$

• Boltzmann equation for nonequilibrium distribution function $f(\vec{k},t)$

I. Sodemann, L. Fu, PRL 115, 216806 (2015), T. Morimoto, et al, PRB, 94, 245121, (2016), C.-P. Zhang, et al, PRB 107, 115142 (2023)

$$\frac{d\vec{k}}{dt} \cdot \nabla_{\vec{k}} f(\vec{k}, t) + \partial_t f(\vec{k}, t) = \frac{f_0(\vec{k}) - f(\vec{k}, t)}{\tau}$$
Relaxation time approximation

• Solved together with the semi-classical equations of motion for electron

$$\frac{d\vec{k}}{dt} = -\frac{e}{\hbar}\vec{E}$$
Berry curvature
$$\frac{d\vec{r}}{dt} = \frac{1}{\hbar}\nabla_{\vec{k}}\varepsilon_{\vec{k}} + \frac{e}{\hbar}\vec{E}\times\vec{B}$$

$$\vec{B} = \vec{\nabla}_{\vec{k}}\times i\left\langle\vec{k}n\middle|\vec{\nabla}_{\vec{k}}\middle|\vec{k}n\right\rangle$$

• Expansion of the current $\vec{j}(t) = -e \int d\vec{k} f(\vec{k}, t) \frac{d\vec{r}}{dt}$

Second-order conductivity

• Second-order current (I. Sodemann, L. Fu, Phys. Rev. Lett. 115, 216806 (2015))

$$\sigma_{a}^{(2)}(\omega \pm \omega) = \sigma_{abc}^{(\omega \pm \omega)} E_b(\omega) E_c(\pm \omega)$$

• Second-har
$$(2)$$
 (2ω) (2ω) (2ω)

Conductivit

noncentrosymmetric systems!

iviust be

$$\sigma^{D}_{abc} \sim \int f_0 \partial_{k_a} \partial_{k_b} \partial_{k_c} \varepsilon_{\vec{k}n}$$

Joule heating $\sim j_a^{(2)D} E_a \neq 0$

 $\sigma^{H}_{abc} \sim \epsilon_{abh} D_{ch} + \epsilon_{ach} D_{bh}$ No Joule heating $\sim j_{a}^{(2)H} E_{a} = 0$

 $E_a(t) = Re[E_a(\omega) e^{i\omega t}]$

 $j_a^{(2)}(t) = Re\left[j_a^{(2)}(\Omega)e^{i\Omega t}\right]$

Berry curvature dipole moment

$$D_{ch} = \int f_0 \,\partial_{k_c} \,\boldsymbol{\mathcal{B}}_h$$

Observation of Berry curvature dipole effect

LETTER

https://doi.org/10.1038/s41586-018-0807-6

Observation of the nonlinear Hall effect under time-reversal-symmetric conditions

Qiong Ma^{1,13}, Su-Yang Xu^{1,13}, Huitao Shen^{1,13}, David MacNeill¹, Valla Fatemi¹, Tay–Rong Chang², Andrés M. Mier Valdivia¹, Sanfeng Wu¹, Zongzheng Du^{3,4,5}, Chuang–Han Hsu^{6,7}, Shiang Fang⁸, Quinn D. Gibson⁹, Kenji Watanabe¹⁰, Takashi Taniguchi¹⁰, Robert J. Cava⁹, Efthimios Kaxiras^{8,11}, Hai–Zhou Lu^{3,4}, Hsin Lin¹², Liang Fu¹, Nuh Gedik¹* & Pablo Jarillo–Herrero¹* Apply: sinusoidal longitudinal current Measure: transverse voltage at second harmonics

Quadratic I-V relation for second harmonic generation in transverse voltage in WTe₂

See more data on WTe₂ in K. Kang et al, Nat. Mat. 18, 324, (2019) Also experiments on WSe₂ (M. Huang, et al, Nat. Sci. Rev. nwac232(2022) & J.-X. Hu et al, Commun. Phys. 5, 255 (2022))

However, not directly relevant since our system is centrosymmetric.

Third-order Hall effect

• Third-order current (C.-P. Zhang, et al, Phys. Rev. B 107, 115142 (2023))

$$j_a^{(3)}(t) = Re\left[j_a^{(3)}(\Omega)e^{i\Omega t}\right]$$
$$E_a(t) = Re\left[E_a(\omega)e^{i\omega t}\right]$$

$$j_a^{(3)}(2\omega \pm \omega) = \sigma_{abcd}^{(2\omega \pm \omega)} E_b(\omega) E_c(\omega) E_d(\pm \omega)$$

- Third-harmonic generation: $j_a^{(3)}(3\omega) = \sigma_{abcd}^{(3\omega)}E_b(\omega) E_c(\omega) E_d(\omega)$
- Conductivity tensor

$$\sigma_{abcd}^{(3\omega)} = \sigma_{abcd}^{D} + \sigma_{abcd}^{H}$$

$$\sigma_{abcd}^{D} \sim \int f_{0} \partial_{k_{a}} \partial_{k_{b}} \partial_{k_{c}} \partial_{k_{d}} \varepsilon_{\vec{k}n}$$
Joule heating $\sim j_{a}^{(3)D} E_{a} \neq 0$

Druda tarm

 $\sigma_{abcd}^{H} \sim \epsilon_{abh} Q_{cdh} + \epsilon_{ach} Q_{dbh} + \epsilon_{adh} Q_{bch}$ No Joule heating $\sim j_a^{(3)H} E_a = 0$

Hall term

Berry curvature quadrupole moment

$$Q_{cdh} = \int f_0 \,\partial_{k_c} \partial_{k_d} \,\boldsymbol{\mathcal{B}}_h$$

Outline

- Multipolar ordering in heavy-fermion compounds
- From octupolar order to Berry curvature quadrupole & 3rd order Hall effect
- Aspects of the 3rd order Hall effect
- 3rd order Hall effect in other systems

Dependence on orientation of Hall plane

 $j_a^H(3\omega) = \sigma_{abcd}^H E_b(\omega) E_c(\omega) E_d(\omega)$

Chemical potential dependence

Nonmonotonic dependence on order parameter

At a fixed electronic density

Hall experiment: third harmonic generation

a.c. Hall measurement: Applied $I(\omega)$ and measure $V_H(3\omega)$

Estimate of Q_{xyz} assuming lattice spacing of Pr-1-2-20 compounds $\sim 1nm$: $Q_{xyz} \sim 10\text{\AA} - 100 \text{\AA}$

Comparable Q_{abc} has been estimated in FeSn where the 3rd Hall effect was measured. (S. Sankar, et al, arXiv: 2303.03274 (2023))

Outline

- Multipolar ordering in heavy-fermion compounds
- From octupolar order to Berry curvature quadrupole & 3rd order Hall effect
- Aspects of the 3rd order Hall effect
- 3rd order Hall effect in other systems

Third order Hall in altermagnetic candidates

PHYSICAL REVIEW X 14, 011019 (2024)

Ferroically Ordered Magnetic Octupoles in *d*-Wave Altermagnets

Sayantika Bhowal[®] and Nicola A. Spaldin[®] Materials Theory, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland

System	n	st-MPG	mod-MPG
Fe	(001)	4/ <i>mm'm</i> ' (16)	<i>m</i> 3 <i>m</i> (48)
Со	(0001)	6/ <i>mm'm</i> ' (24)	6/ <i>mmm</i> (24)
Ni	(111)	$\bar{3}m'(12)$	$m\bar{3}m$ (48)
FeO	(111)	$\bar{3}m1'$ (24)	$\bar{3}m1'$ (24)
Mn ₂ Au	(100), (110)	<i>m'mm</i> (8)	4/m'mm (16)
RuO ₂	(001)	4'/ <i>mm'm</i> (16)	4'/mm'm (16)
RuO ₂	(100), (110)	<i>m'm'm</i> (8)	4'/ <i>mm'm</i> (16)
MnTe	(1120)	<i>mmm</i> (8)	6'/m'm'm (24
MnTe	$(1\bar{1}00)$	<i>m'm'm</i> (8)	6'/m'm'm (24

(I. Turek, Phys. Rev. B 106, 094432 (2022))

Theoretical proposal for 3rd order Hall for altermagnets Y. Fang, et al, arXiv: 2310.11489 (2023)

Summary

- First proposal to use Hall measurement to directly detect presence of hidden octupolar orders in heavy-fermion compounds.
- 3rd order Hall effect becomes the leading effect
- Measure 3rd harmonic generation of transverse voltage.
- 3rd order Hall is also important other systems, e.g. d-wave altermagnetic candidates
- Outlook:
 - Experimental realization of our proposal
 - Quantitative estimate taking into account inter-band and extrinsic effects
 - Quantitative understanding the intrinsic effects beyond semi-classical formalism

