# Mixing the Light- Spin with Plasmon-Orbit by Non-Linear Light Matter Interaction



### **M. Aeschlimann** University of Kaiserslautern-Landau, Germany

## Outline

#### Introduction

- What is the orbital angular momentum (OAM) of light?
- How can we create plasmon (SPP) with OAM?
- Time-resolved interferometric PEEM technique

#### **Dynamics of OAM in plasmonic vortices**

- Real time view of a spiral phase
- Time domain simulation

# Demonstration of nonlinear optical spin-orbit conversion

■ What do we really observe using nonlinear PEEM





### Each photon has a spin

Photons are bosons



Can we get a higher angular momentum?

### Yes, with orbital angular momentum (OAM)!

https://en.wikipedia.org/wiki/Spin\_angular\_momentum\_of\_light

## **Orbital angular momentum (OAM) of light**

2π

- Theoretical prediction by Allen et al. in 1992
- OAM:  $L_z = l\hbar$ ,  $l \in \mathbb{Z}$  (l = 10'000 realized)

- Helical wavefronts  $\rightarrow E = E_0 \cdot e^{-il\varphi}$
- Phase singularity on the optical axis
- OAM  $\neq$  polarization!



## **Spiral phase plates**

Thickness increasing linearly with the azimuthal angle



phase depends on the local thickness/optical path length



Bovino, arXiv 1104.2201 (2011) Yao & Padgett, Advances in Optics and Photonics **3**, 161 (2011)

## **Applications of twisted light: Micro-manipulation**

**Optical tweezers with OAM light (1995):** 

micro beads trapped by OAM light



spin

OAM

He et al., Physical Review Letters **75**, 826 (1995) Yao & Padgett, Advances in Optics and Photonics **3**, 161 (2011) Jesacher et al., Optics Express **14**, 6342 (2006)

## **Applications of twisted light**



offers a new degree of freedom that can be used to encode information

Erhardt et al., Light: Science & Applications 7, 17416 (2018)

#### Fundamental research with single atoms



#### **Optical communication**



Wang, Photonics Research **4**, B14-B28 (2016) Rubinzstein-Dunlop et al., J. Optics **19** (2017)

Rubinzstein-Dunlop et al., J. Opt. **19** (2017) Schmiegelow et al., Nat. Comm. **7** (2016)

### Solid state applications of twisted light ?

### manipulation of magnetism with OAM light

Prinz et al, arXiv:2206.070502



#### twisted light affects ultrafast demagnetization

but a direct transfer of orbital angular momentum can be ruled out

### **OAM beyond electro-magnetic waves**



#### Skeldon et al., NJP 10, 013018 (2008)

Gorodetski et al., PRL **101**, 043903 (2008) Spektor et al., Science **355**, 1187 (2017)

# Collaboration

Grisha Spektor Lior Gal Meir Orenstein

Technion-Israel, Haifa, Israel



P. Kahl D. Podbiel F. Meyer zu Heringdorf

University of Duisburg-Essen, Germany

UNIVERSITÄT DUISBURG ESSEN

Bettina Frank Simon Ristok Harald Giessen University of Stuttgart, Germany



Anna-Katharina Mahro Stefan Mathias Eva Prinz Michael Hartelt Tobias Eul Deirdre Kilbane

University of Kaiserslautern, Germany



## **Plasmonic modes**

#### Volume plasmon



#### Particle plasmon







#### Surface plasmon polariton





hybrid modes of a **light field** coupled to a **coherent longitudinal electron oscillation** propagating along the interface of a metal and a dielectric



**Dispersion relation** 



hybrid modes of a **light field** coupled to a **coherent longitudinal electron oscillation** propagating along the interface of a metal and a dielectric



• Optical grating or simple edge provides the missing momentum



hybrid modes of a **light field** coupled to a **coherent longitudinal electron oscillation** propagating along the interface of a metal and a dielectric



 Optical grid or simple edge provides the missing momentum



### **Photo Emission Electron Microscopy: PEEM**



#### Nanoparticle



time resolution: < 10<sup>-15</sup> sec ( < 1 *fs*)

## **Plasmon driven electron emission**

![](_page_15_Figure_1.jpeg)

plasmon energies < 3 eV

typical workfunctions: 4eV - 6 eV

### **Interferometric time-resolved PEEM technique**

![](_page_16_Figure_1.jpeg)

Wehner et al., Opt. Lett. 22 (1997)

### Light with a twist phase dislocation on an optical vortex

## Spin (SAM) **Orbital (OAM)** Light can carry angular momentum $\ell = 1$ $S_z = \pm \hbar$ $L_z = \pm l\hbar$ Helical beam TEM<sub>00</sub> Spiral Phase Plate

### Can we do this with plasmonic waves?

### Plasmonic Vortex Lens: Plasmonic Archimedes Spiral

![](_page_18_Picture_1.jpeg)

#### spiral phase profile

Phase singularity & rotational flow  $r(\phi) = r_0 + \frac{(m\phi\lambda_{spp})}{2\pi}$ 

*m* = geometrical charge of the vortex

## **Plasmonic Vortex Lens: Pioneering work**

![](_page_19_Figure_1.jpeg)

Phys. Rev. Lett. **101**, 043903 (2008)

### **Topological Charge q: Optical Spin Orbit Coupling**

![](_page_20_Figure_1.jpeg)

### **Plasmonic Vortex Lens preparation**

![](_page_21_Picture_1.jpeg)

![](_page_21_Figure_2.jpeg)

- Depth 3 5 µm flakes grown on Si
- Focussed Ion Beam (FIB) milling of slits

### SEM image

![](_page_21_Picture_6.jpeg)

#### **UV PEEM image**

![](_page_21_Picture_8.jpeg)

## **Spin-orbit coupling**

![](_page_22_Figure_1.jpeg)

q = 1 - 1

q = 1 + 1

## **High Order Plasmonic Vortex Lens**

![](_page_23_Figure_1.jpeg)

Distance (µm)

H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee Nano Letters 10, 529 (2010)

### m = 10 plasmonic vortex lens

Atomically flat single crystalline Au flakes

### UV PEEM image

![](_page_24_Picture_3.jpeg)

![](_page_24_Picture_4.jpeg)

![](_page_24_Picture_5.jpeg)

### **Interferometric time-resolved PEEM technique**

![](_page_25_Figure_1.jpeg)

Appl.Phys.B 74 (2002) 223

### **TR-PEEM movie: ultrafast dynamics of a plasmonic vortex**

![](_page_26_Picture_1.jpeg)

#### Science 355, 1187 (2017)

## Lifetime of a plasmonic vortex

![](_page_27_Figure_1.jpeg)

### **Experiment & Simulation**

**Grisha Spektor** 

![](_page_28_Picture_2.jpeg)

![](_page_28_Figure_3.jpeg)

### **FDTD Lumerical Simulation**

Science 355, 1187 (2017)

### **Reflection from boundaries**

![](_page_29_Figure_1.jpeg)

After n reflections:  
$$l_{\text{SPP}} = (m + s_{\text{light}}) + 2 \cdot m \cdot n$$

![](_page_29_Figure_3.jpeg)

Spektor, Prinz et al., Science Advances 7, 33 (2021)

### **Chiral cavity reflectors: ridges instead of slits**

![](_page_30_Picture_1.jpeg)

plasmonic chiral cavity of order *m*=5

ridge design facilitates ~95% reflectivity

![](_page_30_Picture_5.jpeg)

OAM of the order  $l=m+2 \cdot m$ 

### **Chiral cavity reflectors**

#### OAM of the order $l=m+2 \cdot m$

![](_page_31_Figure_2.jpeg)

 $l_0 = 5$   $l_1 = 15$   $l_0 = 25$ 

#### Sci. Adv. 2021, 7, eabg5571 (2021)

## **Lobe Angular Velocity**

![](_page_32_Figure_1.jpeg)

### m = 10 plasmonic vortex lens

![](_page_32_Figure_3.jpeg)

- # of lobes?
- Radial dependence?
- Angular dependence?

![](_page_32_Picture_7.jpeg)

### **Time-resolved NI-PEEM**

![](_page_33_Figure_1.jpeg)

\_\_\_\_\_

### Subtractive spin-orbit mixing process?

![](_page_34_Figure_1.jpeg)

All optical control of OAM delivered to the material in a nonlinear interaction process

## **Optical spin-orbit coupling conversion process**

![](_page_35_Picture_1.jpeg)

 conversion process occurs upon the interaction of the illumination with the structure

5 µm

- conversion process localized to the structure boundary
- once the SPPs are launched with the proper phases by the boundary, the topological charge of the to-be-formed vortex is predetermined.

### **Mixing the Light-Spin with Plasmon-Orbit**

![](_page_36_Figure_1.jpeg)

Interaction of a circularly polarized light pulse with a propagating (rotating) plasmonic vortex Mixing of different forms of angular momentum

Measured total OAM (e.g. by 2PPE) depends on the rotating frame of the probe

### **Intuition** rotating frame of the probe

![](_page_37_Figure_1.jpeg)

angular momentum carried by the vortex

angular momentum carried by the light

## Non-linear photoemission microscopy

![](_page_38_Figure_1.jpeg)

In a PEEM image, what do we really see?

## **Nonlinear optical spin-orbit interaction**

![](_page_39_Figure_1.jpeg)

F. Meyer zu Heringdorf, Duisburg

![](_page_40_Picture_1.jpeg)

the instantaneous photoemission is given by:

$$I_{inst}(x, y, t) \propto \left[\vec{E}_{light}(x, y, t) + \vec{E}_{SPP}(x, y, t)\right]^4$$

$$I_{inst} = E_{spp,x}{}^{4} + E_{L}{}^{4} + \alpha^{4}E_{spp,z}{}^{4} + 4E_{spp,x}{}^{3}E_{L} + 6E_{spp,x}{}^{2}E_{L}{}^{2} + 4E_{spp,x}E_{L}{}^{3} + 2 \cdot \alpha^{2}E_{spp,z}{}^{2}E_{L}{}^{2} + 4 \cdot \alpha^{2}E_{spp,z}{}^{2}E_{spp,x}E_{L} + 2 \cdot \alpha^{2}E_{spp,z}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}$$

![](_page_40_Figure_5.jpeg)

Mixing terms:

 $\implies I_{int} \propto E_{spp,x}{}^{i}E_{L}{}^{j}$ 

### **2PPE in a three-level system**

![](_page_41_Figure_2.jpeg)

first generation of coherence non-diagonal elements

then population of the next state

**Density Matrix:**  $\rho_{33} - \mu_{23} - \mu_{32} - \mu_{12} - \rho_{31} + \mu_{32} E^{-} + \mu_{21} E^{-} + \mu_{2$ 

Dynamics of the system are described by the Liouville-von Neumann equation

$$i\hbar \frac{\mathrm{d}\rho}{\mathrm{d}t} = \left[\widehat{H}, \rho\right] + i\hbar \frac{\partial\rho}{\partial t}\Big|_{diss}$$

![](_page_42_Picture_1.jpeg)

the instantaneous photoemission is given by:

$$I_{inst}(x, y, t) \propto \left[\vec{E}_{light}(x, y, t) + \vec{E}_{SPP}(x, y, t)\right]^4$$

$$I_{inst} = E_{spp,x}{}^{4} + E_{L}{}^{4} + \alpha^{4}E_{spp,z}{}^{4} + 4E_{spp,x}{}^{3}E_{L} + 6E_{spp,x}{}^{2}E_{L}{}^{2} + 4E_{spp,x}E_{L}{}^{3} + 2 \cdot \alpha^{2}E_{spp,z}{}^{2}E_{L}{}^{2} + 4 \cdot \alpha^{2}E_{spp,z}{}^{2}E_{spp,x}E_{L} + 2 \cdot \alpha^{2}E_{spp,z}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^{2}E_{spp,x}{}^$$

Mixing terms: 
$$\implies I_{int} \propto E_{spp,x}{}^{l}E_{L}{}^{J}$$

azimuthal phase dependence

Single angular momentum mixing

Double angular momentum mixing

$$\propto \cos((l - \sigma)\theta - \omega\Delta t)$$
 10 lobes

$$\propto \cos(2(l-\sigma)\theta - 2\omega\Delta t)$$
 20 lobes

### Quantum pathways in the density matrix

![](_page_43_Figure_1.jpeg)

#### Second order two-pulse autocorrelation: Transition in the frequency domain

![](_page_44_Figure_1.jpeg)

### Quantum pathways in the density matrix

![](_page_45_Figure_1.jpeg)

### Separating quantum pathways via Fourier transformation

$$l_{spp} = 4, \sigma_{light} = +1$$

![](_page_46_Figure_2.jpeg)

![](_page_46_Figure_3.jpeg)

![](_page_46_Figure_4.jpeg)

![](_page_46_Figure_5.jpeg)

$$l_{el} = l_{spp} - \sigma_{light}$$

![](_page_46_Picture_7.jpeg)

![](_page_46_Picture_9.jpeg)

$$l_{el} = 2(l_{spp} - \sigma_{light})$$

![](_page_46_Picture_11.jpeg)

![](_page_46_Figure_12.jpeg)

![](_page_46_Picture_13.jpeg)

### Separating quantum pathways via Fourier transformation

![](_page_47_Figure_1.jpeg)

Phys. Rev. X **9**, 021031 (2019) ACS Photonics 2023, 10, 340–367  Time-resolved interferometric PEEM technique

![](_page_48_Picture_2.jpeg)

 Dynamics of OAM in plasmonic vortices: Real time view of a spiral phase,

 Demonstration of nonlinear optical spin-orbit conversion

![](_page_48_Picture_5.jpeg)