

A. Rosch

Active Magnetic Matter: Propelling Ferrimagnetic Domain Walls by Dynamical Frustration <u>https://arxiv.org/abs/2405.14320</u>

Active Magnetic Matter

Nina del Ser

University of Cologne, Caltech

08/08/2024

in Textures: Magnetism meets Plasmonics

Active matter systems

- Constituent units use local energy to induce, e.g., motion
- Far from equilibrium
- Flocking, long-range order, new phase transitions..

Flock of starlings

Briggs-Rauscher reaction

Plan of the talk

- 1. Identify a magnetic system with "active" units
- 2. Investigate dynamical properties of a single unit
- 3. Many units together?

Energy injected into system by oscillating magnetic field B(t)

Spin Dynamics

• Dynamics governed by the Landau Lifshitz Gilbert (LLG) equation (1955)

 $\mathbf{B}_{\mathrm{eff}}$

Goldstone Mode Activatio

- Magnetic textures have translational ar
- Driving the system out of equilibrium u lasers, activates these

$\wedge \wedge \wedge \rangle$

Goldstone mode
$$\varphi = A t$$
, $A \propto B^2$

A linear in power injected into the system!

For more details, see:

Imaging the Ultrafast Coherent Control of a **Skyrmion Crystal** P. Tengdin et al., PRX 12, 041030 (2022)

Skyrmion Jellyfish in Driven Chiral Magnets

N. del Ser & V. Lohani, SciPost Phys. 15,065 (2023)

Archimedean Screw in Driven Chiral Magnets N. del Ser, L. Heinen & A. Rosch, SciPost Phys. 11, 009 (2021)

translational

translational /rotational

In this talk, apply this principle to **driven ferrimagnets**...

1. Identify magnetic system with "active" units

A ferrimagnetic chain

A driven ferrimagnetic chain

 $B_z(t) = B_0 \cos(\omega t)$

$$H = J \sum_{\langle i,j \rangle} S_i^{x} S_j^{x} + S_i^{y} S_j^{y} - \Delta S_i^{z} S_j^{z} + \sum_i \frac{\delta_2}{2} (S_i^{z})^2 + \frac{\delta_4}{2} (S_i^{z})^4 - g_i B_z(t) S_i^{z}$$

Goldstone mode activated!

 $[\]phi$ is a Goldstone mode!

A driven ferrimagnetic chain

 $B_z(t) = B_0 \cos(\omega t)$

$$H = J \sum_{\langle i,j \rangle} S_i^{x} S_j^{x} + S_i^{y} S_j^{y} - \Delta S_i^{z} S_j^{z} + \sum_i \frac{\delta_2}{2} (S_i^{z})^2 + \frac{\delta_4}{2} (S_i^{z})^4 - g_i B_z(t) S_i^{z}$$

1. Identify magnetic system with "active" units

What if we glue them together before driving?

(ferrimagnetic domain wall)

1. Identify magnetic system with "active" units

Dynamical Frustration

How to resolve this entralia dox?

Solution: domain wall starts to move!

Spin Textures: Magnetism meets Plasmonics

Calculate v

Calculate v for finite α

Need to solve some horrible coupled non-linear equations..

$$\begin{split} -\operatorname{sign}(\gamma)\dot{\phi}_{e/o}\sin(\theta_{e/o}) - \alpha\dot{\theta}_{e/o} &= -\sin(\theta_{e/o})\left(\delta_{2}\cos(\theta_{e/o}) + \delta_{4}\cos^{3}(\theta_{e/o})\right) \\ &+ 2J\left(\Delta\sin(\theta_{e/o})\cos(\theta_{o/e}) - \cos(\theta_{e/o})\sin(\theta_{o/e})\cos(\phi_{e/o} - \phi_{o/e})\right) \\ &- a^{2}J\left(\\ \theta_{o/e}^{\prime\prime}(\Delta\sin(\theta_{e/o})\sin(\theta_{o/e}) + \cos(\theta_{e/o})\cos(\theta_{o/e})\cos(\phi_{e/o} - \phi_{o/e})) \\ &+ (\theta_{o/e}^{\prime})^{2}(\Delta\sin(\theta_{e/o})\cos(\theta_{o/e}) - \cos(\theta_{e/o})\sin(\theta_{o/e})\cos(\phi_{e/o} - \phi_{o/e})) \\ &+ (\theta_{o/e}^{\prime})^{2}(\Delta\sin(\theta_{e/o})\cos(\theta_{o/e})\sin(\phi_{e/o} - \phi_{o/e}) \\ &+ \cos(\theta_{e/o})\sin(\theta_{o/e})\phi_{o/e}^{\prime\prime}(x)\sin(\phi_{e/o} - \phi_{o/e}) \\ &- \cos(\theta_{e/o})\sin(\theta_{o/e})\phi_{o/e}^{\prime\prime}(x)\sin(\phi_{e/o} - \phi_{o/e}) \\ &- \cos(\theta_{e/o})\sin(\theta_{o/e})(\phi_{o/e}^{\prime})^{2}\cos(\phi_{e/o} - \phi_{o/e}) \\ &- Ja^{2}\sin(\theta_{e/o})\left(\sin(\phi_{e/o} - \phi_{o/e})\left(\sin(\theta_{o/e})\phi_{o/e}^{\prime2} - \theta_{o/e}^{\prime\prime}\cos(\theta_{o/e})\right) \\ &+ 2\theta_{o/e}^{\prime}\cos(\theta_{o/e})\phi_{o/e}^{\prime}\cos(\phi_{e/o} - \phi_{o/e}) \\ &+ Ja^{2}\sin(\theta_{e/o})\left(\sin(\phi_{e/o} - \phi_{o/e}) + \theta_{o/e}^{\prime2}\sin(\theta_{o/e})\sin(\phi_{e/o} - \phi_{o/e})\right) \\ &+ \sin(\theta_{o/e})\phi_{o/e}^{\prime\prime}\cos(\phi_{e/o} - \phi_{o/e}) \\ &+ \sin(\theta_{o/e})\phi_{o/e}^{\prime\prime}\cos(\phi_{e/o} - \phi_{o/e}) \\ \end{pmatrix}\right]. \end{split}$$

08/08/2024

Calculate v for finite α

Amazingly, an approximate solution exists (details in paper):

 ho_s is the spin stiffness, ξ_0 the domain wall width, η a prefactor known analytically

regime!

Qualitatively new

v as a function of the driving strength B_0

Increase B_0 ?..

t = 0.0065T

domain wall gets **stuck**!

Stuck Solution

At higher B_0 , domain wall gets **stuck**

Tension build up from spins far from the DW rotating released every T_{rot} as two sharp pulses!

Topological Considerations

Define winding number

space time indices

$$W = \frac{1}{2\pi} \int \mathrm{d}\boldsymbol{q} \cdot \nabla_{\boldsymbol{q}} \phi$$

$$\mathrm{d}\boldsymbol{q} = (\mathrm{d}t, \mathrm{d}x), \ \nabla_q = (\partial_t, \partial_x)$$

Winding number only **changes** when n_z -axis is **crossed**!

Stuck Solution: Topology

Scan as a function of *x*

Topology of Moving vs. Stuck

- Spins don't have enough energy to cross zaxis
- W is conserved everywhere finite v needed

- Spins have enough energy to cross *z*-axis
- W is **approximately** conserved
- At space-time vortex locations, W jumps by quantised multiples of 2π
- No need for finite *v*

1. Identify magnetic system with "active" units 2. Dynamical properties 3. Many Domain Walls

Many Domain Walls

- Investigate numerically what happens in a driven system containing many domain walls
- Compare to equilibrium case (no driving) at finite temperature

Many Driven Domain Walls

- Start with antiferromagnetic initial state with a small random S^z component
- Create domain walls by quenching to ferrimagnet
- Domain walls move and annihilate when they meet

DW world lines and phase gradient $\phi(x)$

Velocity distribution of DWs

2D Domain Wall Party

noisy, no drive

noisy, driven

Correlation Length Driven vs Non-Driven

- Number of DWs $n_{\rm DW}$ decreases over time \rightarrow Correlation length $\xi = 1/n_{\rm DW}$ increases
- ξ in driven system is about 10^5 vs 20 sites in the non-driven system at similar T!

Time Dependence of Correlation Length I

- Domain walls move and annihilate when they meet
- $\xi = 1/n_{\rm DW}$ grows very fast compared to equilibrium system

Time Dependence of Correlation Length II

Independently right- and left-moving domain walls:

Healing mechanism

- Remember the (approximately) conserved winding number W? \rightarrow Define top. charge $\rho_{top} = \partial_x \phi$.
- Associated top. current is $j_{top} \approx \frac{\omega_{rot}}{2\pi}$ far from domain wall \rightarrow Build up of ρ_{top} at centre of DW and when 2 DWs meet and annihilate.
- ho_{top} decays very slowly by diffusion. Enough time to repel incoming DW.

 $\dot{S^z} + \nabla_x j = 0$

Spin current $j \sim \partial_x \phi$ too!

Summary

- 1. Driving a ferrimagnet with B(t) makes it "active"
- 2. Active units are domain walls moving at $\pm v$ (direction chosen by spontaneous symmetry breaking)
- 3. At higher *B*, domain wall gets stuck, emergence of space-time vortices.
- 4. $W = \frac{1}{2\pi} \int d\boldsymbol{q} \cdot \nabla_q \phi$ (approximately) conserved
- 5. Dynamics of many domain walls **very different** in driven vs. equilibrium cases

Thanks for listening!

Active Magnetic Matter: Propelling Ferrimagnetic Domain Walls by Dynamical Frustration https://arxiv.org/abs/2405.14320

Contact me at: ninadelser@gmail.com, ndelser@caltech.edu

Questions?