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Plan of this talk

spin moiré 
๏ superstructure, topology, and emergent electromagnetic field 
๏ spin moiré engineering: type, number, amplitude of waves, twist angle, phase shift 
๏ complete topological phase diagram for 2D skyrmions and 3D torons 

itinerant frustration 
๏ localized spin systems vs itinerant electron systems 
๏ effective long-range/multiple spin interactions by the Fermi surface effects 
๏ applications to 2D skyrmion crystals and 3D toron crystals



spin moiré



Moiré

figures are taken from Wikipedia

Superstructures are flexibly controlled by many parameters: 
number of superposed waves, pitches, amplitudes, relative phases, twist angles, etc.

๏ interference pattern generated by a superposition of multiple waves



Moiré in condensed matter physics
๏ moiré superstructures in twisted 2D van der Waals materials
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proximity effects. The carrier density n is tuned by applying a voltage 
to a Pd/Au bottom gate electrode. In Fig. 1b we show the longitudi-
nal resistance Rxx as a function of temperature for two magic-angle 
devices, M1 and M2, with twist angles of 1.16° and 1.05°, respectively. 
At the lowest temperature studied of 70 mK, both devices show zero 
resistance, and therefore a superconducting state. The critical temper-
ature Tc as calculated using a resistance of 50% of the ‘normal’-state 
(non-superconducting) value is approximately 1.7 K and 0.5 K for the 
two devices that we studied in detail. In Fig. 1c, d we show a single- 
particle band structure and density of states (DOS) near the charge 
neutrality point calculated for θ = 1.05°. The superconductivity in both 
devices occurs when the Fermi energy EF is tuned away from charge 
neutrality (EF = 0) to be near half-filling of the lower flat band (EF < 0, 
as indicated in Fig. 1d). The DOS within the energy scale of the flat 
bands is more than three orders of magnitudes higher than that of 
two uncoupled graphene sheets, owing to the reduction of the Fermi 
velocity and the increase in localization that occurs near the magic 
angle. However, the energy at which the DOS peaks does not gener-
ally coincide with the density that is required to half-fill the bands. 
In addition, we did not observe any appreciable superconductivity 
when the Fermi energy was tuned into the flat conduction bands 
(EF > 0). In Fig. 1e we show the current–voltage (I–Vxx, where Vxx 
is the four-probe voltage, as defined in Fig. 1a) curves of device M2 
at different temperatures. We observe typical behaviour for a two- 
dimensional superconductor. The inset shows a tentative fit of the 
same data to a Vxx ∝ I3 power law, as is predicted in a Berezinskii–
Kosterlitz–Thouless transition in two-dimensional superconductors23. 
This analysis yields a Berezinskii–Kosterlitz–Thouless transition tem-
perature of TBKT ≈ 1.0 K at n = −1.44 × 1012 cm−2, where, as before, 

n is the carrier density induced by the gate and measured from the 
charge neutrality point (which is different from the actual carrier  
density involved in transport, as we show below).

In contrast to other known two-dimensional and layered super-
conductors, the superconductivity in magic-angle TBG requires the 
application of only a small gate voltage, corresponding to a minimal 
density of only 1.2 × 1012 cm−2 from charge neutrality, an order of mag-
nitude lower than the value of 1.5 × 1013 cm−2 in LaAlO3/SrTiO3 inter-
faces and of 7 × 1013 cm−2 in electrochemically doped MoS2, among 
others24. Therefore, gate-tunable superconductivity can be realized 
in a high-mobility system without the need for ionic-liquid gating or 
chemical doping. In Fig. 2a we show the two-probe conductance of 
device M1 versus n at zero magnetic field and at a 0.4-T perpendic-
ular magnetic field. Near the charge neutrality point (n = 0), a typical 
V-shaped conductance is observed, which originates from the renor-
malized Dirac cones of the TBG band structure. The insulating states 
centred at approximately ±3.2 × 1012 cm−2 (which corresponds to ns 
for θ = 1.16°) are due to single-particle bandgaps in the band structure 
that correspond to filling ±4 electrons in each superlattice unit cell. In 
between, there are conductance minima at ±2 and ±3 electrons per 
unit cell. These minima are associated with many-body gaps induced by 
the competition between the Coulomb energy and the reduced kinetic 
energy due to confinement of the electronic state in the superlattice 
near the magic angle; these gaps give rise to insulating behaviour near 
the integer fillings18. One possible mechanism for the gaps is similar 
to the gap mechanism in Mott insulators, but with an extra two-fold 
degeneracy (for the case of ±2 electrons) from the valleys in the origi-
nal graphene Brillouin zone17,18,25,26. In the vicinity of −2 electrons 
per unit cell (n ≈ −1.3 × 1012 cm−2 to n ≈ −1.9 × 1012 cm−2) and at a 
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Figure 2 | Gate-tunable superconductivity in magic-angle TBG. 
a, Two-probe conductance G2 = I/Vbias of device M1 (θ = 1.16°) measured 
in zero magnetic field (red) and at a perpendicular field of B⊥ = 0.4 T 
(blue). The curves exhibit the typical V-shaped conductance near charge 
neutrality (n = 0, vertical purple dotted line) and insulating states at the 
superlattice bandgaps n = ±ns, which correspond to filling ±4 electrons 
in each moiré unit cell (blue and red bars). They also exhibit reduced 
conductance at intermediate integer fillings of the superlattice owing to 
Coulomb interactions (other coloured bars). Near a filling of −2 electrons 
per unit cell, there is considerable conductance enhancement at zero field 
that is suppressed in B⊥ = 0.4 T. This enhancement signals the onset of 

superconductivity. Measurements were conducted at 70 mK; Vbias = 10 µV. 
b, Four-probe resistance Rxx, measured at densities corresponding to 
the region bounded by pink dashed lines in a, versus temperature. Two 
superconducting domes are observed next to the half-filling state, which 
is labelled ‘Mott’ and centred around −ns/2 = −1.58 × 1012 cm−2. The 
remaining regions in the diagram are labelled as ‘metal’ owing to the 
metallic temperature dependence. The highest critical temperature 
observed in device M1 is Tc = 0.5 K (at 50% of the normal-state resistance). 
c, As in b, but for device M2, showing two asymmetric and overlapping 
domes. The highest critical temperature in this device is Tc = 1.7 K.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

figure is taken from Wikipedia Y. Cao et al., Nature 556, 43 (2018)

twistronics by modulated flat band and electron correlation in moiré superstructures



Spin moiré
๏ interference pattern generated by a superposition of spin density waves

+ =

+ =

๏ richer variety of textures due to the vector fields 
๏ richer physics due to the topological properties

vortex crystal

skyrmion crystal

CHAPTER 1. INTRODUCTION

(a) (b)

(d)

(c)

Figure 1.4: Schematic pictures of (a) a skyrmion with Nsk = −1 and ζ = 1, (b) an
antiskyrmion with Nsk = 1 and ζ = −1, and (c) a skyrmion with Nsk = −2 and ζ = 2.
(d) Schematic of the projection from the hedgehog in 3D space to the skyrmion in 2D
space.

Skyrmion

Similar to the projection from vortices to domain walls in Fig. 1.2(b), we can
generate 2D topological spin textures by a projection from the 3D hedgehogs. The
resultant textures are called skyrmions. The skyrmions are topological solitons first
proposed to explain hadrons in nuclear physics [11]. Later, their realization in spin
textures was pointed out [12–15], and indeed, they have been recently discovered
in magnetic materials as introduced in Sec. 1.3. The skyrmions are the topological
defects characterized by the same homotopy group π2(S2) as the hedgehogs, but
do not have any singular points where the spin length vanishes as the domain
walls. The real-space spin configurations are exemplified in Figs. 1.4(a)-1.4(c).
They are characterized by the topological number called the skyrmion number,
which is defined as [2, 8, 16]

Nsk =
1

4π

∫
dxdy bz(r), (1.5)

where the integral is taken over the 2D plane. This quantity counts how many times
the spins on the plane wrap a 3D unit sphere, similar to the topological charge
in Eq. (1.3). The skymions in Figs. 1.4(a), 1.4(b), and 1.4(c) have Nsk = −1,
1, and −2, respectively. The skyrmions with positive (negative) Nsk are called
(anti)skyrmions. Note that the skyrmion number is related with the vorticity in
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Emergent electromagnetic field
๏ emergent magnetic field

๏ emergent electric field

๏ Spin moiré harbors a superstructure of emergent electric and magnetic fields. 
➡ interesting magnetic, electric, optical, and transport phenomena

toron crystal
hedgehog

antihedgehog

toron

hedgehog antihedgehog antimonopolemonopole

monopole-
antimonopole pair



Experimental realization
๏ Skyrmion and toron crystals have been found in many materials, e.g., in B20 compounds.

sense, HLs provide an invaluable arena to study the electronic
responses in the presence of dense emergent monopoles which can be
controlled by B. In HLs, emergent monopoles and anti-monopoles
exist already at zero magnetic field, however, the entire Beff cancels out
when averaged over the whole lattice.63 Upon application of B, emer-
gent monopoles (anti-monopoles) move in the parallel (antiparallel)
directions, creating longer skyrmion strings with a negative Beff .

63 As a
result, THE60,71 or TNE80 gradually emerge from the zero-field and
remain up to the ferromagnetic (FM) transition. This is in stark con-
trast to SkLs, where THE appear as a step-like anomaly in qT

yx , only in
a limited B-range where SkL is stabilized.43,44,46,79,81

The most remarkable consequences of the B-induced monopole/
anti-monopole dynamics appear at the FM phase boundary, in associ-
ation with their annihilation process. The examples observed for
MnGe include a positive anomaly in magneto-resistivity (MR),63,89

elastic softening,63,90 enhancement of the Seebeck coefficient (S),91 and
the emergence of the positive THE;60,71,92 which all originate from the
novel electron scattering due to the dynamic fluctuations of Beff .
Indeed, the unusual behaviors of MR and S are suppressed in the low-
temperature and high-magnetic-field limit, suggesting their relevance
to magnetic fluctuations.91 The existence of non-trivial magnetic fluc-
tuations above the FM transition imply that there may be robust or
pinned excitations of non-coplanar spin arrangements like hedgehogs
which scatter the electrons. Detailed exploration into their origin and
the manipulation of such unusual magnetic excitations would be a
future challenge to be addressed.

In this Perspective, we have discussed the formation mechanisms
of topological spin crystals, where the complex interplay of the under-
lying magnetic interactions governs the dimensionality, topology, and
density of these spin excitations. In this context, tailoring thin films
and heterostructures can be one promising approach toward realiza-
tion of novel topological spin structures by introducing additional sur-
face and interface effects.30,93,94 For instance, tuning the film thickness

gives rise to new multiple-q states (e.g., deformed-3 q state in MnGe
film) via strain engineering,95 or a new type of particle-like singulari-
ties, so-called chiral bobbers96,97 (e.g., seen at the surface of the FeGe
film98). Identification of the electrodynamics in these novel topological
spin crystals will be the next step.99

Also, the growing field of multilayer systems has enabled us to
tune the properties of skyrmions, which has been discussed in several
excellent review articles.8,10,100,101 The broken inversion symmetry at
the interface between the FM layer and heavy metal layer induces
interfacial DMI (with in-plane DM vectors), which leads to the for-
mation of N!eel-type skyrmions. The room-temperature stabil-
ity67,68,102–104 has been achieved via the repetition of multilayers (e.g.,
Pt/Co/Ta and67 Ir/Fe/Co/Pt68), while the atomic-size skyrmions are
realized with the combination of large interfacial DMI and four-spin
interactions (e.g., Fe/Ir69 and PdFe/Ir70). More recently, an antiferro-
magnetic skyrmion was realized in the heterostructure with antiferro-
magnetic interlayer couplings (e.g., Pt/Co/Ru).105 Thus, the
advantage of thin film or heterostructure engineering, i.e., the inten-
tional control of magnetic interactions, offers immense possibility in
realizing skyrmions with the desired properties.

Last but not least, one future direction would be the realization of
gigantic emergent responses through the manipulation of skyrmions
and emergent monopoles. In terms of electrical power generation, an
important issue would be to harness the emergent electric field
Ei ¼ "h

2e nðrÞ $ ½@inðrÞ & @tnðrÞ',
6 which is generated, for example, by

the driven motion of topological objects carrying magnetic flux, in
analogy to Faraday’s law of induction. While it has been verified in the
current-driven SkL,106–108 driven motion of emergent monopoles
remains largely unexplored. Given the dense Beff arising from such
magnetic singularities,60 large emergent electric generation would be
possible once their driven motion is available.

The strong coupling among the spin-charge-lattices would allow
the external control of skyrmions and emergent monopoles by various

FIG. 2. Variation of the magnetic period (k) in MnSi1(xGex
71 and Mn1(yFeyGe.

76 The origin of the extremely short k in hedgehog lattices (k < 2.8 nm) remains elusive.
Transitions among three different topological spin crystals are realized in MnSi1(xGex by the lattice constant change (i.e., bandwidth control), while the helicity reversal of the
skyrmion lattice is induced by the sign change of the Dzyaloshinskii–Moriya interaction through the band filling control in Mn1(yFeyGe.

Applied Physics Letters PERSPECTIVE scitation.org/journal/apl

Appl. Phys. Lett. 116, 090501 (2020); doi: 10.1063/1.5139488 116, 090501-4

Published under license by AIP Publishing

Y. Fujishiro, N. Kanazawa, and Y. Tokura, Appl. Phys. Lett. 116, 090501 (2020) 



Motivation-1

Based on the spin moiré picture for multiple spin density waves, 

to investigate the effect of modulations of moiré parameters 

to explore spin textures that have been overlooked in the previous studies 

to systematically elucidate possible phase transitions in both magnetic and topological aspects

๏ advantages of spin moiré, compare to the structural moiré in twisted 2D materials 

- more variety of moiré patterns owing to vector (spinor) fields 
- nontrivial topology 
- emergent electromagnetic fields, leading to exotic quantum phenomena 
- possible to make more than two-dimensional moiré 
- possible to control by external fields, like magnetic field, pressure, and temperature



Spin moiré engineering

๏ various ways of moiré modulations 

- types of waves (ex. helix or sinusoidal) 

- number of waves 
- amplitude of waves 

- angle between propagation directions 

- relative phases of waves 

- etc.
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元的な SkLへ（左），逆に増大した場合に一次元的な螺旋
へ（右）と変化する様子を示している．こうした変化に伴っ
て，多重 q磁気構造のトポロジカルな性質や創発電磁場が
変化することが期待される．
我々は，長距離に及ぶハイゼンベルグ型相互作用と双二
次相互作用が拮抗する模型において，異方的な相互作用
（ xy面内で J，面間 z方向で J  ′）を導入することで，このよ
うな変化が実際に生じることを見出した．その結果を図 3
中段に示す．ここでは，相互作用の異方性に対して，各波
の振幅mqηと磁気ヘッジホッグの総数Nmをプロットして
いる．この模型では，J  ′/J＝1の等方的な場合には，3つの
螺旋の重ね合わせからなるHL（3q-HL）（上段中）が得られ
るが，J  ′を弱くしていくと（J  ′/J<1），z方向に伝搬する波
の振幅が小さくなり，J  ′/J≃0.9付近でそれが消失すること
で二次元的な渦結晶（2q-VC）（上段左）へと相転移する．

この相転移は，磁気ヘッジホッグの消失に伴うトポロジカ
ルな性質の変化を伴っている．一方，J  ′を強くした場合
（J/J  ′<1）には，複雑な逐次相転移が生じることを見出し
た．まず，J/J  ′≃0.9付近で 3つの螺旋の重ね合わせを保っ
たまま磁気ヘッジホッグが消失するトポロジカル転移が生
じ，その後 J/J  ′≃0.7付近で 2q-VCへ，J/J  ′≃0.5付近で一次
元的な螺旋（1q-H）（上段右）への相転移が生じる．
ここでとりわけ興味深いのは，J/J  ′≃0.9付近のトポロジ
カル転移である．そこでは，転移の前後で磁気構造には大
きな変化が見られないにもかかわらず，磁気ヘッジホッグ
が消滅する（正確にはヘッジホッグと反ヘッジホッグが対
消滅を起こす）．このトポロジカルな変化に伴って，創発
磁場に大きな変化が生じる．その様子を図 3下段に示す．
J/J  ′＝1の等方的な場合にはヘッジホッグが等間隔で並ん
でいるが（左），J  ′を強くしていくと特定のペア同士が近付
き（中），対消滅によるトポロジカル転移を起こしたのち，
非共面的なスピン配置による創発磁場のみが残った状態
（右）となることがわかる．

3.　ひねり角
2つ目の例として，重ね合わせる波の伝搬方向の相対角

（ひねり角）の変化によるスピンモアレエンジニアリング
を考えよう．6）ここでは，図 4（a）に示すように，互いに角
度Θだけ傘を開いた 3つの螺旋の重ね合わせを考える．Θ
を変化させることで，図 4（b）に示すように，Θ＝0におけ
る一次元的な 1q-Hから，0<Θ<π / 2における三次元的な
3q-HL，Θ＝π / 2における二次元的な 3q-SkLと，次元性の
異なる磁気構造を行き来することができる．このような伝
搬角度の変化は，膜厚 7）や磁場 8）の変化によって生じるこ
とが実験的に報告されている．こうした変化に伴い，前節
における振幅の変調とは異なるトポロジカルな性質や創発
電磁場の変化が期待される．
我々は，Θに加えて全磁化mの変化も考慮することで，

興味深いトポロジカル転移が生じることを見出した．その
結果を図 4（c）に示す．Θとmの変化に対して，磁気ヘッ
ジホッグの総数Nmが異なる 3つのトポロジカル相が現れ
ることが見てとれる．これらの間の転移では，前節のよう
に磁気ヘッジホッグの対消滅が生じ，それに応じて創発磁
場の総和 hEMFも変化する．この場合には，3つの対消滅が

図 3　実空間スピン配置（上段），各螺旋の振幅mqηや磁気単位胞あたりの
磁気ヘッジホッグの総数Nm（中段），および磁気ヘッジホッグと創発磁場
の実空間分布（下段）の異方性に対する変化．下段において，矢印は各点
における創発磁場，灰色の曲面は創発磁場の強度の等値面を表す．

図 4　（a）3つの螺旋の重ね合わせにおけるひねり角Θと，（b）その変化に対する磁気構造の実空間スピン配置．（c）Θと全磁化mの変化に対する創発磁場の総
和 hEMF ．図中の整数は磁気ヘッジホッグの総数Nmを表す．

rich variety of magnetic and topological properties, quantum transport, and optical properties

}
K. Shimizu, S. Okumura, Y. Kato, and Y. Motome, Phys. Rev. B 103, 054427 (2021)

K. Shimizu, S. Okumura, Y. Kato, and Y. Motome, Phys. Rev. B 103, 184421 (2021)

K. Shimizu, S. Okumura, Y. Kato, and Y. Motome, Phys. Rev. B 105, 224405 (2022) 

3最近の研究から　トポロジカル磁気構造におけるスピンモアレエンジニアリング

©2023 日本物理学会

元的な SkLへ（左），逆に増大した場合に一次元的な螺旋
へ（右）と変化する様子を示している．こうした変化に伴っ
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図 3　実空間スピン配置（上段），各螺旋の振幅mqηや磁気単位胞あたりの
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図 4　（a）3つの螺旋の重ね合わせにおけるひねり角Θと，（b）その変化に対する磁気構造の実空間スピン配置．（c）Θと全磁化mの変化に対する創発磁場の総
和 hEMF ．図中の整数は磁気ヘッジホッグの総数Nmを表す．
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superpositions of three proper screws with the wave vectors q1, q2,
and q3. (b) and (c) are obtained from (a) by the phase shift of π

2
and π, respectively. The left panels display the schematic pictures
of the superposed waves and the right panels show the spin textures
obtained by the superpositions. The color of the arrows in the left
panels represents the out-of-plane component of spins, as indicated
in the inset of (c). The skyrmion number changes from (a) Nsk = 1 to
(b) Nsk = 0, and to (c) Nsk = −1, and the symmetry of the spin tex-
ture changes from (a) sixfold, (b) threefold, and (c) sixfold rotational
symmetry. The black rhombus represents the magnetic unit cell. See
Sec. III B for the details.

between them.
Among such parameters in spin moiré, it was recently

pointed out that the phase degree of freedom in the super-
posed waves is an important parameter to control not only the
spin textures but also their symmetry and topological proper-
ties [64, 65]. The situation is illustrated for superpositions of
three proper screws in Fig. 1. Figure 1(a) shows a SkL by a
superposition of three proper screws running in the 120◦ direc-
tions of q1, q2, and q3. The spin texture comprises a hexag-
onal array of skyrmions with the skyrmion number Nsk = 1
per magnetic unit cell and has sixfold rotational symmetry;
see Sec. III B for the details. Let us consider a phase shift in

the q1 component from this state. The results obtained by π
2

and π shifts are shown in Figs. 1(b) and 1(c), respectively. The
symmetry is reduced to threefold for the π

2 shift, but recovered
to sixfold for the π shift. Accordingly, the topological prop-
erty is also changed: The π

2 shift gives a periodic array of half
skyrmions called merons and antimerons, leading to Nsk = 0,
while the π shift leads to a SkL with Nsk = −1. Thus, the
phases of the superposed waves are relevant degrees of free-
dom, but their impact has not been fully elucidated thus far,
for not only SkLs but also the other topological spin textures
like HLs.

In this paper, we systematically clarify the effect of
phase shifts on the typical multiple-Q spin textures, two-
dimensional (2D) SkLs and three-dimensional (3D) HLs, fo-
cusing on their topological properties and the emergent mag-
netic fields. We first establish a generic framework to deal
with the phase shift by introducing the hyperspace with an ad-
ditional dimension corresponding to the phase degree of free-
dom, inspired by the description of the phason degree of free-
dom in quasicrystals [66–69]. In the hyperspace representa-
tion, the 2D SkLs composed of the three spin density waves
with the phase degree of freedom are mapped to 3D HLs in
which the Dirac strings connecting the hedgehogs and anti-
hedgehogs correspond to the skymion and antiskyrmion cores
in the original 2D SkLs. Similarly, the 3D HLs composed
of four spin density waves are mapped to four-dimensional
(4D) loop lattices in which intersections of the membranes
defined by the loops, which we call “the Dirac planes”, by 3D
hyperplanes give hedgehog-antihedgehog pairs connected by
the Dirac strings in the original 3D HLs. Analyzing the topo-
logical objects in the hyperspace representation, we systemat-
ically elucidate the evolution of the multiple-Q spin structures
for the phase shift as well as the magnetization change.

In the 2D case, considering the superpositions of three
proper screws or sinusoidal waves, we obtain various 3Q-
SkLs with Nsk ranging from −2 to 2 depending on the phase
and magnetization. We find that the phase diagram is dom-
inated by the SkLs with Nsk = ±1 in the case of the proper
screw superpositions, whereas the Nsk = ±2 regions become
wider in the sinusoidal case. Interestingly, at zero magnetiza-
tion, we always obtain the Nsk = ±1 (±2) SkLs for any phase
shifts in the screw (sinusoidal) case; namely, the Nsk = ±2
(±1) SkLs are obtained only with nonzero magnetization in
the screw (sinusoidal) case.

On the other hand, in the 3D case, we clarify the topological
phase diagrams for the superpositions of four proper screws or
sinusoidal waves. We find various 4Q-HLs classified by the
number of the hedgehogs and antihedgehogs per unit cube,
Nm: Nm = 8, 16, 32, and 48 for the screw case, and Nm = 8
16, 24, 32, and 48 for the sinusoidal case. For the former case,
the emergent magnetic field is always negative, while for the
latter, it takes both positive and negative values. Notably, we
find unusual Dirac strings running on the horizontal planes
perpendicular to the magnetization direction. In the case of
the screw superpositions, they give rise to pair creation of the
hedgehogs and antihedgehogs and accordingly the increase of
Nm from 16 to 48 while increasing the magnetization. This is
highly unusual since the increase of the magnetization usually
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and π, respectively. The left panels display the schematic pictures
of the superposed waves and the right panels show the spin textures
obtained by the superpositions. The color of the arrows in the left
panels represents the out-of-plane component of spins, as indicated
in the inset of (c). The skyrmion number changes from (a) Nsk = 1 to
(b) Nsk = 0, and to (c) Nsk = −1, and the symmetry of the spin tex-
ture changes from (a) sixfold, (b) threefold, and (c) sixfold rotational
symmetry. The black rhombus represents the magnetic unit cell. See
Sec. III B for the details.

between them.
Among such parameters in spin moiré, it was recently

pointed out that the phase degree of freedom in the super-
posed waves is an important parameter to control not only the
spin textures but also their symmetry and topological proper-
ties [64, 65]. The situation is illustrated for superpositions of
three proper screws in Fig. 1. Figure 1(a) shows a SkL by a
superposition of three proper screws running in the 120◦ direc-
tions of q1, q2, and q3. The spin texture comprises a hexag-
onal array of skyrmions with the skyrmion number Nsk = 1
per magnetic unit cell and has sixfold rotational symmetry;
see Sec. III B for the details. Let us consider a phase shift in

the q1 component from this state. The results obtained by π
2

and π shifts are shown in Figs. 1(b) and 1(c), respectively. The
symmetry is reduced to threefold for the π

2 shift, but recovered
to sixfold for the π shift. Accordingly, the topological prop-
erty is also changed: The π

2 shift gives a periodic array of half
skyrmions called merons and antimerons, leading to Nsk = 0,
while the π shift leads to a SkL with Nsk = −1. Thus, the
phases of the superposed waves are relevant degrees of free-
dom, but their impact has not been fully elucidated thus far,
for not only SkLs but also the other topological spin textures
like HLs.

In this paper, we systematically clarify the effect of
phase shifts on the typical multiple-Q spin textures, two-
dimensional (2D) SkLs and three-dimensional (3D) HLs, fo-
cusing on their topological properties and the emergent mag-
netic fields. We first establish a generic framework to deal
with the phase shift by introducing the hyperspace with an ad-
ditional dimension corresponding to the phase degree of free-
dom, inspired by the description of the phason degree of free-
dom in quasicrystals [66–69]. In the hyperspace representa-
tion, the 2D SkLs composed of the three spin density waves
with the phase degree of freedom are mapped to 3D HLs in
which the Dirac strings connecting the hedgehogs and anti-
hedgehogs correspond to the skymion and antiskyrmion cores
in the original 2D SkLs. Similarly, the 3D HLs composed
of four spin density waves are mapped to four-dimensional
(4D) loop lattices in which intersections of the membranes
defined by the loops, which we call “the Dirac planes”, by 3D
hyperplanes give hedgehog-antihedgehog pairs connected by
the Dirac strings in the original 3D HLs. Analyzing the topo-
logical objects in the hyperspace representation, we systemat-
ically elucidate the evolution of the multiple-Q spin structures
for the phase shift as well as the magnetization change.

In the 2D case, considering the superpositions of three
proper screws or sinusoidal waves, we obtain various 3Q-
SkLs with Nsk ranging from −2 to 2 depending on the phase
and magnetization. We find that the phase diagram is dom-
inated by the SkLs with Nsk = ±1 in the case of the proper
screw superpositions, whereas the Nsk = ±2 regions become
wider in the sinusoidal case. Interestingly, at zero magnetiza-
tion, we always obtain the Nsk = ±1 (±2) SkLs for any phase
shifts in the screw (sinusoidal) case; namely, the Nsk = ±2
(±1) SkLs are obtained only with nonzero magnetization in
the screw (sinusoidal) case.

On the other hand, in the 3D case, we clarify the topological
phase diagrams for the superpositions of four proper screws or
sinusoidal waves. We find various 4Q-HLs classified by the
number of the hedgehogs and antihedgehogs per unit cube,
Nm: Nm = 8, 16, 32, and 48 for the screw case, and Nm = 8
16, 24, 32, and 48 for the sinusoidal case. For the former case,
the emergent magnetic field is always negative, while for the
latter, it takes both positive and negative values. Notably, we
find unusual Dirac strings running on the horizontal planes
perpendicular to the magnetization direction. In the case of
the screw superpositions, they give rise to pair creation of the
hedgehogs and antihedgehogs and accordingly the increase of
Nm from 16 to 48 while increasing the magnetization. This is
highly unusual since the increase of the magnetization usually
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How to investigate the effect of phase shift systematically?



Hyperspace representation
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introducing an additional dimension to 
describe the phase degree of freedom
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number [3, 27, 28]

Nsk =
1

4π

∫

2D MUC
dXdY bZ(R), (36)

where the integral is taken within the 2D rhombic MUC. The
skyrmion number is also obtained by counting the vorticities
of the Dirac strings as [59]

Nsk = −
∑

k

ζk(Z), (37)

where ζk(Z) denotes the vorticity of the kth Dirac string in-
tersecting the 2D MUC [81]. For example, in the case of
Fig. 5(b), there are two intersections by the Dirac strings with
ζ = +1 and three with ζ = −1, and hence, Nsk = +1. Thus,
this simple counting in the hyperspace representation enables
us to identify the 2D spin texture at m = 0 with ϕ̃ = 9

4π as
the 3Q-SkL with Nsk = +1, while the direct integration by
Eq. (36) gives the same conclusion.

Figures 5(c) and 5(d) illustrate the situations with ϕ̃ = 3π
at m = 0. In this case, the 2D slice has a single intersection
by the Dirac string with ζ = +1, and hence, the spin texture
with ϕ̃ = 3π is the 3Q-SkL with Nsk = −1. This demonstrates
a switching of the topological property by the phase shift. In
the hyperspace representation, such topological transitions oc-
cur when the gray horizontal plane crosses the hedgehogs or
antihedgehogs at the end points of the Dirac strings.

Since the topological defects change their positions with m
as shown in Fig. 4, the topological properties of the 2D spin
structures change also with m. A demonstration is shown in
Figs. 5(e) and 5(f) for m = 0.9. At this value of m, three pairs
of the hedgehogs and antihedgehogs already vanish by pair
annihilation, and only a single pair remains on the Z axis, as
shown in Fig. 5(e). In this case, when the 2D slice intersects
the Dirac string connecting the hedgehog-antihedgehog pair,
the 2D spin structures becomes a 3Q-SkL with Nsk = −1, as
exemplified in Fig. 5(f) for ϕ̃ = 9

4π.
In this way, we can systematically investigate the changes

of the magnetic textures and the topological properties of the
2D 3Q spin structures while changing ϕ̃ and m. The proce-
dure is summarized as follows: (i) Define the 3D spin texture
in the hyperspace by using Eqs. (5) and (6), in the present case,
Eqs. (14)-(19), (ii) identify the hedgehogs and antihedgehogs,
and the Dirac strings connecting them for the 3D spin struc-
ture in the hyperspace, (iii) consider the 2D slice of the 3D
spin structure at the horizontal plane with Z =

√
2

3q ϕ̃, which
gives the 2D spin texture with the phase summation ϕ̃, and
(iv) take the sum of the vorticities of the Dirac strings inter-
secting the plane, which gives the skyrmion number Nsk of the
2D spin structure through Eq. (37).

4. Topological phase diagram

Figure 6 summarizes the topological phase diagram on the
plane of m and ϕ̃ for Eq. (28) obtained by the above proce-
dure. The result is periodic in the ϕ̃ direction with period of
2π and symmetric with respect to ϕ̃ = π. Note that the phase
diagram for m < 0 is obtained by mirroring that for m > 0

0.0 0.5 1.0 1.5-0.5-1.0-1.5-2.0 2.0

FIG. 6. Topological phase diagram for the screw 3Q state in
Eq. (28) determined by the skyrmion number Nsk while changing m
and ϕ̃. The colored regions are topologically nontrivial phases with
nonzero Nsk, and the white areas in the left and right hand sides de-
note topologically trivial phases with Nsk = 0. The black dots repre-
sent the pair annihilation of the hedgehogs and antihedgehogs in the
3D hyperspace, which are located at (m, ϕ̃) = (−

√
3, 0), (−1/

√
3, π),

(1/
√

3, 0), and (
√

3, π). The phase diagram is periodic in the ϕ̃ direc-
tion with period of 2π.

with π shift of ϕ̃ and the sign inversion of Nsk since the spin
texture with (ϕη,m) is obtained by time-reversal operation on
that with (ϕη + π,−m). We find four topologically nontrivial
phases with Nsk = −2, −1, 1, and 2. The major portions of the
phase diagram are occupied by the SkLs with Nsk = ±1, while
the SkL with Nsk = ±2 appear in the small areas in between
them only for m ! 0; the SkL at m = 0 always has Nsk = ±1.
The black dots appearing at the ends of the Nsk = ±1 domes
at m = ±1/

√
3 and m = ±

√
3 correspond to the topologi-

cal transitions by the pair annihilation of the hedgehogs and
antihedgehogs in the hyperspace; see Sec. III B 2.

Typical spin configurations of the screw 3Q-SkLs with dif-
ferent Nsk are shown in Fig. 7. Figure 7(a) shows the spin con-
figuration of the SkL with Nsk = −2 at m = 0.7 and ϕ̃ = 0. In
this state, small two skyrmions exist in the MUC and consti-
tute a honeycomb lattice structure. There are two Dirac strings
with ζ = 1 crossing the 2D plane, resulting in Nsk = −2. Fig-
ure 7(b) is for the SkL with Nsk = −1 at m = 0.7 and ϕ̃ = π. In
this case, a single skyrmion exists at the center of the MUC.
The Dirac string with ζ = 1 through the skyrmion core leads
to Nsk = −1. Figures 7(c) and 7(d) show the spin configura-
tions for m = −0.7 at ϕ̃ = 0 and ϕ̃ = π, respectively. These
are obtained by flipping all the spins in Figs. 7(b) and 7(a),
and hence, Nsk = 1 and 2, respectively. We note that the spin
configurations with ϕ̃ = nπ (n is an integer) have sixfold rota-
tional symmetry, while the others with ϕ̃ ! nπ are threefold,
consistent with the symmetry arguments in Table I.

Let us conclude this section by discussing some implica-
tions of our topological phase diagram to the phase control. In
the previous experimental and theoretical studies for the chi-
ral magnets [48–50, 60, 82, 83], the SkLs with Nsk = −1 (+1)

11

(a) (b)

(c) (d)

=

FIG. 9. (a) Hedgehogs and antihedgehogs, and Dirac strings for
m̃ = 0 in the 3D hyperspace for the sinusoidal 3Q state with Γ=0. The
gray plane represents the intersection of the plane with Z =

√
2

3q 3π
(ϕ̃ = 3π). (b) The spin configuration on the gray plane in (a), which
corresponds with the spin structure in Eq. (38) with ϕ̃ = 3π and
Γ = 0. We take θ = arccos 1√

3
in Eq. (40). The vorticity at the black

circle takes ζ = −2 (see the text for details). (c) and (d) Similar
figures for m̃ = 0 and ϕ̃ = 2π. The notations are common to those in
Fig. 5.

Dirac strings with ζ = +1, and hence, the spin texture with
ϕ̃ = 2π is the 3Q-SkL with Nsk = −2, which is a time-reversal
counterpart of the spin texture in Fig. 9(b). Thus, similar to
the screw 3Q spin structures in Sec. III B 3, the phase shift can
cause topological transitions in the sinusoidal ones.

4. Topological phase diagram

Figure 10 summarizes the topological phase diagram on the
plane of m̃ and ϕ̃ for the 2D spin texture in Eq. (38). The result
is common to Γ = 0 and 1, while the sign of the skyrmion
number Nsk in each phase is opposite: The upper (lower) signs
are for Γ = 0 (1). Similar to Fig. 6, the phase diagram has 2π
periodicity and symmetric with respect to ϕ̃ = π, and the result
for m < 0 is obtained by mirroring that for m > 0 with π shift
of ϕ̃ and the sign inversion of Nsk. We find four topologically
nontrivial phases with Nsk = −2, −1, 1, and 2 as the proper
screw case in Fig. 6, but with different distributions of each
phase. In the present sinusoidal case, the large portions of
the phase diagram are occupied by the SkL with Nsk = ±2,
while the SkL with Nsk = ±1 appear in between them only for
m̃ ! 0; the state at m̃ = 0 always has Nsk = ±2, in contrast to
Fig. 6. Both Nsk = ±2 (∓2) and ∓1 (±1) regions end at m̃ = 1
(−1) and ϕ̃ = π (0) with the simultaneous pair annihilation of
all the hedgehogs and antihedgehogs in the hyperspace, which
are denoted by the black dots in Fig. 10.

0.0 0.5 1.0-0.5-1.0

FIG. 10. Topological phase diagram for the sinusoidal 3Q state in
Eq. (38) determined by the skyrmion number Nsk on the plane of m̃
and ϕ̃. The upper (lower) signs of Nsk are for Γ = 0 (1). The nota-
tions are common to those in Fig. 6. The black points represent the
simultaneous annihilation of the four hedgehogs and the four anti-
hedgehogs in the hyperspace, which are located at (m̃, ϕ̃) = (−1, 0)
and (1, π).

Figure 11 showcases typical spin configurations of the si-
nusoidal 3Q state with θ = arccos 1√

3
. Here, we take Γ = 0 in

Figs. 11(a)-11(d) and Γ = 1 in Figs. 11(e)-11(h). Figure 11(a)
shows the spin configuration of the Nsk = −1 state at m̃ = 0.5
and ϕ̃ = π

2 . In this state, there is a single Bloch type skyrmion
with Nsk = −1 per MUC. The Dirac string with ζ = 1 through
the skyrmion core contributes to Nsk = −1. Figure 11(b) is
for the Nsk = 2 state at m̃ = 0.5 and ϕ̃ = π. This spin
structure has a skyrmion with Nsk = 2 at the center of the
MUC. In this state, the 2D plane in the hyperspace intersects
the crossing point of the four Dirac strings, which gives the
total vorticity as −2; see Sec. III C 3. Figures 11(c) and 11(d)
show the spin configurations with m̃ = −0.5 at ϕ̃ = 0 and
ϕ̃ = π

2 ; the former is obtained by time-reversal operation on
Fig. 11(b), while the latter is obtained by time-reversal op-
eration combined with sixfold rotation operation about the z
axis on Fig. 11(a). The corresponding results for Γ = 1 are
shown in Figs. 11(e)-11(h). In contrast to the screw 3Q case
in Sec. III B 4, all these sinusoidal 3Q cases with Γ = 0 have
threefold rotational symmetry independent of ϕ̃ and m̃, while
those with Γ = 1 do not; see Sec. III C. In addition, the spin
textures with ϕ̃ = nπ (n is an integer) has inversion symme-
try independent of Γ, which is consistent with the symmetry
arguments in Tables II and III.

The phase diagram in Fig. 10 indicates that the system un-
dergoes a topological phase transition from Nsk = ±2 to ±1,
and finally to Nsk = 0 while increasing m̃. Such transitions
were found in the previous numerical study of the Kondo lat-
tice model on a triangular lattice while increasing the mag-
netic field [84]. Since the Nsk = ±2 and ±1 phases appear pre-
dominantly in the different ϕ̃ regions in our phase diagram, the
topological phase transition between them might be accompa-

3Q screw 3Q sinusoidalphase phase

“magnetization”
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(a) (b)

(c) (d)

FIG. 7. Real-space spin configurations of the screw 3Q states: (a)
m = 0.7 and ϕ̃ = 0, (b) m = 0.7 and ϕ̃ = π, (c) m = −0.7 and
ϕ̃ = 0, and (d) m = −0.7 and ϕ̃ = π. Each spin configuration is
topologically nontrivial with (a) Nsk = −2, (b) Nsk = −1, (c) Nsk = 1,
and (d) Nsk = 2. The notations are common to those in Fig. 5.

were observed in an external magnetic field applied to the (−)ẑ
direction. This corresponds to the state with ϕ̃ ∼ π for m > 0
and ϕ̃ ∼ 0 for m < 0 in the phase diagram in Fig. 6. The other
SkLs with Nsk = ±2, however, have not been reported thus
far. Our topological phase diagram indicates that it is neces-
sary to cause the phase shift by ≃ π in a magnetic field for
reaching the Nsk = ±2 states. This is an interesting issue to be
addressed since the emergent magnetic field in the Nsk = ±2
states becomes twice as large as that in the Nsk = ±1 ones. In
addition, in the previous studies, the SkLs with Nsk = ±1 turn
into a 1Q conical state or a uniformly polarized state while
increasing the magnetic field, not into the topologically trivial
3Q state with Nsk = 0 shown in the phase diagram in Fig. 6.
This suggests that it is difficult to access the points where the
hedgehogs and antihedgehogs cause pair annihilation in the
hyperspace (the black dots in Fig. 6). Once one can avoid the
transition to the 1Q conical state, it might be possible to find
novel topological phenomena arising from the singularity in
the emergent electromagnetic fields due to the pair annihila-
tion. It is worth noting that some possible ways to control the

TABLE II. Similar table to Table I for the sinusoidal 3Q state with
Γ = 0 in Eq. (38): I represents the spatial-inversion operation and
the other notations are common to those in Table I.

operation sum of phases translation magnetization
C3z ϕ̃→ ϕ̃ 0 m→ m
C2x ϕ̃→ π + ϕ̃ ãη m→ −m
I ϕ̃→ 2π − ϕ̃ ãη + ãη′ m→ m
T ϕ̃→ π + ϕ̃ ãη m→ −m

phase degree of freedom were recently proposed [65]. We will
discuss this issue in Sec. VI.

C. Sinusoidal 3Q state

We next discuss the phase degree of freedom for the sinu-
soidal 3Q state given by

S(r) ∝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
3

2 sin θ(− cosQ2 + cosQ3)
(−1)Γ 1

2 sin θ (2 cosQ1 − cosQ2 − cosQ3)
cos θ(cosQ1 + cosQ2 + cosQ3 + 3m̃)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (38)

which is obtained from Eq. (1) by taking NQ = 3 and

ψc
η =

1√
3
, ψs

η = 0, (39)

e1
1 =

(
0, (−1)Γ sin θ, cos θ

)T
, e1

2 = RΓe1
1, e1

3 = R2
Γe

1
1, (40)

m̃ =
m√

3 cos θ
, (41)

where Γ takes 0 or 1, 0 < θ < π
2 , and RΓ represents a (−1)Γ 2π

3
rotation about the z axis given by

RΓ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos
(
(−1)Γ 2π

3

)
− sin

(
(−1)Γ 2π

3

)
0

sin
(
(−1)Γ 2π

3

)
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(
(−1)Γ 2π

3

)
0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (42)

In Eq. (38), Γ is a parameter to describe the chirality of the
spin texture; the spin texture with Γ = 1 is obtained by flipping
the S y component of that with Γ = 0. Note that the spin texture
with Γ = 0 has threefold rotational symmetry, whereas that
with Γ = 1 does not. Meanwhile, θ describes the angle of the
sinusoidal plane in the constituent waves. In the following, we
mainly focus on the spin textures with Γ = 0, while we touch
on those with Γ = 1 in Sec. V A.

Following the arguments in Sec. III B, we summarize the
symmetry operations and their decompositions for the sinu-
soidal 3Q state in Eq. (38) with Γ = 0 and 1 in Tables II and
III, respectively. Other symmetry operations are expressed by
the combinations of those in the tables. From Table II, we find
that the sinusoidal 3Q state with Γ = 0 is symmetric under
C3z, I, TC2x, and their combinations for ϕ̃ = 0 and π, oth-
erwise C3z, TC2x, and their combinations. Meanwhile, from
Table III, we find that the state with Γ = 1 is symmetric un-
der I, TC2x, and their combinations for ϕ̃ = 0, π, otherwise
TC2x.
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FIG. 7. Real-space spin configurations of the screw 3Q states: (a)
m = 0.7 and ϕ̃ = 0, (b) m = 0.7 and ϕ̃ = π, (c) m = −0.7 and
ϕ̃ = 0, and (d) m = −0.7 and ϕ̃ = π. Each spin configuration is
topologically nontrivial with (a) Nsk = −2, (b) Nsk = −1, (c) Nsk = 1,
and (d) Nsk = 2. The notations are common to those in Fig. 5.

were observed in an external magnetic field applied to the (−)ẑ
direction. This corresponds to the state with ϕ̃ ∼ π for m > 0
and ϕ̃ ∼ 0 for m < 0 in the phase diagram in Fig. 6. The other
SkLs with Nsk = ±2, however, have not been reported thus
far. Our topological phase diagram indicates that it is neces-
sary to cause the phase shift by ≃ π in a magnetic field for
reaching the Nsk = ±2 states. This is an interesting issue to be
addressed since the emergent magnetic field in the Nsk = ±2
states becomes twice as large as that in the Nsk = ±1 ones. In
addition, in the previous studies, the SkLs with Nsk = ±1 turn
into a 1Q conical state or a uniformly polarized state while
increasing the magnetic field, not into the topologically trivial
3Q state with Nsk = 0 shown in the phase diagram in Fig. 6.
This suggests that it is difficult to access the points where the
hedgehogs and antihedgehogs cause pair annihilation in the
hyperspace (the black dots in Fig. 6). Once one can avoid the
transition to the 1Q conical state, it might be possible to find
novel topological phenomena arising from the singularity in
the emergent electromagnetic fields due to the pair annihila-
tion. It is worth noting that some possible ways to control the

TABLE II. Similar table to Table I for the sinusoidal 3Q state with
Γ = 0 in Eq. (38): I represents the spatial-inversion operation and
the other notations are common to those in Table I.

operation sum of phases translation magnetization
C3z ϕ̃→ ϕ̃ 0 m→ m
C2x ϕ̃→ π + ϕ̃ ãη m→ −m
I ϕ̃→ 2π − ϕ̃ ãη + ãη′ m→ m
T ϕ̃→ π + ϕ̃ ãη m→ −m

phase degree of freedom were recently proposed [65]. We will
discuss this issue in Sec. VI.

C. Sinusoidal 3Q state

We next discuss the phase degree of freedom for the sinu-
soidal 3Q state given by

S(r) ∝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
3

2 sin θ(− cosQ2 + cosQ3)
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m̃ =
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where Γ takes 0 or 1, 0 < θ < π
2 , and RΓ represents a (−1)Γ 2π

3
rotation about the z axis given by
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. (42)

In Eq. (38), Γ is a parameter to describe the chirality of the
spin texture; the spin texture with Γ = 1 is obtained by flipping
the S y component of that with Γ = 0. Note that the spin texture
with Γ = 0 has threefold rotational symmetry, whereas that
with Γ = 1 does not. Meanwhile, θ describes the angle of the
sinusoidal plane in the constituent waves. In the following, we
mainly focus on the spin textures with Γ = 0, while we touch
on those with Γ = 1 in Sec. V A.

Following the arguments in Sec. III B, we summarize the
symmetry operations and their decompositions for the sinu-
soidal 3Q state in Eq. (38) with Γ = 0 and 1 in Tables II and
III, respectively. Other symmetry operations are expressed by
the combinations of those in the tables. From Table II, we find
that the sinusoidal 3Q state with Γ = 0 is symmetric under
C3z, I, TC2x, and their combinations for ϕ̃ = 0 and π, oth-
erwise C3z, TC2x, and their combinations. Meanwhile, from
Table III, we find that the state with Γ = 1 is symmetric un-
der I, TC2x, and their combinations for ϕ̃ = 0, π, otherwise
TC2x.
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FIG. 7. Real-space spin configurations of the screw 3Q states: (a)
m = 0.7 and ϕ̃ = 0, (b) m = 0.7 and ϕ̃ = π, (c) m = −0.7 and
ϕ̃ = 0, and (d) m = −0.7 and ϕ̃ = π. Each spin configuration is
topologically nontrivial with (a) Nsk = −2, (b) Nsk = −1, (c) Nsk = 1,
and (d) Nsk = 2. The notations are common to those in Fig. 5.

were observed in an external magnetic field applied to the (−)ẑ
direction. This corresponds to the state with ϕ̃ ∼ π for m > 0
and ϕ̃ ∼ 0 for m < 0 in the phase diagram in Fig. 6. The other
SkLs with Nsk = ±2, however, have not been reported thus
far. Our topological phase diagram indicates that it is neces-
sary to cause the phase shift by ≃ π in a magnetic field for
reaching the Nsk = ±2 states. This is an interesting issue to be
addressed since the emergent magnetic field in the Nsk = ±2
states becomes twice as large as that in the Nsk = ±1 ones. In
addition, in the previous studies, the SkLs with Nsk = ±1 turn
into a 1Q conical state or a uniformly polarized state while
increasing the magnetic field, not into the topologically trivial
3Q state with Nsk = 0 shown in the phase diagram in Fig. 6.
This suggests that it is difficult to access the points where the
hedgehogs and antihedgehogs cause pair annihilation in the
hyperspace (the black dots in Fig. 6). Once one can avoid the
transition to the 1Q conical state, it might be possible to find
novel topological phenomena arising from the singularity in
the emergent electromagnetic fields due to the pair annihila-
tion. It is worth noting that some possible ways to control the

TABLE II. Similar table to Table I for the sinusoidal 3Q state with
Γ = 0 in Eq. (38): I represents the spatial-inversion operation and
the other notations are common to those in Table I.

operation sum of phases translation magnetization
C3z ϕ̃→ ϕ̃ 0 m→ m
C2x ϕ̃→ π + ϕ̃ ãη m→ −m
I ϕ̃→ 2π − ϕ̃ ãη + ãη′ m→ m
T ϕ̃→ π + ϕ̃ ãη m→ −m

phase degree of freedom were recently proposed [65]. We will
discuss this issue in Sec. VI.

C. Sinusoidal 3Q state

We next discuss the phase degree of freedom for the sinu-
soidal 3Q state given by

S(r) ∝
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√
3

2 sin θ(− cosQ2 + cosQ3)
(−1)Γ 1
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⎞
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which is obtained from Eq. (1) by taking NQ = 3 and
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3
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1 =

(
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)T
, e1

2 = RΓe1
1, e1

3 = R2
Γe

1
1, (40)

m̃ =
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3 cos θ
, (41)

where Γ takes 0 or 1, 0 < θ < π
2 , and RΓ represents a (−1)Γ 2π

3
rotation about the z axis given by

RΓ =
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In Eq. (38), Γ is a parameter to describe the chirality of the
spin texture; the spin texture with Γ = 1 is obtained by flipping
the S y component of that with Γ = 0. Note that the spin texture
with Γ = 0 has threefold rotational symmetry, whereas that
with Γ = 1 does not. Meanwhile, θ describes the angle of the
sinusoidal plane in the constituent waves. In the following, we
mainly focus on the spin textures with Γ = 0, while we touch
on those with Γ = 1 in Sec. V A.

Following the arguments in Sec. III B, we summarize the
symmetry operations and their decompositions for the sinu-
soidal 3Q state in Eq. (38) with Γ = 0 and 1 in Tables II and
III, respectively. Other symmetry operations are expressed by
the combinations of those in the tables. From Table II, we find
that the sinusoidal 3Q state with Γ = 0 is symmetric under
C3z, I, TC2x, and their combinations for ϕ̃ = 0 and π, oth-
erwise C3z, TC2x, and their combinations. Meanwhile, from
Table III, we find that the state with Γ = 1 is symmetric un-
der I, TC2x, and their combinations for ϕ̃ = 0, π, otherwise
TC2x.
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FIG. 7. Real-space spin configurations of the screw 3Q states: (a)
m = 0.7 and ϕ̃ = 0, (b) m = 0.7 and ϕ̃ = π, (c) m = −0.7 and
ϕ̃ = 0, and (d) m = −0.7 and ϕ̃ = π. Each spin configuration is
topologically nontrivial with (a) Nsk = −2, (b) Nsk = −1, (c) Nsk = 1,
and (d) Nsk = 2. The notations are common to those in Fig. 5.

were observed in an external magnetic field applied to the (−)ẑ
direction. This corresponds to the state with ϕ̃ ∼ π for m > 0
and ϕ̃ ∼ 0 for m < 0 in the phase diagram in Fig. 6. The other
SkLs with Nsk = ±2, however, have not been reported thus
far. Our topological phase diagram indicates that it is neces-
sary to cause the phase shift by ≃ π in a magnetic field for
reaching the Nsk = ±2 states. This is an interesting issue to be
addressed since the emergent magnetic field in the Nsk = ±2
states becomes twice as large as that in the Nsk = ±1 ones. In
addition, in the previous studies, the SkLs with Nsk = ±1 turn
into a 1Q conical state or a uniformly polarized state while
increasing the magnetic field, not into the topologically trivial
3Q state with Nsk = 0 shown in the phase diagram in Fig. 6.
This suggests that it is difficult to access the points where the
hedgehogs and antihedgehogs cause pair annihilation in the
hyperspace (the black dots in Fig. 6). Once one can avoid the
transition to the 1Q conical state, it might be possible to find
novel topological phenomena arising from the singularity in
the emergent electromagnetic fields due to the pair annihila-
tion. It is worth noting that some possible ways to control the

TABLE II. Similar table to Table I for the sinusoidal 3Q state with
Γ = 0 in Eq. (38): I represents the spatial-inversion operation and
the other notations are common to those in Table I.

operation sum of phases translation magnetization
C3z ϕ̃→ ϕ̃ 0 m→ m
C2x ϕ̃→ π + ϕ̃ ãη m→ −m
I ϕ̃→ 2π − ϕ̃ ãη + ãη′ m→ m
T ϕ̃→ π + ϕ̃ ãη m→ −m

phase degree of freedom were recently proposed [65]. We will
discuss this issue in Sec. VI.

C. Sinusoidal 3Q state

We next discuss the phase degree of freedom for the sinu-
soidal 3Q state given by

S(r) ∝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
3

2 sin θ(− cosQ2 + cosQ3)
(−1)Γ 1

2 sin θ (2 cosQ1 − cosQ2 − cosQ3)
cos θ(cosQ1 + cosQ2 + cosQ3 + 3m̃)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (38)

which is obtained from Eq. (1) by taking NQ = 3 and

ψc
η =

1√
3
, ψs

η = 0, (39)

e1
1 =

(
0, (−1)Γ sin θ, cos θ

)T
, e1

2 = RΓe1
1, e1

3 = R2
Γe

1
1, (40)

m̃ =
m√

3 cos θ
, (41)

where Γ takes 0 or 1, 0 < θ < π
2 , and RΓ represents a (−1)Γ 2π

3
rotation about the z axis given by

RΓ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos
(
(−1)Γ 2π

3

)
− sin

(
(−1)Γ 2π

3

)
0
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(
(−1)Γ 2π

3

)
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (42)

In Eq. (38), Γ is a parameter to describe the chirality of the
spin texture; the spin texture with Γ = 1 is obtained by flipping
the S y component of that with Γ = 0. Note that the spin texture
with Γ = 0 has threefold rotational symmetry, whereas that
with Γ = 1 does not. Meanwhile, θ describes the angle of the
sinusoidal plane in the constituent waves. In the following, we
mainly focus on the spin textures with Γ = 0, while we touch
on those with Γ = 1 in Sec. V A.

Following the arguments in Sec. III B, we summarize the
symmetry operations and their decompositions for the sinu-
soidal 3Q state in Eq. (38) with Γ = 0 and 1 in Tables II and
III, respectively. Other symmetry operations are expressed by
the combinations of those in the tables. From Table II, we find
that the sinusoidal 3Q state with Γ = 0 is symmetric under
C3z, I, TC2x, and their combinations for ϕ̃ = 0 and π, oth-
erwise C3z, TC2x, and their combinations. Meanwhile, from
Table III, we find that the state with Γ = 1 is symmetric un-
der I, TC2x, and their combinations for ϕ̃ = 0, π, otherwise
TC2x.
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FIG. 11. Real-space spin configurations of the sinusoidal 3Q state in Eq. (38) with (a)-(d) Γ = 0 and (e)-(h) Γ = 1, and θ = arccos 1√
3
: (a)(e)

m̃ = 0.5 and ϕ̃ = π
2 , (b)(f) m̃ = 0.5 and ϕ̃ = π, (c)(g) m̃ = −0.5 and ϕ̃ = 0, (d)(h) m̃ = −0.5 and ϕ̃ = π

2 . Each spin configuration is topologically
nontrivial and has (a) Nsk = −1, (b) Nsk = 2, (c) Nsk = −2, (d) Nsk = 1, (e) Nsk = 1, (f) Nsk = −2, (g) Nsk = 2, and (h) Nsk = −1. The white
circles in (f) denote the vorticity ζ = 2. Other notations are common to those in Fig. 9. In (b) and (f), the four Dirac strings cross at the center
of the MUC; see Fig. 8 and the text for details.

nied by a phase shift, but the phase degree of freedom was
not studied in the previous study. We will discuss this issue
by analyzing the phases in the spin structures obtained by the
previous study in Sec. V A.

IV. 4Q HEDGEHOG LATTICES

In this section, we elucidate the effect of phase shifts on
the spin textures composed of four wave vectors in three di-
mensions, i.e., NQ = 4 and d = 3, by using the hyperspace
representation. Specifically, we consider Eq. (1) with four qη
given by

q1 =
q√
3

(1, 1, 1) , q2 =
q√
3

(−1,−1, 1) ,

q3 =
q√
3

(−1, 1,−1) , q4 =
q√
3

(1,−1,−1) . (46)

For this 4Q spin structure, the 3D magnetic translation vectors
are defined as

a1 =

√
3π
q

(1, 0, 1) , a2 =

√
3π
q

(1, 1, 0) ,

a3 =

√
3π
q

(0, 1, 1) . (47)

(a) (b)

FIG. 12. (a) Schematic picture of the wave vectors in 3D reciprocal
space, qη. (b) Corresponding magnetic translation vectors in the 3D
real space, aη, represented by orange arrows. The brown arrows rep-
resent the projections of Aη onto the xyz space denoted by ãη. The
gray rhombohedron is the MUC, and the dashed cube with the side
length of L = 2

√
3π

q includes four MUCs. The small gray cube has the
side length of L

2 .

The four wave vectors and the three magnetic translation vec-
tors are depicted in Figs. 12(a) and 12(b), respectively. While
the 3D MUC is given by the gray rhombohedron in Fig. 12(b),
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m̃ = 0.5 and ϕ̃ = π
2 , (b)(f) m̃ = 0.5 and ϕ̃ = π, (c)(g) m̃ = −0.5 and ϕ̃ = 0, (d)(h) m̃ = −0.5 and ϕ̃ = π

2 . Each spin configuration is topologically
nontrivial and has (a) Nsk = −1, (b) Nsk = 2, (c) Nsk = −2, (d) Nsk = 1, (e) Nsk = 1, (f) Nsk = −2, (g) Nsk = 2, and (h) Nsk = −1. The white
circles in (f) denote the vorticity ζ = 2. Other notations are common to those in Fig. 9. In (b) and (f), the four Dirac strings cross at the center
of the MUC; see Fig. 8 and the text for details.
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The four wave vectors and the three magnetic translation vec-
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the 3D MUC is given by the gray rhombohedron in Fig. 12(b),
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nontrivial and has (a) Nsk = −1, (b) Nsk = 2, (c) Nsk = −2, (d) Nsk = 1, (e) Nsk = 1, (f) Nsk = −2, (g) Nsk = 2, and (h) Nsk = −1. The white
circles in (f) denote the vorticity ζ = 2. Other notations are common to those in Fig. 9. In (b) and (f), the four Dirac strings cross at the center
of the MUC; see Fig. 8 and the text for details.
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(0, 1, 1) . (47)

(a) (b)

FIG. 12. (a) Schematic picture of the wave vectors in 3D reciprocal
space, qη. (b) Corresponding magnetic translation vectors in the 3D
real space, aη, represented by orange arrows. The brown arrows rep-
resent the projections of Aη onto the xyz space denoted by ãη. The
gray rhombohedron is the MUC, and the dashed cube with the side
length of L = 2

√
3π

q includes four MUCs. The small gray cube has the
side length of L

2 .

The four wave vectors and the three magnetic translation vec-
tors are depicted in Figs. 12(a) and 12(b), respectively. While
the 3D MUC is given by the gray rhombohedron in Fig. 12(b),
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FIG. 11. Real-space spin configurations of the sinusoidal 3Q state in Eq. (38) with (a)-(d) Γ = 0 and (e)-(h) Γ = 1, and θ = arccos 1√
3
: (a)(e)

m̃ = 0.5 and ϕ̃ = π
2 , (b)(f) m̃ = 0.5 and ϕ̃ = π, (c)(g) m̃ = −0.5 and ϕ̃ = 0, (d)(h) m̃ = −0.5 and ϕ̃ = π

2 . Each spin configuration is topologically
nontrivial and has (a) Nsk = −1, (b) Nsk = 2, (c) Nsk = −2, (d) Nsk = 1, (e) Nsk = 1, (f) Nsk = −2, (g) Nsk = 2, and (h) Nsk = −1. The white
circles in (f) denote the vorticity ζ = 2. Other notations are common to those in Fig. 9. In (b) and (f), the four Dirac strings cross at the center
of the MUC; see Fig. 8 and the text for details.

nied by a phase shift, but the phase degree of freedom was
not studied in the previous study. We will discuss this issue
by analyzing the phases in the spin structures obtained by the
previous study in Sec. V A.

IV. 4Q HEDGEHOG LATTICES
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given by
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real space, aη, represented by orange arrows. The brown arrows rep-
resent the projections of Aη onto the xyz space denoted by ãη. The
gray rhombohedron is the MUC, and the dashed cube with the side
length of L = 2

√
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q includes four MUCs. The small gray cube has the
side length of L
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The four wave vectors and the three magnetic translation vec-
tors are depicted in Figs. 12(a) and 12(b), respectively. While
the 3D MUC is given by the gray rhombohedron in Fig. 12(b),
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FIG. 15. Topological phase diagram for the screw 4Q state on the
plane of m and ϕ̃, determined by the number of hedgehogs and anti-
hedgehogs within the cube, Nm [see Fig. 12(b)]. The contour plot
indicates the emergent magnetic field −b̄z; the white lines denote
the contours drawn every 0.1, and the black dashed lines denote the
boundary to b̄z = 0. The gray solid lines denote pair annihilation of
hedgehogs and antihedgehogs. The yellow line and the orange lines
denote pair creation of hedgehogs and antihedgehogs and fusion of
three topological defects, respectively, while increasing m.

the sum is taken for all the Dirac strings involved in the cube.
Note that the values of −b̄z are plotted by contour in Fig. 15.
The phase diagram for m < 0 is obtained in the same form
with sign reversal of −b̄z since the spin texture with (ϕη,m) is
obtained by time-reversal operation on that with (ϕη + π,−m).

In the phase diagram, we find the topological phases with
Nm = 8, 16, 32, and 48, in addition to the trivial phase with
Nm = 0 in the large m region. When 0 < ϕ̃ < 2π

3 or 4π
3 < ϕ̃ <

2π, the phases with Nm = 8 and 16 appear. In the phase with
Nm = 16 for small m, 8 hedgehogs and 8 antihedgehogs are
connected by the Dirac strings with ζ = +1 and −1, and the
Dirac strings with ζ = −1 are shorter than those with ζ = +1,
as exemplified in Fig. 13(b). While increasing m, the length
difference between the long and short Dirac strings increases,
leading to the increase of −b̄z. Specifically, the value of −b̄z is
given by

− b̄z = ±2
[
1 − 2

π

(
rscr

1

(
m,

ϕ̃

4

)
+ rscr

2

(
m,

ϕ̃

4

))]
, (74)

where the upper (lower) sign is for 0 < ϕ̃ < 2π
3 ( 2π

3 < ϕ̃ <

2π). At m = 4√
6

sin ϕ̃
4 for 0 < ϕ̃ < 2π

3 and m = 4√
6

cos ϕ̃
4

for 4π
3 < ϕ̃ < 2π, half of the topological defects connected by

the Dirac strings with ζ = −1 disappear with pair annihilation,
leaving the defects connected by the Dirac stings with ζ = +1,
as exemplified in Fig. 13(c). The pair annihilation occurs at
smaller m when ϕ̃ approaches 0 or 2π, and −b̄z is enhanced to
−b̄z → 2 when m → 0 at ϕ̃ = 0 or 2π (in the limit, there are

only four Dirac string with ζ = +1 and length L
2 ). Meanwhile,

in the phase with Nm = 8, the increase of m reduces the length
of the Dirac strings with ζ = +1, leading to the decrease of
−b̄z as

− b̄z =

⎧⎪⎪⎨
⎪⎪⎩

2
[
1 − 2

π rscr
2

(
m, ϕ̃4

)]
for 0 < ϕ̃ < 2π

3
4
π rscr

1

(
m, ϕ̃4

)
for 4π

3 < ϕ̃ < 2π.
(75)

Finally, −b̄z vanishes by the pair annihilation of the remaining
hedgehogs and antihedgehogs at m = 4√

6
cos ϕ̃

4 for 0 < ϕ̃ < 2π
3

and m = 4√
6

sin ϕ̃
4 for 4π

3 < ϕ̃ < 2π, and the system enters into
the topologically trivial phase with Nm = 0 for larger m.

On the other hand, when 2π
3 < ϕ̃ < 4π

3 , the topological
phases with Nm = 32 and 48 appear additionally in the in-
termediate region of m, as shown in Fig. 15. In this range
of ϕ̃, while increasing m from the phase with Nm = 16, pair
creation of the hedgehogs and antihedgehogs occurs on the
phase boundary to the phase with Nm = 48, which is denoted
by the yellow line in the figure. No anomaly is found in −b̄z
at the topological transition since the pair-created topological
objects move along the horizontal Dirac strings and this evo-
lution does not contribute to l±k in Eq. (73); see Fig. 13(e). In
these phases, however, the increase of m reduces the length of
the Dirac strings with ζ = −1, leading to the increase of −b̄z
as

− b̄z = 2
[
1 − 2

π

(
rscr

1

(
m,

ϕ̃

4

)
− rscr

2

(
m,

ϕ̃

4

))]
. (76)

While increasing m, half of the pair-created topological de-
fects disappear through the fusion, which causes the topologi-
cal transition from Nm = 48 to 32 (orange lines in the figure).
In the Nm = 32 region, the value of −b̄z is given by

−b̄z =2
[
1 ∓ 2

π

(
rscr

1

(
m,

ϕ̃

4

)
+ rscr

2

(
m,

ϕ̃

4

))

±4
π

arccos
⎛
⎜⎜⎜⎜⎜⎝

√
2 cos2 ϕ̃

4
− 1

2

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦ , (77)

where the upper (lower) signs are for 2π
3 < ϕ̃ ≤ π (π ≤ ϕ̃ <

4π
3 ). With a further increase of m, the rest half of the pair-

created topological defects cause the fusion and Nm is reduced
from 32 to 16. In the Nm = 16 phase, all of the topological
defects are connected by the Dirac strings with ζ = +1, as
exemplified in Fig. 13(f), where −b̄z is given as

− b̄z = 2
[
1 +

2
π

(
rscr

1

(
m,

ϕ̃

4

)
− rscr

2

(
m,

ϕ̃

4

))]
. (78)

Note that −b̄z takes the maximum value of −b̄z = 2 at (m, ϕ̃) =(√
2
3 , π

)
, where all the pair-created defects cause the fusion

simultaneously.
Figure 16 showcases typical spin configurations of the

screw 4Q states for all the topological phases in Fig. 15, to-
gether with the hedgehogs and antihedgehogs, and the Dirac
strings. The spin configurations are shown on the isosurfaces
with S z(r) = −0.9 as well as the bottom plane of the L3
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FIG. 18. Real-space distribution of the hedgehogs and antihedgehogs, and the Dirac strings within the L3 cube [see Fig. 13(b)] for the
sinusoidal 4Q state in Eq. (79) while changing m and ϕ̃: (a) m = 0, (b) m = 0.1, and (c) m = 0.7 at ϕ̃ = π/3, and (d) m = 0, (e) m = 0.5, and
(f) m = 0.7 at ϕ̃ = π . The notations are common to those in Fig. 14.

derived from Eqs. (83) and (87), as shown in Fig. 18(c). At the
topological transition by the pair annihilation, Nm is further
reduced from 32 to 24. When m = 2√

3
cos2 ϕ̃

4 , the fusion takes
place in the remaining four clusters, which reduces Nm from
24 to 8, and leaves four vertical Dirac strings with ζ = −1.
Finally, the hedgehogs and antihedgehogs on the Dirac strings
pair annihilate at m = 2√

3
cos ϕ̃

4 , where the system becomes
topologically trivial with Nm = 0.

Next, we discuss the case of ϕ̃ = π shown in Figs. 18(d)–
18(f). When m = 0, Nm is 48 as in the case of ϕ̃ = π

3 ; the
positions of the hedgehogs and antihedgehogs connected by
the vertical Dirac strings are the same, but those connected
by the horizontal Dirac strings are different, as shown in
Fig. 18(d). By introducing m, the topological defects move
along the Dirac strings as shown in Fig. 18(e), and the fusion
occurs at m = 1√

3
simultaneously in all the clusters. This

leaves eight pairs of the hedgehogs and antihedgehogs con-
nected by the vertical Dirac strings, as shown in Fig. 18(f);
Nm decreases from 48 to 16. In this state, all the Dirac strings
have the length of L

π
rsin

1 (m, ϕ̃
4 ) = L( 1

2 − 1
π

rsin
2 (m, ϕ̃

4 )) and the
vorticity ζ = −1. By further increasing m, the remaining pairs

annihilate at m =
√

2
3 .

2. Topological phase diagram

Performing similar calculations to those in Sec. V B 2
while changing ϕ̃ and m, we elaborate the phase diagram
shown in Fig. 19. We also plot −b̄z by the contour, as in

Sec. V B 2. Similar to Fig. 16, the result is again symmetric
with respect to ϕ̃ = π and has 2π periodicity in ϕ̃, and the
phase diagram for m < 0 is obtained in the same form with
sign inversion of −b̄z. We find the topological phases with
Nm = 8, 16, 24, 32, and 48 in the phase diagram. There are

FIG. 19. Topological phase diagram for the sinusoidal 4Q state
determined by Nm, with the contour plot of −b̄z, on the plane of m
and ϕ̃. The notations are common to those in Fig. 16.
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FIG. 16. Real-space spin configurations on the isosurfaces with S z(r) = −0.9 within the L3 cube for the screw 4Q state in Eq. (61) for different
topological phases in Fig. 15: (a) m = 0 and ϕ̃ = π

3 (Nm = 16), (b) m = 0 and ϕ̃ = π (Nm = 16), (c) m = 0.4 and ϕ̃ = 0 (Nm = 8), (d) m = 0.7
and ϕ̃ = 5π

6 (Nm = 32), (e) m = 0.7 and ϕ̃ = π (Nm = 48), and (f) m = 0.9 and ϕ̃ = π (Nm = 16). The spin configurations are also shown on the
bottom plane of the cube. The color of the arrows and the isosurfaces denote the xyz and xy components of S(r), respectively; see the inset in
(a). In each figure, the right panel shows the top view.

cube. The isosurfaces, by definition, extend from the hedge-
hogs and antihedgehogs, and involve the Dirac strings inside.
Figure 16(a) is for the Nm = 16 state at m = 0 and ϕ̃ = π

3 .
From the spin configurations on the isosurfaces, it is observed
that the helicity of the spin texture gradually increases or de-
creases with the z coordinates, which leads to ±π difference
between the top and bottom of each Dirac string. Figure 16(b)
is for the different Nm = 16 state at m = 0 and ϕ̃ = π. The re-
sult demonstrates that the phase shift drastically changes the
spin configurations as well as the real-space distributions of
the topological objects, while Nm is same as in Fig. 16(a). In
this state, the isosurfaces have complicated 3D networks due
to the existence of the Dirac strings running on the horizontal
planes. Figure 16(c) is for the Nm = 8 phase at m = 0.4 and
ϕ̃ = 0. In this state, the isosurfaces become much simpler.
Figures 16(d) and 16(e) are for the Nm = 32 state at m = 0.7
and ϕ̃ = 5π

6 and Nm = 48 states at m = 0.7 and ϕ̃ = π, respec-
tively. In both states, the spin configuration on a horizontal xy
plane comprise a SkL with Bloch type skyrmions, as exempli-
fied on the bottom plane of the cube in the figure. We note that
the skyrmions are deformed and elongated along the direction
of the horizontal Dirac strings. Figure 16(f) is for the Nm = 16
state at m = 0.9 and ϕ̃ = π. In this state, while Nm takes the
same value as that in Figs. 16(a) and 16(b), the spin configu-
ration is completely different from them. In all the cases, the
spin configurations have twofold rotational symmetry about
each vertical Dirac string. We note that the spin configura-
tions with ϕ̃ = 0 have fourfold rotational symmetry about
each Dirac string, as exemplified in Fig. 16(c), while those
with ϕ̃ = π are symmetric for the screw operation {C4z| − ãη},

as exemplified in Figs. 16(b), 16(e), and 16(f). These results
are consistent with the symmetry arguments in Table IV.

Let us briefly discuss the present results in comparison with
the previous studies. A 4Q HL was experimentally discovered
in MnSi1−xGex [85]. In this study, the spin texture at zero
magnetic field was interpreted as the screw 4Q state with four
hedgehogs and four antihedgehogs (Nm = 8), which corre-
sponds to ϕ̃ = 0 in our results, although the value of ϕ̃ was not
examined experimentally. Meanwhile, the topological prop-
erties and the emergent magnetic field in the screw 4Q state
were theoretically studied at ϕ̃ = π while changing the ex-
ternal magnetic field [62], but the study was limited to the
Nm = 16 state as the solutions in Eqs. (68)-(70) were not in-
cluded. Recently, some of the authors studied the evolution
of the screw 4Q state on a 3D simple cubic lattice by varia-
tional calculations and simulated annealing, and found various
types of topological transitions depending on the direction of
the magnetic field [57]. We will discuss one of them, paying
attention to the phase shift in Sec. V B.

C. Sinusoidal 4Q state

Next, we analyze the phase shift in the sinusoidal 4Q state
given by

S(r) ∝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

cosQ1 − cosQ2 − cosQ3 + cosQ4
cosQ1 − cosQ2 + cosQ3 − cosQ4

cosQ1 + cosQ2 − cosQ3 − cosQ4 + 2
√

3m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

(79)
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FIG. 16. Real-space spin configurations on the isosurfaces with S z(r) = −0.9 within the L3 cube for the screw 4Q state in Eq. (61) for different
topological phases in Fig. 15: (a) m = 0 and ϕ̃ = π

3 (Nm = 16), (b) m = 0 and ϕ̃ = π (Nm = 16), (c) m = 0.4 and ϕ̃ = 0 (Nm = 8), (d) m = 0.7
and ϕ̃ = 5π

6 (Nm = 32), (e) m = 0.7 and ϕ̃ = π (Nm = 48), and (f) m = 0.9 and ϕ̃ = π (Nm = 16). The spin configurations are also shown on the
bottom plane of the cube. The color of the arrows and the isosurfaces denote the xyz and xy components of S(r), respectively; see the inset in
(a). In each figure, the right panel shows the top view.

cube. The isosurfaces, by definition, extend from the hedge-
hogs and antihedgehogs, and involve the Dirac strings inside.
Figure 16(a) is for the Nm = 16 state at m = 0 and ϕ̃ = π

3 .
From the spin configurations on the isosurfaces, it is observed
that the helicity of the spin texture gradually increases or de-
creases with the z coordinates, which leads to ±π difference
between the top and bottom of each Dirac string. Figure 16(b)
is for the different Nm = 16 state at m = 0 and ϕ̃ = π. The re-
sult demonstrates that the phase shift drastically changes the
spin configurations as well as the real-space distributions of
the topological objects, while Nm is same as in Fig. 16(a). In
this state, the isosurfaces have complicated 3D networks due
to the existence of the Dirac strings running on the horizontal
planes. Figure 16(c) is for the Nm = 8 phase at m = 0.4 and
ϕ̃ = 0. In this state, the isosurfaces become much simpler.
Figures 16(d) and 16(e) are for the Nm = 32 state at m = 0.7
and ϕ̃ = 5π

6 and Nm = 48 states at m = 0.7 and ϕ̃ = π, respec-
tively. In both states, the spin configuration on a horizontal xy
plane comprise a SkL with Bloch type skyrmions, as exempli-
fied on the bottom plane of the cube in the figure. We note that
the skyrmions are deformed and elongated along the direction
of the horizontal Dirac strings. Figure 16(f) is for the Nm = 16
state at m = 0.9 and ϕ̃ = π. In this state, while Nm takes the
same value as that in Figs. 16(a) and 16(b), the spin configu-
ration is completely different from them. In all the cases, the
spin configurations have twofold rotational symmetry about
each vertical Dirac string. We note that the spin configura-
tions with ϕ̃ = 0 have fourfold rotational symmetry about
each Dirac string, as exemplified in Fig. 16(c), while those
with ϕ̃ = π are symmetric for the screw operation {C4z| − ãη},

as exemplified in Figs. 16(b), 16(e), and 16(f). These results
are consistent with the symmetry arguments in Table IV.

Let us briefly discuss the present results in comparison with
the previous studies. A 4Q HL was experimentally discovered
in MnSi1−xGex [85]. In this study, the spin texture at zero
magnetic field was interpreted as the screw 4Q state with four
hedgehogs and four antihedgehogs (Nm = 8), which corre-
sponds to ϕ̃ = 0 in our results, although the value of ϕ̃ was not
examined experimentally. Meanwhile, the topological prop-
erties and the emergent magnetic field in the screw 4Q state
were theoretically studied at ϕ̃ = π while changing the ex-
ternal magnetic field [62], but the study was limited to the
Nm = 16 state as the solutions in Eqs. (68)-(70) were not in-
cluded. Recently, some of the authors studied the evolution
of the screw 4Q state on a 3D simple cubic lattice by varia-
tional calculations and simulated annealing, and found various
types of topological transitions depending on the direction of
the magnetic field [57]. We will discuss one of them, paying
attention to the phase shift in Sec. V B.

C. Sinusoidal 4Q state

Next, we analyze the phase shift in the sinusoidal 4Q state
given by

S(r) ∝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

cosQ1 − cosQ2 − cosQ3 + cosQ4
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FIG. 16. Real-space spin configurations on the isosurfaces with S z(r) = −0.9 within the L3 cube for the screw 4Q state in Eq. (61) for different
topological phases in Fig. 15: (a) m = 0 and ϕ̃ = π

3 (Nm = 16), (b) m = 0 and ϕ̃ = π (Nm = 16), (c) m = 0.4 and ϕ̃ = 0 (Nm = 8), (d) m = 0.7
and ϕ̃ = 5π

6 (Nm = 32), (e) m = 0.7 and ϕ̃ = π (Nm = 48), and (f) m = 0.9 and ϕ̃ = π (Nm = 16). The spin configurations are also shown on the
bottom plane of the cube. The color of the arrows and the isosurfaces denote the xyz and xy components of S(r), respectively; see the inset in
(a). In each figure, the right panel shows the top view.

cube. The isosurfaces, by definition, extend from the hedge-
hogs and antihedgehogs, and involve the Dirac strings inside.
Figure 16(a) is for the Nm = 16 state at m = 0 and ϕ̃ = π

3 .
From the spin configurations on the isosurfaces, it is observed
that the helicity of the spin texture gradually increases or de-
creases with the z coordinates, which leads to ±π difference
between the top and bottom of each Dirac string. Figure 16(b)
is for the different Nm = 16 state at m = 0 and ϕ̃ = π. The re-
sult demonstrates that the phase shift drastically changes the
spin configurations as well as the real-space distributions of
the topological objects, while Nm is same as in Fig. 16(a). In
this state, the isosurfaces have complicated 3D networks due
to the existence of the Dirac strings running on the horizontal
planes. Figure 16(c) is for the Nm = 8 phase at m = 0.4 and
ϕ̃ = 0. In this state, the isosurfaces become much simpler.
Figures 16(d) and 16(e) are for the Nm = 32 state at m = 0.7
and ϕ̃ = 5π

6 and Nm = 48 states at m = 0.7 and ϕ̃ = π, respec-
tively. In both states, the spin configuration on a horizontal xy
plane comprise a SkL with Bloch type skyrmions, as exempli-
fied on the bottom plane of the cube in the figure. We note that
the skyrmions are deformed and elongated along the direction
of the horizontal Dirac strings. Figure 16(f) is for the Nm = 16
state at m = 0.9 and ϕ̃ = π. In this state, while Nm takes the
same value as that in Figs. 16(a) and 16(b), the spin configu-
ration is completely different from them. In all the cases, the
spin configurations have twofold rotational symmetry about
each vertical Dirac string. We note that the spin configura-
tions with ϕ̃ = 0 have fourfold rotational symmetry about
each Dirac string, as exemplified in Fig. 16(c), while those
with ϕ̃ = π are symmetric for the screw operation {C4z| − ãη},

as exemplified in Figs. 16(b), 16(e), and 16(f). These results
are consistent with the symmetry arguments in Table IV.

Let us briefly discuss the present results in comparison with
the previous studies. A 4Q HL was experimentally discovered
in MnSi1−xGex [85]. In this study, the spin texture at zero
magnetic field was interpreted as the screw 4Q state with four
hedgehogs and four antihedgehogs (Nm = 8), which corre-
sponds to ϕ̃ = 0 in our results, although the value of ϕ̃ was not
examined experimentally. Meanwhile, the topological prop-
erties and the emergent magnetic field in the screw 4Q state
were theoretically studied at ϕ̃ = π while changing the ex-
ternal magnetic field [62], but the study was limited to the
Nm = 16 state as the solutions in Eqs. (68)-(70) were not in-
cluded. Recently, some of the authors studied the evolution
of the screw 4Q state on a 3D simple cubic lattice by varia-
tional calculations and simulated annealing, and found various
types of topological transitions depending on the direction of
the magnetic field [57]. We will discuss one of them, paying
attention to the phase shift in Sec. V B.

C. Sinusoidal 4Q state

Next, we analyze the phase shift in the sinusoidal 4Q state
given by

S(r) ∝

⎛
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FIG. 20. Real-space spin configurations on the isosurfaces with Sz(r) = −0.9 for the sinusoidal 4Q state in Eq. (79) for different
topological phases in Fig. 19: (a) m = 0 and ϕ̃ = π (Nm = 48), (b) m = 0.2 and ϕ̃ = π

3 (Nm = 32), (c) m = 0.6 and ϕ̃ = π
3 (Nm = 24),

(d) m = 0.6 and ϕ̃ = π (Nm = 16), and (e) m = 0.8 and ϕ̃ = 5π
6 (Nm = 8). The notations are common to those in Fig. 17.

two interesting features, in comparison with the result for the
screw 4Q case in Fig. 16. One is that the topological phases
with large values of Nm, such as Nm = 24, 32, and 48, appear
in the large portions of the phase diagram. In particular, the
system has Nm = 48 for all ϕ̃ in the small m limit, and turns
into the Nm = 32 state by the fusion on the orange lines in
the phase diagram. Near ϕ̃ = 0 or 2π , the Nm = 24 regions
extend widely in the intermediate m region, and the Nm = 32
states appear in between. The value of −b̄z in the phase with
Nm = 48 is given by
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respectively, for 0 ! ϕ̃ ! π ; −b̄z for π ! ϕ̃ ! 2π is obtained
by the symmetry with respect to ϕ̃ = π . These are in stark
contrast to the screw 4Q case where the topological phases
with Nm = 32 and 48 appear only in the limited region for
2π
3 < ϕ̃ < 4π

3 and Nm = 24 is not found. The other interesting
feature is that the sign of −b̄z is not limited to positive unlike
the screw 4Q case; it can be negative while changing m and
ϕ̃ in the phases with Nm = 32 and 24. The sign changes are
caused by the competition between the lengths of the Dirac
strings with ζ = +1 and −1; see also Eqs. (90) and (91).

We find that −b̄z takes the minimum value of −2 at
(m, ϕ̃) = ( 1√
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,π ), where all the defects connected by the

horizontal Dirac strings cause the fusion simultaneously. This
state has the hedgehog-antihedgehog pairs given by the ana-
lytical solutions in Eqs. (81) and (83) connected by the Dirac
strings whose vorticities and lengths are all ζ = −1 and L

4 ,
respectively. Meanwhile, −b̄z takes the maximum value of
2 in the limit of m → 0 at ϕ̃ = 0 (2π ). This is understood
as follows. When ϕ̃ = 0, the system has the hedgehogs and
antihedgehogs given by Eqs. (83) and (87) connected by
the Dirac strings with the vorticities ζ = 1 and the lengths
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Meanwhile, when ϕ̃ = 2π , the hedgehogs and antihedgehogs
are given by Eqs. (81) and (85), and −b̄z is given by
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Note that Eqs. (92) and (93) are related with each other by the
symmetry with respect to ϕ̃ = π . Hence, −b̄z goes to 2 in the
limit of m → 0 for both ϕ̃ = 0 and 2π .

Figure 20 showcases typical spin configurations of the
sinusoidal 4Q states for all the topological phases in Fig. 19,
in a similar manner to Fig. 17. Figure 20(a) is for the Nm = 48
state at m = 0 and ϕ̃ = π . In this state, all the isosurfaces have
the same shape and volume. Figure 20(b) is for the Nm = 32
state at m = 0.2 and ϕ̃ = π

3 . The isosurfaces including the
pairs of the hedgehog and antihedgehog connected by the
Dirac strings with ζ = −1 are small (hardly seen in the figure)
compared to those including the twisted two-barred crosses,
and they disappear by pair annihilation while increasing m,
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limit of m → 0 for both ϕ̃ = 0 and 2π .
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Short summary

๏ The spin moiré picture is useful to explore more variety of topological spin crystals. 
- We can exploit the analogy with conventional moiré. 
- There are many advantages of spin moiré, compare to the structural moiré in twisted 2D materials. 

๏ We demonstrated the usefulness of the spin moiré picture for the phase shift in topological 
spin crystals. 
- complete topological phase diagrams for 2D skyrmions and 3D torons 
- unprecedented topological phases with higher-order skyrmions and high-density torons



itinerant frustration



New generation: nanometer-scale skymions
Gd3Ru4Al12 

temperature-hysteretic Hall conductivity signal (shaded in gray)
emerges on the back of a smooth background in an intermediate
range of magnetic fields. We approximate the background by a
low-order (odd) polynomial and extract the topological Hall
conductivity σxyTHE. The topological signal as obtained from the
isothermal field scans is confined within the boundaries of the
SkL phase (Fig. 2c). Meanwhile, measurements of σxy(T) at fixed
magnetic field and for increasing temperature (dT/dt > 0) show a
large split between curves recorded under zero-field cooled (ZFC)
and field-cooled (FC) sample conditions, exclusively at inter-
mediate field values (Fig. 2d, μ0Hint= 1.22 and 1.42 T). The
natural conclusion is that a metastable SkL state, with its largely
enhanced σxy(T), can be sustained at the lowest temperatures in
the FC experiment, where the SkL is absent under ZFC
conditions. This behavior suggests the stabilization of the SkL
by thermal fluctuations (c.f. Discussion section). The point of

divergence between the ZFC and FC curves at T= 5–8 K in
Fig. 2d marks the first order phase transition between the TC and
SkL states in our phase diagram (labeled in Fig. 2a,c by black open
squares). Detailed susceptibiltity measurements evidence that the
boundaries of phases TC and SkL with all surrounding phases are
also strongly of first order (Supplementary Fig. 7).

Resonant elastic x-ray scattering (REXS) and microscopic
magnetic structure. We now proceed to study the field-induced
magnetic phases using REXS (Fig. 3) and real-space imaging
(Fig. 4, next section), before finally returning to a semi-
quantitative analysis of the Hall signal. For polarization analysis
in REXS, three mutually orthogonal components of the
q-modulated magnetic moment m(q) are separated viz.34
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Fig. 1 Crystal structure and zero-field magnetic order of a Gd-based breathing kagomé lattice. a Hexagonal unit cell of Gd3Ru4Al12, where a, b, and c are
crystallographic lattice directions. b Within the Gd3Al4 layer, rare earth (Gd) atoms form a distorted kagomé net with alternating distances r, r’ between
nearest neighbors. Al and Ru atoms are not shown. The black rhombus indicates the size of the primitive unit cell. c Magnetic susceptibility (blue, left axis)
increases continuously in the paramagnetic state as temperature is lowered. The inverse susceptibility H/M (red, right axis) is fitted by the Curie–Weiss
expression (dashed line) at high temperature. d, e Specific heat cP(T) and M/H show two phase transitions in zero magnetic field. f, g At the (7, 0, 0)+
q3= (7+ q, −q, 0) incommensurate reflection, resonant x-ray scattering with polarization analysis provides modulated moments within (m⊥ q,c, blue solid
triangles) and perpendicular to (m//c, red open triangles) the hexagonal plane, as well as the magnitude of the ordering vector q. Inset of (c) six directions
of qi are allowed by symmetry. The black hexagon indicates a conventional unit cell in real space. The transition temperatures TN2 > TN1 bound the red
shaded area in (d–g).
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temperature-hysteretic Hall conductivity signal (shaded in gray)
emerges on the back of a smooth background in an intermediate
range of magnetic fields. We approximate the background by a
low-order (odd) polynomial and extract the topological Hall
conductivity σxyTHE. The topological signal as obtained from the
isothermal field scans is confined within the boundaries of the
SkL phase (Fig. 2c). Meanwhile, measurements of σxy(T) at fixed
magnetic field and for increasing temperature (dT/dt > 0) show a
large split between curves recorded under zero-field cooled (ZFC)
and field-cooled (FC) sample conditions, exclusively at inter-
mediate field values (Fig. 2d, μ0Hint= 1.22 and 1.42 T). The
natural conclusion is that a metastable SkL state, with its largely
enhanced σxy(T), can be sustained at the lowest temperatures in
the FC experiment, where the SkL is absent under ZFC
conditions. This behavior suggests the stabilization of the SkL
by thermal fluctuations (c.f. Discussion section). The point of

divergence between the ZFC and FC curves at T= 5–8 K in
Fig. 2d marks the first order phase transition between the TC and
SkL states in our phase diagram (labeled in Fig. 2a,c by black open
squares). Detailed susceptibiltity measurements evidence that the
boundaries of phases TC and SkL with all surrounding phases are
also strongly of first order (Supplementary Fig. 7).

Resonant elastic x-ray scattering (REXS) and microscopic
magnetic structure. We now proceed to study the field-induced
magnetic phases using REXS (Fig. 3) and real-space imaging
(Fig. 4, next section), before finally returning to a semi-
quantitative analysis of the Hall signal. For polarization analysis
in REXS, three mutually orthogonal components of the
q-modulated magnetic moment m(q) are separated viz.34
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Fig. 1 Crystal structure and zero-field magnetic order of a Gd-based breathing kagomé lattice. a Hexagonal unit cell of Gd3Ru4Al12, where a, b, and c are
crystallographic lattice directions. b Within the Gd3Al4 layer, rare earth (Gd) atoms form a distorted kagomé net with alternating distances r, r’ between
nearest neighbors. Al and Ru atoms are not shown. The black rhombus indicates the size of the primitive unit cell. c Magnetic susceptibility (blue, left axis)
increases continuously in the paramagnetic state as temperature is lowered. The inverse susceptibility H/M (red, right axis) is fitted by the Curie–Weiss
expression (dashed line) at high temperature. d, e Specific heat cP(T) and M/H show two phase transitions in zero magnetic field. f, g At the (7, 0, 0)+
q3= (7+ q, −q, 0) incommensurate reflection, resonant x-ray scattering with polarization analysis provides modulated moments within (m⊥ q,c, blue solid
triangles) and perpendicular to (m//c, red open triangles) the hexagonal plane, as well as the magnitude of the ordering vector q. Inset of (c) six directions
of qi are allowed by symmetry. The black hexagon indicates a conventional unit cell in real space. The transition temperatures TN2 > TN1 bound the red
shaded area in (d–g).
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where q̂ is a vector of unit length along q. In our experiment, the
incoming beam of x-rays is linearly polarized with electric field
component Eω within the π-plane spanned by ki and kf, the wave-
vectors of the incoming and outgoing beams (π-polarization).
Two components of the scattered x-ray intensity are separated at
the detector: Iππ, with Eω remaining within the π-plane, and Iπσ,
with Eω now perpendicular to the π-plane. In the scattering
geometry where ki, kf⊥c, we have Iππ ~ m2

//c always (see Meth-
ods). We chose the incommensurate satellite reflections at (4+ q,
4, 0) and (4, 4-q, 0) so that Iπσ ~ m2

⊥q,c and Iπσ ~ m2
//q,

respectively. Starting from the ZFC state at T= 2.4 K and
increasing the magnetic field, this convenient experimental con-
figuration allows us to identify the helical ground state (H) with
m⊥q,c, m//c ≠ 0 and m//q= 0 (H= 0, Fig. 3a, d, g), the transverse
conical (TC) state with m//c= 0 and finite values for both in-
plane components of m(q) (μ0Hint= 1.5 T, Fig. 3b, e, h), as well
as the fan-like (F) state, which has only m⊥q,c ≠ 0 (μ0Hint= 2.9 T,
Fig. 3c, f, i). It was confirmed that the incommensurate reflections
vanish in the field-aligned state (not shown). The TC ground state
in finite field is likely stabilized by weak in-plane anisotropy of the
local magnetic moment. Weak in-plane anisotropy was also
observed in magnetization measurements (Supplementary Fig. 7).

In Methods (Fig. 5) and Supplementary Notes 2, 3 we present
bulk neutron scattering data obtained on a 160Gd isotope-
enriched single crystal. Firstly, we find excellent quantitative
agreement of small-angle neutron scattering (SANS) and REXS,
indicating that the REXS experiment is not seriously affected by
surface strain and can be used to characterize the bulk properties

of Gd3Ru4Al12. Secondly, our neutron experiment with H//a*
confirms the multi-domain nature of the zero-field helical ground
state. Thirdly, neutron scattering also provides proof that the
magnetic modulations on the breathing kagomé layers are
ferromagnetically stacked along the c-axis, by ruling out magnetic
reflections at (q, 0, (2n−1)/2) and (q, 0, 2n−1) for n= 1 and 2. As
compared to the triangular lattice, kagomé structures introduce
additional complexity due to the larger number of atoms per
crystallographic unit cell. While the scope of this work does not
include a full refinement of the magnetic structure, the interesting
question of the local spin alignment on the trimer plaquette
remains to be resolved in future studies35.

We have also performed REXS experiments in the SkL phase
at T= 7 K, μ0Hint= 1.5 T under field cooling (Fig. 3j–l). In this
experiment, the three reflections (7+ q, 0, 0), (7, q, 0), and
(7+ q, −q, 0)—corresponding to q1, q2, and q3 in the
inset sketch of Fig. 3l—were chosen. We find very strong
Iπσ(q3) ~ m2

⊥q,c but weaker Iπσ(q1) and Iπσ(q2), a telltale sign of
the fan-like state. The large fan-like signal in this experiment
likely arises due to the proximity to a first order phase
transition and associated phase separation. Crucially, there is
also significant Iππ ~ m2

//c with comparable intensities for all
the three qi. Our data, taken with an x-ray beam spot size of
~1 mm2, suggest about 20–50% volume fraction (fV) of the
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Figure 3(f) shows the longitudinal magnetoresistivity
versus H at 2 K where ρðTÞ is dominated by the residual
component. For H ¼ H1 there is an abrupt increase in
resistivity that is subsequently reversed for H > H2. This
decrease in ρ is approximately twice as large as the increase
in ρ at H1. One interpretation is that parts of the Fermi
surface develop a gap in the ordered regimes, and that this

gapped area of the Fermi surface doubles for H1<H<H2

compared to H < H1 and vanishes for H > H2.
Application of the P4/nmm symmetry operations to q1

yields a second, symmetrically equivalent wave vector
q2 ¼ ðηη̄1/2Þ. The observation of q1 satellite peaks for all
H < H2 leaves open whether distinct, single-q domains or a
multi-q modulation describes magnetic structure in the
various regimes. As we shall now show, this is resolved
by analysis of field dependent magnetic diffraction data.
Figure 2(d) shows representative line scans of elastic neutron
diffraction along (hh0) for H < H1. We find a weak, field-
induced peak at ð2η; 2η; 0Þ ¼ 2q1 − c$, which indicates the
spatialmodulation ofmagnetization ceases to followa simple
sinusoidal form in a field. The new Fourier component is
supported by a single q1 domain and is not accompanied by
harmonics of the formq1 % q2. This constitutes evidence that
the H < H1 SDW state is striped and consists of distinct q1

and q2 domains. Furthermore, the presence of a magnetic
satellite peak at momentum transferQ ¼ ð2η; 2η; 0Þ implies
that for this Fourier component of the SDW the two Ce3þ

sites within a unit cell contribute in phase. Thus, the second
harmonic m2q1 forms a representation of Γ2. This does not,
however, constrain the fundamental modulation mq1 for
which both Γ2 and Γ3 are consistent with the data.
The field dependence of m2q1

ðHÞ is shown in Fig. 3(b).
As directly apparent from Fig. 2(d), there is no evidence
for this harmonic in a zero field. A linear in H fit to
m2q1ðHÞ yields m0

2q1
¼ 0.14ð2ÞμBT−1/Ce, which is indis-

tinguishable fromm0
0 so that jm2q1

ðHÞj ≈ jm0ðHÞj through-
out the striped phase [Figs. 3(b) and 3(e)]. Note that
intensity data are insensitive to the relative phase between
the fundamental and harmonic spin density waves and so
cannot directly determine the real space spin structure.
Combining the three Fourier components we obtain
mjðrÞ¼m0þνjmq1 cosðq1 ·rÞþm2q1 cosð2q1 ·rÞ on sublat-
tice j, where ν ¼ %1 encodes the lack of an experimental
distinction between Γ2 and Γ3 for the q1 modulation.
Without loss of generality, we pick m0 > 0 and mq1 > 0.
To ensure jmjðrÞj does not exceed m0;max defined by the
Kramers doublet ground state at any r requires m2q1 < 0,
so that m0ðHÞ ≈ −m2q1ðHÞ. The corresponding mjðrÞ¼
νjmq1cosðq1 ·rÞþm0½1−cosð2q1 ·rÞ( is shown in Fig. 4(a)
for H immediately below H1. Qualitatively, we find stripes
where mjðrÞ > 0 broaden with field at the expense of
stripes where mjðrÞ < 0. Given only the fundamental and
second harmonics and assuming m2q1 ¼ −m0, a global
maximum in mjðrÞ exceeding m0;max would occur if m0

were to exceed mq1 /4. The similarity of m0ðH1Þ ¼ 0.32μB
to mq1ðH1Þ/4 ¼ 0.43ð1ÞμB indicates the phase transition at
H1 is associated with reaching the maximummagnetization
possible for a striped phase with an individual Ce moment
limited at m0;max and the spatial modulation dominated by
just three Fourier components m0, mq1 , and m2q1 .

(a) (b)

(c) (d)

(e)

(g)

(h)
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FIG. 3. The ordered magnetic Fourier amplitudes (a), (b) and
their corresponding wave vectors (c), (d) throughout the H − T
phase diagram. (e) Field dependence of the uniform magnetiza-
tion. (f) Longitudinal magnetoresistance. The dashed lines high-
light the factor of 2 increase of Δρ acrossHc1. The reduced Fermi
surface (g) is extracted from density-functional theory calcula-
tions and overlaid with potential nesting conditions for q1

(black), 2q1 (red), and q1 þ q2 (blue). A diagram of the reduced
Brillouin zone is provided in (h).
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EuPtSi crystallizes in the cubic chiral structure (P213, No. 198), which is the same as the non-centrosymmetric space
group of MnSi with the skyrmion structure, and orders antiferromagnetically below a Néel temperature TN = 4.05K. The
magnetization at 2K for the [111] direction indicates two metamagnetic transitions at the magnetic fields HA1 = 9.2 kOe
and HA2 = 13.8 kOe and saturates above Hc = 26.6 kOe. The present magnetic phase between HA1 and HA2 is most likely
closed in the ðH; TÞ phase and is observed in a wide temperature range from 3.6 to 0.5K. In this magnetic phase known
as the A-phase, we found giant additional Hall resistivity ΔρH(H) and magnetoresistance Δρ(H ), reaching ΔρH(H) =
0.12 µΩ·cm and Δρ(H) = 1.4 µΩ·cm, respectively. These findings are obtained for H ∥ [111] and [100], but not for
H ∥ [110] and [112], revealing an anisotropic behavior in the new material EuPtSi.

The non-centrosymmetric crystal structure does not
possess a center of inversion. In this crystal structure, the
parity violation in the crystal structure lifts not only the
charge degeneracy of an electron but also the corresponding
spin. The Fermi surfaces are found to split into two, reflecting
the non-centrosymmetric crystal structure. In our recent
studies, we succeeded in growing single crystals of
ullmannite-type compounds such as NiSbS and PdBiSe
and clarified their split Fermi surface properties based on
the non-centrosymmetric cubic chiral structure (T4, P213,
No. 198).1,2) EuPtSi is also an ullmannite-type compound.
This compound was theoretically discussed from the
perspective of frustrated magnetism.3–5) Geometrically frus-
trated magnetic systems such as the triangle lattice, Kagomé
lattice, and pyrochore lattice are able to avoid magnetic
ordering until unusually low temperatures are reached and
have been found to have interesting properties. EuPtSi
belongs to a new type of geometrically frustrated magnetic
system, forming a lattice with the three equilateral corner-
sharing triangles known as the trillium lattice, as shown in
Fig. 1. Four Eu atoms in Fig. 1(a) form a tetrahedron, and
similarly four Si atoms form almost the same tetrahedron,
combined together. Eight Pt atoms occupy the corners of the
cubic structure, and six Pt atoms occupy atomic sites very
close to the fcc atomic sites. The four fold symmetry is
broken in this crystal structure; however, the three-fold
symmetry is maintained for the h111i direction in this cubic
structure. The local ferromagnetic Ising model for Eu-spins
on the trillium lattice leads to a macroscopic ground state
degeneracy, namely the trillium spin ice.3) On the other hand,
the Heisenberg model of the trillium lattice exhibits a first-
order transition to the magnetically ordered state.4,5)

The previous measurements of the electrical resistivity,
magnetic susceptibility, and Möessbauer isomer shift for
EuPtSi were carried out using polycrystal samples,6,7)

revealing that there was no magnetic ordering down to
4.2K. Recently, we carried out low-temperature measure-
ments of the electrical resistivity, specific heat, and magnet-
ization and found an antiferromagnetic ordering at TN ’

4:0K, revealing first-order like antiferromagnetic ordering
with a single crystal sample grown by the Bridgman
method.8) Note that there is no hysteresis in the present
magnetic transition, revealing the same magnetization (M)
data between the zero-field cooling and field cooling
processes. Almost the same data was reported in a study by
another group using the arc-melted polycrystal sample.9)

In our recent study,8) we noted that the present Néel
temperature of 4.0K is a very small value compared to the
magnetic ordering temperatures ranging from 10 to 100K in
the usual Eu-compounds. The small Néel temperature of
4.0K in EuPtSi is related to the frustrated magnetism in the
so-called trillium lattice. In fact, the magnetic entropy at
TN ’ 4:0K is roughly half R ln 8 for S ¼ 7=2 spins of Eu2+,

(a) (b)

Fig. 1. (Color online) (a) Cubic chiral structure in EuPtSi and (b) the
lattice with three equilateral corner-sharing triangles. Site positions of the
four Eu atoms named a, b, c, and d in the tetrahedron in (a) are clarified in the
trillium lattice in (b).
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Next, we measured the Hall resistivity and magneto-
resistance as functions of the magnetic field, together with the
magnetization, as shown in Fig. 3. Figure 3(a) shows the
field dependence of the Hall resistivity !H under several
constant temperatures. The !!H value is approximately
similar to the magnetization M in field dependence, as shown
in Figs. 3(c) and 3(d). In particular, the magnetization
increases almost linearly with increase in the field, indicating
a canting process of magnetization, and saturates above
Hc ¼ 26:6 kOe at 2K. The Hall resistivity is thus mainly due
to the contribution of the anomalous part, or simply M.

It should be noted that the magnetization at 2K indicates
two metamagnetic transitions at HA1 ¼ 9:0 kOe and HA2 ¼
13:8 kOe. Correspondingly, the !H value indicates a clear
peak structure between HA1 and HA2, namely an additional
Hall resistivity !!HðHÞ. The present peak structure is
observed in the temperature range from 2.5 to 0.5K, as
shown in the inset of Fig. 3(a).

To clarify the present additional Hall resistivity further, we
tried to fit the experimental Hall resistivity by the relations
R0H þ 4"RsM (or simply aH þ bM, a ¼ 0:003 µΩ·cm=kOe
and b ¼ 0:087 µΩ·cm=#B for H [kOe] and M [#B=Eu]) and
4"RsM (or simply b0M, b0 ¼ 0:105 µΩ·cm=#B), as shown by
the thin blue and black lines in Fig. 3(e), respectively. Note
that we could not determine the normal Hall coefficient from
the temperature dependence of Hall resistivity, as mentioned
above. The present value a is a fitting value. Therefore, the
present Hall resistivity is mainly due to the magnetization M
resulting from the anomalous part, which indicates that the
peak structure is an additional contribution to the Hall
resistivity. We also tried to fit the present field dependence of
Hall resistivity by another relation 4"R0

s!M (or simply b00!M,
b00 ¼ 0:031#!1B for ρ [µΩ·cm]), as shown by the thin black
solid line in Fig. 3(f ). A peak structure appears in magnetic
fields between HA1 and HA2; however, the direction of this
peak is opposite compared to that of the experimental one,
resulting in the existence of a characteristic additional Hall
resistivity in EuPtSi.

The corresponding magnetoresistance ρ indicates a much
pronounced peak structure, as shown in Fig. 3(b). The
present magnetoresistance corresponds to the transverse
configuration, namely J ? H (J k ½11"2' and H k ½111').
The magnetoresistance thus consists of the negative magneto-
resistance due to the spin alignment along the field direction
and the positive magnetoresistance due to the cyclotron
motions of conduction electrons. The former effect is mainly
observed at 20 and 7K, as shown in Fig. 3(b). On the other
hand, the latter effect becomes dominant at lower temper-
atures, because the magnitude of spin-disorder scattering is
reduced at temperatures below TN. Besides these magneto-
resistances, the additional magnetoresistance !!ðHÞ, or the
peak structure, is observed between HA1 and HA2.

The magnetic phase diagram characterized by HA1, HA2,
and Hc is summarized in Fig. 3(g). The thick solid lines are
obtained by a Faraday force capacitive magnetometer.8,10)

Note that the magnetic susceptibility and magnetization in
Figs. 2 and 3 are obtained using a commercial SQUID
magnetometer. The present data indicated by large red open
circles, which were obtained from the peak structures in the
magnetoresistances, are in good agreement with the thick
solid lines. It is characteristic that the A-phase is most likely
closed in the temperature range from 3.6 to 0.5K. This is
because the magnitude of the additional Hall resistivity and
magnetoresistance are considerably reduced at temperatures
below 0.6K.

It is clear that the distinct additional contribution to the
Hall resistivity and magnetoresistance, !!HðHÞ and !!ðHÞ,
are obtained in the A-phase, reaching !!HðHÞ ¼ 0:12 µΩ·cm
and !!ðHÞ ¼ 1:4 µΩ·cm, respectively, around 1K, as shown
in Figs. 3(h) and 3(i). The present additional Hall resistivity
is most likely explained by the existence of the emergent
magnetic field based on skyrmions. The additional magneto-
resistance is, however, not explained by the emergent
magnetic field, but it can be explained if the skyrmions
become scattering centers for the conduction electrons.

In MnSi, the A-phase exists in a small temperature region
from 28 to 29K, and !!HðHÞ is very small, being
4 nΩ·cm.15) The small value in MnSi is, however, considered
to become 50 nΩ·cm intrinsically via the pressure experi-

(b)(a)

(c)

(d)

(g)

(e)

(f)

(h)

(i)

Fig. 3. (Color online) Field dependences of (a) the Hall resistivity !H and
(b) the transverse magnetoresistance ρ for H k ½111' in EuPtSi. (c) Typical
Hall resistivity and transverse magnetoresistance at 2K for H k ½111' and
(d) the magnetization curves. (e) and (f ) Field dependences of !!H value
analysed using the relations R0H þ 4"RsM and 4"RsM, and 4"R0

s!M,
respectively. (g) The magnetic phase diagram, (h) and (i) the additional
Hall resistivity !!HðHÞ and magnetoresistance !!ðHÞ in the A-phase for
H k ½111', respectively.
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constant temperatures. The !!H value is approximately
similar to the magnetization M in field dependence, as shown
in Figs. 3(c) and 3(d). In particular, the magnetization
increases almost linearly with increase in the field, indicating
a canting process of magnetization, and saturates above
Hc ¼ 26:6 kOe at 2K. The Hall resistivity is thus mainly due
to the contribution of the anomalous part, or simply M.

It should be noted that the magnetization at 2K indicates
two metamagnetic transitions at HA1 ¼ 9:0 kOe and HA2 ¼
13:8 kOe. Correspondingly, the !H value indicates a clear
peak structure between HA1 and HA2, namely an additional
Hall resistivity !!HðHÞ. The present peak structure is
observed in the temperature range from 2.5 to 0.5K, as
shown in the inset of Fig. 3(a).

To clarify the present additional Hall resistivity further, we
tried to fit the experimental Hall resistivity by the relations
R0H þ 4"RsM (or simply aH þ bM, a ¼ 0:003 µΩ·cm=kOe
and b ¼ 0:087 µΩ·cm=#B for H [kOe] and M [#B=Eu]) and
4"RsM (or simply b0M, b0 ¼ 0:105 µΩ·cm=#B), as shown by
the thin blue and black lines in Fig. 3(e), respectively. Note
that we could not determine the normal Hall coefficient from
the temperature dependence of Hall resistivity, as mentioned
above. The present value a is a fitting value. Therefore, the
present Hall resistivity is mainly due to the magnetization M
resulting from the anomalous part, which indicates that the
peak structure is an additional contribution to the Hall
resistivity. We also tried to fit the present field dependence of
Hall resistivity by another relation 4"R0

s!M (or simply b00!M,
b00 ¼ 0:031#!1B for ρ [µΩ·cm]), as shown by the thin black
solid line in Fig. 3(f ). A peak structure appears in magnetic
fields between HA1 and HA2; however, the direction of this
peak is opposite compared to that of the experimental one,
resulting in the existence of a characteristic additional Hall
resistivity in EuPtSi.

The corresponding magnetoresistance ρ indicates a much
pronounced peak structure, as shown in Fig. 3(b). The
present magnetoresistance corresponds to the transverse
configuration, namely J ? H (J k ½11"2' and H k ½111').
The magnetoresistance thus consists of the negative magneto-
resistance due to the spin alignment along the field direction
and the positive magnetoresistance due to the cyclotron
motions of conduction electrons. The former effect is mainly
observed at 20 and 7K, as shown in Fig. 3(b). On the other
hand, the latter effect becomes dominant at lower temper-
atures, because the magnitude of spin-disorder scattering is
reduced at temperatures below TN. Besides these magneto-
resistances, the additional magnetoresistance !!ðHÞ, or the
peak structure, is observed between HA1 and HA2.

The magnetic phase diagram characterized by HA1, HA2,
and Hc is summarized in Fig. 3(g). The thick solid lines are
obtained by a Faraday force capacitive magnetometer.8,10)

Note that the magnetic susceptibility and magnetization in
Figs. 2 and 3 are obtained using a commercial SQUID
magnetometer. The present data indicated by large red open
circles, which were obtained from the peak structures in the
magnetoresistances, are in good agreement with the thick
solid lines. It is characteristic that the A-phase is most likely
closed in the temperature range from 3.6 to 0.5K. This is
because the magnitude of the additional Hall resistivity and
magnetoresistance are considerably reduced at temperatures
below 0.6K.

It is clear that the distinct additional contribution to the
Hall resistivity and magnetoresistance, !!HðHÞ and !!ðHÞ,
are obtained in the A-phase, reaching !!HðHÞ ¼ 0:12 µΩ·cm
and !!ðHÞ ¼ 1:4 µΩ·cm, respectively, around 1K, as shown
in Figs. 3(h) and 3(i). The present additional Hall resistivity
is most likely explained by the existence of the emergent
magnetic field based on skyrmions. The additional magneto-
resistance is, however, not explained by the emergent
magnetic field, but it can be explained if the skyrmions
become scattering centers for the conduction electrons.

In MnSi, the A-phase exists in a small temperature region
from 28 to 29K, and !!HðHÞ is very small, being
4 nΩ·cm.15) The small value in MnSi is, however, considered
to become 50 nΩ·cm intrinsically via the pressure experi-

(b)(a)

(c)

(d)

(g)

(e)

(f)

(h)

(i)

Fig. 3. (Color online) Field dependences of (a) the Hall resistivity !H and
(b) the transverse magnetoresistance ρ for H k ½111' in EuPtSi. (c) Typical
Hall resistivity and transverse magnetoresistance at 2K for H k ½111' and
(d) the magnetization curves. (e) and (f ) Field dependences of !!H value
analysed using the relations R0H þ 4"RsM and 4"RsM, and 4"R0

s!M,
respectively. (g) The magnetic phase diagram, (h) and (i) the additional
Hall resistivity !!HðHÞ and magnetoresistance !!ðHÞ in the A-phase for
H k ½111', respectively.
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hexagonal lattice systemwith additional easy-plane anisotropy based on
the effective spinHamiltonian proposed in (27) (see the Supplementary
Materials for details). This result of the simulations confirms that the
four-spin interaction can stabilize the vortex-like triple-q spin texture
with moments confined within the hexagonal lattice basal plane, as
shown in Fig. 4 (C and D), which is consistent with the present SANS
results. Note that Y3Co8Sn4 is characterized by a large crystallographic
unit cell with four inequivalent Co sites, and the real spin texture in this
compound may be more complicated due to the contribution of other
factors neglected in the present model. For example, the observed ap-
pearance of a single-qorderwith a differentmodulationperiod at higher
temperatures implies the delicate balance of competing instabilities as-
sociated with the intricate character of Fermi surfaces. Nevertheless, the
main conclusion of this theoretical framework, i.e., the emergence of
triple-q order with in-plane noncollinear spin textures in the ground
state atH = 0, will be valid in general, irrespective of thematerial details.

DISCUSSION
The presently used four-spin interaction mechanism in itinerant
magnets is unique, because it allows the emergence of multiple-q states
even in zero magnetic field and without the necessity of inversion
symmetry breaking. Recently, it has been reported that this four-spin
interaction plays a key role in the emergence of a double-q square
skyrmion lattice in the Fe monolayer on Ir(111), where the magnitude
of the four-spin interaction turned out to be of the same order as the
two-spin exchange interaction (33). Our present results for Y3Co8Sn4
suggest that a similarmechanismmaybe also active in single-phase bulk
itinerant magnets. Note that Y3Co8Sn4 with easy-plane anisotropy is
characterized by a coplanar spin texture, which is topologically trivial

in terms of skyrmion number. On the other hand, the emergence
of a noncoplanar multiple-q order with nonzero skyrmion number
has theoretically been predicted for the system with weak or easy-axis
magnetic anisotropy (26, 27), and the systematic control of magnetic
anisotropy is possible for the R3M8Sn4 family due to its wide chemical
tenability (28, 34, 35). Our experimental results suggest a new paradigm
to realize exotic (and potentially topological) multiple-q orders and call
for further exploration of other itinerant hexagonal magnets including
the family of R3M8Sn4.

MATERIALS AND METHODS
Sample preparation
Single crystals of Y3Co8Sn4 were synthesized by arc-melting stoichio-
metric amounts of pure Y, Co, and Sn pieces, followed by slow cooling
in a silica tube under vacuum. Powder x-ray diffraction analysis con-
firmed the single-phase nature of the crystal (fig. S4). The crystal orien-
tation was determined by both x-ray Laue and neutron diffraction. The
sample had a volume of 6 mm by 4 mm by 1 mm, with the widest sur-
face parallel to the (001) plane.

Magnetization and SANS measurements
Magnetization was measured using a SQUIDmagnetometer (Magnetic
Property Measurement System, Quantum Design). The SANS mea-
surements were carried out using the SANS-I and SANS-II instruments
at the Swiss Spallation Neutron Source (SINQ), Paul Scherrer Institut,
Switzerland, and the D33 instrument at the Institut Laue-Langevin
(ILL), Grenoble, France. The wavelengths of the neutron beam were
set to 5 Å (SANS-I and SANS-II) and 4.6 Å (D33). The incident beam
was always directed along the [001] axis. The SANS diffraction patterns
were obtained by summing together two-dimensional multidetector
measurements taken over a range of sample + cryomagnet rotation
(rocking) angles. Background data at each rocking angle were obtained
forT= 60Kwell aboveTc and subtracted fromdata obtained at lowT to
leave only the magnetic signal. All H (magnetic field) scans were per-
formed in theH-increasing process after zero-field cooling (ZFC), andT
(temperature) scans were performed in the warming process after ZFC.

In the SANS experiments, with longitudinal polarization analysis
(POLARIS) using D33 at the ILL (36), the incident neutron beamwas
spin polarized using an Fe-Si transmission polarizer, with the spin po-
larization reversible by means of an radio frequency spin flipper. The
neutron spin state after scattering from the sample was analyzed using
a nuclear spin-polarized 3He cell. The longitudinal neutron spin po-
larization axis was preserved by means of magnetic guide fields of the
order of several milliteslas on the intermediate flight path between po-
larizer and analyzer. At the sample position, the guide field of 5 mT
was applied by the cryomagnet, with the field being sufficiently low as
the zero-field magnetic state of the sample was kept intact. The effi-
ciency of the overall setupwas characterized by the flipping ratio of 14.
By measuring all possible spin-state combinations, corrections for the
polarizing efficiency of the overall setupwere taken into account in the
data analysis. The polarized (and unpolarized) data reductionwas per-
formed using the GRASP software.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/11/eaau3402/DC1
Section S1. SANS investigation of qin under in-plane magnetic field

A B

DC

Fig. 4. Magnetic phases in Y3Co8Sn4. (A and B) H-T magnetic phase diagrams
derived from the field and the temperature dependence of the SANS intensity under
(A) H || [001] and (B) H || ½1!10". (C) Triple-q spin configuration obtained by simulated
annealing basedon themodel describedby eq. S5,with the parametersa =0.4 and K=
1.5 ( J̃ ¼ 1). Arrows represent the xy components of the magnetic moment. (D) Simu-
lated SANS patterns corresponding to (C), with the color indicating the square root of
the spin structure factor in arbitrary units. Hexagons in (C) and (D) represent the
magnetic unit cell and first Brillouin zone, respectively.
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An important challenge is the search for an appropriate material 
system to experimentally realize these situations. Very recently, it 
was discovered that the centrosymmetric triangular-lattice magnet 
Gd2PdSi3 hosts a hexagonal lattice of skyrmions, which is character-
ized by a small skyrmion diameter, λsk of 2.4 nm with an associated 
giant topological Hall effect29. A similar skyrmion formation was 
also reported for the centrosymmetric Gd3Ru4Al12 with a breath-
ing kagomé network30. For these compounds, the existence of a 
geometrically frustrated lattice is considered to be the key for the 
skyrmion formation. Nevertheless, in principle, the competition of 
long-range magnetic interactions mediated by itinerant electrons 
can be allowed for any type of crystal lattice. Therefore, it remains 
an important question whether similar skyrmion formation in cen-
trosymmetric magnets without geometrically frustrated lattices 
is possible or not. In this study, we focus on the centrosymmetric 
tetragonal magnet GdRu2Si2 without a geometrically frustrated 
lattice, and investigated its magnetic structure in detail. We found 
the emergence of the double-Q square skyrmion lattice state in an 
out-of-plane magnetic field. The observed skyrmion diameter is 
as small as 1.9 nm, which is the smallest among those reported for 
single-component bulk materials. Our present results demonstrate 
that a skyrmion lattice can be formed even without a geometrically 

frustrated lattice or inversion symmetry breaking, and suggest that, 
in general, rare-earth intermetallics with a highly symmetric crystal 
lattice can be a promising material platform to realize nanometric 
skyrmions of exotic origins.

Magnetic phase diagram for B!//![001]
GdRu2Si2 belongs to the family of RM2X2 compounds crystallized 
in a ThCr2Si2-type structure with centrosymmetric tetragonal space 
group I4/mmm (R, rare-earth element; M, a 3d, 4d or 5d element; 
X, Si or Ge)31. The crystal structure consists of alternate stacking of 
square lattice Gd layers and Ru2Si2 layers as presented in Fig. 1a, with 
the magnetism governed by Gd3+ (spin = 7/2, orbital moment = 0) 
ions with a Heisenberg magnetic moment. According to previous 
reports, this compound hosts incommensurate magnetic order below 
a Néel temperature of ~46 K (refs. 31,32), with the magnetic modulation 
vector Q = (0.22, 0, 0) confined within the tetragonal basal plane33. 
Application of a magnetic field B along the [001] axis induces several 
magnetic phase transitions as summarized in Fig. 1b, but the detailed 
magnetic structure in each phase has not been identified31–34.

Figure 1f–h,j–l indicates the magnetic field dependence of mag-
netization M, longitudinal resistivity ρxx and Hall resistivity ρyx mea-
sured at 5 K for B // [001]. The magnetization profile shows clear 
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Fig. 1 | Crystal structure, magnetic structure and magnetic phase diagram of GdRu2Si2. a, Crystal structure of GdRu2Si2. b, B–T phase diagram for 
B!//![001] based on the measurements of temperature (T) and magnetic field (B) dependence of magnetization M. Multiple magnetic phases can be 
clearly identified, including (modulated) screw (phase I), double-Q square skyrmion lattice (SkL) (phase II) and fan structure (phase III). c, Schematic 
illustration of the screw magnetic structure in phase I. d, Square SkL in phase II described by equation (3), that is, the superposition of two screw 
spin structures with orthogonally arranged magnetic modulation vectors Q1 and Q2. e, Fan structure in phase III. f–h, Magnetic field dependence of 
magnetization M (f), longitudinal resistivity ρxx (g) and Hall resistivity ρyx (h) at T!=!5!K for B!//![001] and I!//![100]. i–l, Expanded view of data in b (i), f (j), 
g (k) and h (l). f.u., formula unit; FM, ferromagnetic; PM, paramagnetic.
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period of 1.9 nm formed on the atomic lattice. Figure 4f,g show  
filtered images obtained from the under-focused and over-focused 
L-TEM images, respectively, based only on the magnetic reflections 
circled in Fig. 4c. Both under-focused and over-focused images 
show a square-lattice-like pattern but with an opposite black/
white contrast. By performing the transport-of-intensity equation 
analysis15 based on these two images, the spatial distribution of the 
in-plane local magnetization is deduced as shown in Fig. 4h. We 
can confirm the square lattice of the vortex-like spin arrangements, 
which is revealed to be consistent with the spin texture in Fig. 1d 
and represents the square skyrmion lattice described by equation 
(3). Above Curie temperature, all the magnetic contrast and the cor-
responding magnetic reflections disappear, as shown in Fig. 4d.

Microscopic origins of square skyrmion lattice
Theoretically, several distinct mechanisms for the emergence 
of multiple-Q spin textures have been proposed, such as (1) the 
Dzyaloshinskii–Moriya interaction in non-centrosymmetric mag-
nets2,3,8, (2) the competition of short-ranged exchange interactions 
in geometrically frustrated magnets20–22 and (3) the interplay of 
RKKY and four-spin interactions related to the coupling between 
a conduction electron and localized moment in itinerant magnets 
with a highly symmetric lattice22–26. Here, mechanisms (2) and (3) 
are associated with magnetic frustration in a broad sense, and the 
magnetic modulation is generated by the sign-alternating compet-
ing spin exchange interactions in both cases. In the latter case for 

itinerant magnets, the presence or absence of magnetic frustration 
is not directly linked to the underlying crystal lattice geometry.

As the crystal structure of GdRu2Si2 is centrosymmetric, the con-
tribution from the Dzyaloshinskii–Moriya interaction is not relevant 
in the present case. Instead, the family of RRu2Si2 systems commonly 
shows incommensurate magnetic modulation along in-plane direc-
tions, which has been discussed in terms of (mQ·m−Q)-type RKKY 
interactions that reflect Fermi surface properties31. In this sense, 
the present formation of a square skyrmion lattice can potentially 
be ascribed to the four-spin interaction mediated by itinerant elec-
trons23–28. This mechanism was originally proposed for an Fe atomic 
monolayer on an Ir(111) surface, for which the formation of a 
double-Q square skyrmion lattice was confirmed by spin-polarized 
scanning tunnelling microscopy experiments26. A similar mecha-
nism was also discussed to describe the coplanar triple-Q magnetic 
order in the hexagonal magnet Y3Co8Sn4 (ref. 27). Here, the four-spin 
interaction is generally described as 

P
Kijkl½ðmi #mjÞðmk #mlÞ%

I
 

among the four magnetic sites i, j, k, l in real space or P
~KQ1Q2Q3Q4

ðmQ1
"mQ2

ÞðmQ3
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ÞδðQ1 þQ2 þ Q3 þ Q4Þ
I

 
among the wavenumbers Qυ (υ = 1, 2, 3, 4) to give multiple max-
ima in the bare susceptibility in reciprocal space, which lifts the 
degeneracy between multiple-Q and single-Q magnetic orders. 
The present discovery of a square skyrmion lattice in GdRu2Si2 sug-
gests that a similar mechanism may also promote the SkL formation  
in single-component bulk materials. In this case, the tetragonal 
symmetry of the underlying crystal lattice allows the existence of a 
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An important challenge is the search for an appropriate material 
system to experimentally realize these situations. Very recently, it 
was discovered that the centrosymmetric triangular-lattice magnet 
Gd2PdSi3 hosts a hexagonal lattice of skyrmions, which is character-
ized by a small skyrmion diameter, λsk of 2.4 nm with an associated 
giant topological Hall effect29. A similar skyrmion formation was 
also reported for the centrosymmetric Gd3Ru4Al12 with a breath-
ing kagomé network30. For these compounds, the existence of a 
geometrically frustrated lattice is considered to be the key for the 
skyrmion formation. Nevertheless, in principle, the competition of 
long-range magnetic interactions mediated by itinerant electrons 
can be allowed for any type of crystal lattice. Therefore, it remains 
an important question whether similar skyrmion formation in cen-
trosymmetric magnets without geometrically frustrated lattices 
is possible or not. In this study, we focus on the centrosymmetric 
tetragonal magnet GdRu2Si2 without a geometrically frustrated 
lattice, and investigated its magnetic structure in detail. We found 
the emergence of the double-Q square skyrmion lattice state in an 
out-of-plane magnetic field. The observed skyrmion diameter is 
as small as 1.9 nm, which is the smallest among those reported for 
single-component bulk materials. Our present results demonstrate 
that a skyrmion lattice can be formed even without a geometrically 

frustrated lattice or inversion symmetry breaking, and suggest that, 
in general, rare-earth intermetallics with a highly symmetric crystal 
lattice can be a promising material platform to realize nanometric 
skyrmions of exotic origins.

Magnetic phase diagram for B!//![001]
GdRu2Si2 belongs to the family of RM2X2 compounds crystallized 
in a ThCr2Si2-type structure with centrosymmetric tetragonal space 
group I4/mmm (R, rare-earth element; M, a 3d, 4d or 5d element; 
X, Si or Ge)31. The crystal structure consists of alternate stacking of 
square lattice Gd layers and Ru2Si2 layers as presented in Fig. 1a, with 
the magnetism governed by Gd3+ (spin = 7/2, orbital moment = 0) 
ions with a Heisenberg magnetic moment. According to previous 
reports, this compound hosts incommensurate magnetic order below 
a Néel temperature of ~46 K (refs. 31,32), with the magnetic modulation 
vector Q = (0.22, 0, 0) confined within the tetragonal basal plane33. 
Application of a magnetic field B along the [001] axis induces several 
magnetic phase transitions as summarized in Fig. 1b, but the detailed 
magnetic structure in each phase has not been identified31–34.

Figure 1f–h,j–l indicates the magnetic field dependence of mag-
netization M, longitudinal resistivity ρxx and Hall resistivity ρyx mea-
sured at 5 K for B // [001]. The magnetization profile shows clear 
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Fig. 1 | Crystal structure, magnetic structure and magnetic phase diagram of GdRu2Si2. a, Crystal structure of GdRu2Si2. b, B–T phase diagram for 
B!//![001] based on the measurements of temperature (T) and magnetic field (B) dependence of magnetization M. Multiple magnetic phases can be 
clearly identified, including (modulated) screw (phase I), double-Q square skyrmion lattice (SkL) (phase II) and fan structure (phase III). c, Schematic 
illustration of the screw magnetic structure in phase I. d, Square SkL in phase II described by equation (3), that is, the superposition of two screw 
spin structures with orthogonally arranged magnetic modulation vectors Q1 and Q2. e, Fan structure in phase III. f–h, Magnetic field dependence of 
magnetization M (f), longitudinal resistivity ρxx (g) and Hall resistivity ρyx (h) at T!=!5!K for B!//![001] and I!//![100]. i–l, Expanded view of data in b (i), f (j), 
g (k) and h (l). f.u., formula unit; FM, ferromagnetic; PM, paramagnetic.
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extremely short period ~ few nm, in not only noncentrosymmetric but also centrosymmetric systems



New generation: nanometer-scale torons

MnSi1-xGex

Y. Fujishiro et al., Nat. Commun. 10, 1059 (2019)

found that the strong Hubbard-U implemented in the band
structure calculation favors a short-period helical structure
(Supplementary Fig. 5). Further theoretical studies are desired to
clarify the crucial magnetic interaction, which takes over from
DMI in the course of enlarging the lattice constant.

SANS and LTEM studies under magnetic fields. Having con-
firmed the variation of magnetic properties in MnSi1−xGex, we
investigated the magnetic structures under magnetic fields by
SANS in x= 0.2, 0.6, and 0.8 (as representative compositions of
the three magnetic phases), and by LTEM in the thin plate of x=
0.2. Magnetic field (H) is applied perpendicular to the incident
neutron beam for SANS experiment (Fig. 3a), while H is applied
parallel to the electron beam for LTEM measurement (Fig. 3b).
As for x= 0.2, LTEM directly reveals the formation of a hex-
agonal SkL in the plane perpendicular to H, which is also con-
firmed by the six-fold Fourier transform image (Fig. 3c).

In Fig. 3d–f, we display all the measurement points (gray dots)
and sequences (blue arrows) of SANS in the magnetic phase
diagrams, and the representative SANS patterns obtained at the
T–H points (highlighted by blue stars in Fig. 3d–f) are shown in
Fig. 3g–i. (See Supplementary Figs 7–9 for the SANS data at other

temperatures and magnetic fields). The SANS pattern on the
polycrystalline x ¼ 0:2 compound (Fig. 3g) exhibits intensity
peaks parallel (φ ¼ 0", 180") and perpendicular (φ ¼ ± 90") to
H, which indicates the conical state modulating along H coexists
with SkL. Because only a small portion of SkL states in powder
grains can meet the diffraction condition as illustrated in Fig. 3j,
the much weaker intensity peaks were observed at φ ¼ ± 90"

than those scattered at φ ¼ 0", 180" by the conical state.
Incidentally, we also confirmed that the peaks at φ ¼ ± 90" only
emerge in the SkL phase identified by the magnetization
measurements. (See Supplementary Fig. 7 for details).

In x= 0.6 and 0.8, we also detect characteristic SANS patterns
under H: In addition to the intensity peaks at φ ¼ 0", 180", there
appear peaks at φ ¼ ± 70"; ± 110" for x ¼ 0:6 (Fig. 3h) and at
φ ¼ ± 90" for x ¼ 0:8 (Fig. 3i). We interpret these SANS patterns
in terms of multiple-q structures. As for x= 0.6, Fig. 4 illustrates
the possible multiple-q structure explaining the SANS result, i.e.,
the tetrahedral-4q state. One of the four q-vectors flips along the
H-direction, as is the case of many other B20-type magnets28, and
generates scattering intensity at φ ¼ 180" (0"), while the
remaining three q-vectors produce intensities at φ ¼ ± 70"

ð ± 110"Þ (Fig. 3k). As for x= 0.8, the observed intensity pattern
is essentially identical to that of MnGe where the cubic-3q HL is
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implying that a part of skyrmions remain to subsist perhaps as
disordered aggregation4.

In contrast, ρyx in MnSi1−xGex (x= 0.6 and 0.8) with HL states
clearly indicate the large deviation from the conventional M-
proportional profile, as shown in Fig. 4b, c. The estimated ρTyx
shows complex behaviors with sign changes against T and H
variations, as well as one-order-of-magnitude larger values than
that in x= 0.2 (Fig. 4e, f, h, i.). The observed THE not only
corroborate the formation of the topological multiple-q spin
textures, but also exhibit different behaviors between tetrahedral-
4q HL and cubic-3q HL. To be specific, MnSi1−xGex with cubic-
3q HL (x= 0.7–0.9 and MnGe13) share similarity in sign change
of ρTyx : negative ρTyx in the low-T and low-H region gives way to
positive ρTyx in the high-T and high-H region (Fig. 4f, i and
Supplementary Fig. 11). The negative and positive ρTyx may be
attributed to static and fluctuating effects of emergent magnetic
field13,24,36. As for x= 0.6 compound with tetrahedral-4q HL, the
magnitude of ρTyx is gigantic as well, while its T- and H-
dependences are complicated to interpret (Fig. 4h). We note that
such complex ρTyx-profiles with sign changes are also reported at
the transitions between versatile topological spin structures,
including 4q-HL, in SrFeO3

37,38. By analogy with it, the sign
change of ρTyx at low temperatures in x= 0.6 (e.g., T= 10 K in
Fig. 4e) may indicate a transition into different multiple-q states

or the field-induced modification of the 4q structure, which
remains an open question. We also note that there may exist
robust or pinned excitations of spin hedgehogs even in the
nominally ferromagnetic region25, which may imperil the validity
of the present estimation of topological Hall effect. Hence, the
magnitude and the sign changes of topological Hall resistivity
may be difficult to quantitatively elucidate at the moment, while
the presence of non-coplanar spin texture manifests itself by such
anomalously large signals of topological Hall resistivity.

Discussion
The present results not only on the SANS and LTEM but also on
the topological Hall effects unveil the transitions among distinct
topological spin textures, namely 2D SkL and two classes of 3D
HLs in cubic chiral magnets MnSi1−xGex. Compared with the
case of SrFeO3 where magnetic domains with different helicity
and vorticity degrees of freedom should coexist due to the
centrosymmetric crystal structure38, a point of uniqueness in
MnSi1−xGex is ascribed to the fixed helicity and vorticity over the
whole chiral lattice. In addition, the transitions between different
topological spin textures can be realized simply by controlling
lattice constant; therefore, it would be possible to switch the
topology of spin textures by application of small pressure or
strain, once a composition x is tuned to the transition points
(x ~ 0.3 and 0.7). Given that pressure is a fundamental variable
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implying that a part of skyrmions remain to subsist perhaps as
disordered aggregation4.

In contrast, ρyx in MnSi1−xGex (x= 0.6 and 0.8) with HL states
clearly indicate the large deviation from the conventional M-
proportional profile, as shown in Fig. 4b, c. The estimated ρTyx
shows complex behaviors with sign changes against T and H
variations, as well as one-order-of-magnitude larger values than
that in x= 0.2 (Fig. 4e, f, h, i.). The observed THE not only
corroborate the formation of the topological multiple-q spin
textures, but also exhibit different behaviors between tetrahedral-
4q HL and cubic-3q HL. To be specific, MnSi1−xGex with cubic-
3q HL (x= 0.7–0.9 and MnGe13) share similarity in sign change
of ρTyx : negative ρTyx in the low-T and low-H region gives way to
positive ρTyx in the high-T and high-H region (Fig. 4f, i and
Supplementary Fig. 11). The negative and positive ρTyx may be
attributed to static and fluctuating effects of emergent magnetic
field13,24,36. As for x= 0.6 compound with tetrahedral-4q HL, the
magnitude of ρTyx is gigantic as well, while its T- and H-
dependences are complicated to interpret (Fig. 4h). We note that
such complex ρTyx-profiles with sign changes are also reported at
the transitions between versatile topological spin structures,
including 4q-HL, in SrFeO3

37,38. By analogy with it, the sign
change of ρTyx at low temperatures in x= 0.6 (e.g., T= 10 K in
Fig. 4e) may indicate a transition into different multiple-q states

or the field-induced modification of the 4q structure, which
remains an open question. We also note that there may exist
robust or pinned excitations of spin hedgehogs even in the
nominally ferromagnetic region25, which may imperil the validity
of the present estimation of topological Hall effect. Hence, the
magnitude and the sign changes of topological Hall resistivity
may be difficult to quantitatively elucidate at the moment, while
the presence of non-coplanar spin texture manifests itself by such
anomalously large signals of topological Hall resistivity.

Discussion
The present results not only on the SANS and LTEM but also on
the topological Hall effects unveil the transitions among distinct
topological spin textures, namely 2D SkL and two classes of 3D
HLs in cubic chiral magnets MnSi1−xGex. Compared with the
case of SrFeO3 where magnetic domains with different helicity
and vorticity degrees of freedom should coexist due to the
centrosymmetric crystal structure38, a point of uniqueness in
MnSi1−xGex is ascribed to the fixed helicity and vorticity over the
whole chiral lattice. In addition, the transitions between different
topological spin textures can be realized simply by controlling
lattice constant; therefore, it would be possible to switch the
topology of spin textures by application of small pressure or
strain, once a composition x is tuned to the transition points
(x ~ 0.3 and 0.7). Given that pressure is a fundamental variable
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and intensities projected onto the sample plane, respectively.
Two-directional magnetic moments along the [100] and [010]
directions of underlying crystal lattice were clearly observed,
although it is difficult to determine quantitative values of
magnetic moments.
Figure 3c shows the enlarged image of the in-plane magnetic-

moment texture (Figure 2) to compare the simulated image
based on the simplest cubic skyrmion crystal; the agreement is
excellent, ensuring again the presence of the cubic lattice of
skyrmions in MnGe. For 2D skyrmion, vortex-like (circling-
magnetic-moment) areas correspond to the skyrmion positions.
Note that, however, this is not for the 3D skyrmion cubic-
lattice;23 it contains both hedgehog and antihedgehog spin
textures (see Figure 3e,f), which carry the winding numbers of
+1 and −1 around the singular points with zero magnetization.
Here, we term them skyrmion and antiskyrmion, respectively,
because the conventional 2D skyrmions and the hedgehogs
belong to the same homotopy group. The simulated in-plane

magnetic-moment configurations results (Figure 3d) also show
the projected positions of hedgehog (blue) and antihedgehog
(red). Note that those topological spin textures cannot be
explicitly observed in the averaged in-plane moment config-
uration because of their three-dimensionally modulated spin
arrangement. Because the sign of the skyrmion number is
opposite for hedgehog and antihedgehog, the total skyrmion
number is canceled out to be zero at the ground state for the
zero external magnetic field. However, the application of
magnetic field can induce the large skyrmion-number density
due to Zeeman term, generating a correspondingly large
topological Hall effect as observed.25

In conclusion, real-space observations using Lorentz TEM
have revealed structural characteristics of cubic-lattice sky-
rmions in a helimagnet MnGe. The temperature dependence of
the magnetic-moment configuration period L shows the
identical T-dependent behavior with the neutron scattering
results. The simultaneous observation of atomic crystal lattices
and magnetic-moment configurations using high-resolution
Lorentz TEMs has shown that skyrmion lattices are tightly fixed
parallel to the {100} planes. The observed atomic-lattice-
coupled magnetic-moment configuration indicates a possibility
of controlling skyrmion lattices in terms of the crystal lattice
strains. The present observations of short-period skyrmion-
antiskyrmion (or spin hedgehog-antihedgehog) crystal lattices
are the first step toward visualizing spins at the atomic
resolution using electron microscopy. Since the spin−orbit
interaction causes a lot of intriguing phenomena with potential
of application to spintronics, real-space observations of
subnanometer-scale topological spin textures will be an
important subject in the forthcoming study.
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Figure 3. In-plane magnetic moment configurations of cubic-lattice
skyrmion in MnGe and projected positions of hedgehog and
antihedgehog. (a) Underfocused Lorentz TEM image of [001]-
oriented MnGe at 35 K under 2.4 T applied perpendicular to the
sample plane. Skyrmion lattices are simultaneously observed with the
lattice fringes of the (100) and the (010) planes indicated by yellow
lines. Arrows a and b indicate the a and b unit cells. (b) Obtained
magnetic-moment configurations at 20 K under 2.4 T applied
perpendicular to the sample plane. White arrows and color wheel
inserted at the bottom right indicate the directions of magnetic
moments. (c) Enlarged in-plane magnetic-moment configurations. (d)
Simulated in-plane magnetic-moment configurations and projected
positions of hedgehogs (blue) and antihedgehogs (red). (e) Hedgehog
spin texture. (f) Antihedgehog spin texture.
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Motivation-2

๏ What is the stabilization mechanism for the new-generation topological spin crystals? 

- Conventional mechanism based on the Dzyaloshinskii-Moriya interaction does not explain 
the extremely short-period textures in centrosymmetric systems. 

- In general, magnetic frustration is active and able to stabilize short-period spin textures 
even in centrosymmetric systems in the absence of spin-orbit coupling, but it is discussed 
mostly for insulating systems. 

➡ What is a generic mechanism in metallic magnets? What is the role of itinerant electrons?

our proposal: itinerant frustration
as an underlying mechanism to generate frustrated/multiple-spin interactions

review: S. Hayami and Y. Motome, J. Phys.: Condens. Matter 33, 443001 (2021)



Frustration in localized spin systems
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Figure 2. (a) Square and (b) triangular lattice structures. J1 and J3 represent the nearest- and third-neighbor exchange interactions,
respectively. (c)–(f) The contour plots of Jq for the square lattice model with (c) J3 = 0 and (e) J3 = 0.5, and the triangular lattice model
with (d) J3 = 0 and (f) J3 = 0.5. In all the cases, we take J1 = −1; see (4) and (5). The squares in (c) and (e) and the hexagons in (d) and
(f) represent the first Brillouin zone. Qν in (e) and (f) are the wave vectors where Jq is minimized.

even without additional interactions, fluctuations, and so on
(several examples will be shown in section 3). The instability
is understood from effective multiple-spin interactions rooted
in the kinetic motion of itinerant electrons. In this section, we
introduce the concept of itinerant frustration and show how
such an instability arises from it.

To illustrate the situation, it is convenient to introduce a
model in which itinerant electrons are coupled with localized
spins via the exchange coupling. The model is called the s–d
model or the Kondo lattice model, whose Hamiltonian is given
by

HKLM = −
∑

i, j,σ

ti jc
†
iσc jσ + JK

∑

i,σ,σ′

c†
iσσσσ′ciσ′ · Si, (6)

where c†
iσ (ciσ) is a creation (annihilation) operator of an itin-

erant electron at site i and spin σ. The first term represents the
kinetic motion of itinerant electrons with the transfer integral
ti j between sites i and j; the nearest-neighbor hopping t1 = 1 is
set as an energy unit. The second term represents the exchange
coupling between itinerant electron spins and localized spins;
σ = (σx , σy, σz) is the vector of Pauli matrices, Si is a local-
ized spin at site i, and JK is the exchange coupling constant. As
in the previous section, we treat Si as the classical spin with
|Si| = 1, for which the sign of JK is irrelevant. The Fourier
transform of the model in (6) is expressed as

HKLM =
∑

k,σ

εkc†
kσckσ +

JK√
N

∑

k,q,σ,σ′

c†
kσσσσ′ ck+qσ′ · Sq, (7)
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multiple maxima in        due to Fermi surface nesting → frustration

Frustration in itinerant electron systems
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(f) represent the first Brillouin zone. Qν in (e) and (f) are the wave vectors where Jq is minimized.
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Figure 3. (a) and (c) The contour plots of the bare susceptibility χ0
q as a function of q for (a) the square lattice model with t3 = −0.5 and

µ = 0.98 and (c) the triangular lattice model with t3 = −0.85 and µ = −3.5; we take t1 = 1. The maxima of χ0
q are located at Q1 and Q2 in

(a), while Q1, Q2, and Q3 in (c). In both cases, Qν are connected with each other by the rotational symmetry of the lattice structure. The
white square in (a) and hexagon in (c) represent the first Brillouin zone. (b) and (d) Display the Fermi surfaces corresponding to (a) and (c),
respectively. Qν are the nesting vectors giving the maxima of χ0

q in (a) and (c). Reprinted figure with permission from [23], Copyright (2017)
by the American Physical Society.

where εk is the energy dispersion of the electrons given by

εk = −
∑

i j

ti je−ik·(ri−r j), (8)

and c†
kσ and ckσ are the Fourier transform of c†

iσ and ciσ , respec-
tively. In the second term in (7), Sq is the Fourier transform
of Si and N is the number of sites. This term represents the
scattering of itinerant electrons by the localized spins with
momentum transfer q.

The model in (6) and (7) is one of the fundamental mod-
els to describe the electronic and magnetic properties in rare-
earth compounds [147–149]. It is, however, also relevant to a
wider range of itinerant magnetism, e.g., in transition metal
compounds which are described by the Hubbard-type mod-
els [150–153], when the mean-field approximation for the
Coulomb interaction is justified [12].

Although the instability toward multiple-Q topological spin
crystals in (6) has been studied in both strong-coupling regime
(JK ≫ ti j) [154–160] and weak-coupling regime (JK ≪ ti j)
[12, 23, 82–85], we focus on the latter in the following. In
the weak-coupling limit, the ground state can be elucidated by
deriving effective magnetic interactions by the perturbation in

terms of the second term in (7). As will be detailed in the next
section 2.3, the lowest-order contribution is written in the form
of

HRKKY = −J2
K

∑

q

χ0
qSq · S−q, (9)

where χ0
q is the bare susceptibility of itinerant electrons [see

(16) for the expression]. This is called the RKKY interaction
[79–81]. It is noteworthy that the lowest-order effective spin
Hamiltonian in (9) is formally equivalent to (2) by reading the
coupling constant −J2

Kχ
0
q as Jq. This correspondence harbors

frustration similar to that discussed in section 2.1, as shown
below.

The magnetic ground state to optimize the RKKY interac-
tion in (9) is obtained by maximizing χ0

q. Hence, the ordering
vector is set by the peak position of χ0

q, which depends on
the dispersion εk in (8) and the electron density. For example,
when we consider the third-neighbor hopping t3 in addition to
the nearest-neighbor t1, εk for the square lattice case is given
by

εk = −2
∑

l=1,2

(t1 cos k · el + t3 cos 2k · el), (10)

6
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− T

4!

∫ β

0
dτ1 · · ·

∫ β

0
dτ4⟨T H′(τ1) · · ·H′(τ4)⟩con

− · · · (6)

= F (2) + F (4) + · · · , (7)

where H′ represents the second term of Eq. (2), T is the time-
ordered product, τ is the imaginary time, T is the temperature,
and β is the inverse temperature (= 1/T ; we set the Boltzmann
constant as unity). ⟨· · · ⟩con stands for the averaged value over
the connected Feynman diagrams. F (0) represents the free
energy from the first term of Eq. (2). Note that there is no
odd term in the expansion due to the time-reversal symmetry
of the model. The 2nth-order contribution in the free energy
can be expressed in the general form

F (2n) = T

n

(
J√
N

)2n ∑

k,ωp

∑

q1,··· ,q2n,l

GkGk+q1 · · ·

× Gk+q1+···+q2n−1δq1+q2+···+q2n,lG

×
∑

{P }
(−1)λP

∏

ν,ν ′

(
Sqν

· Sqν′

)
, (8)

where Gk(iωp) = [iωp − (εk − µ)]−1 is the noninteracting
Green’s function, ωp is the Matsubara frequency, µ is the
chemical potential, δ is the Kronecker delta, and G is the
reciprocal lattice vector (l is an integer). The sum of {P } is
taken for all the combinations of ν and ν ′ [the number of
the combinations is 2nC2 · 2n−2C2 · · · 2C2/(n!)], and λP is +1
(−1) for an even (odd) permutation. The product is taken for
1 < ν ′ < ν < 2n; see also the explicit expressions for the case
with n = 1 and n = 2 in Eqs. (9) and (15), respectively. In
Eq. (8), we omit the spin dependence of the Green’s function
because the unperturbed Hamiltonian is independent of the
spin index. Note that the form in Eq. (8) is generic and
applicable to any lattice structures and spatial dimensions.
Similar expressions are discussed in Ref. [29].

Figure 1 represents the Feynman diagrams for the first three
terms in the expansion of Eq. (5), namely, n = 1, 2, and 3 in
Eq. (8). The diagrams consist of the scattering vertices by
localized spins and the bare propagators of itinerant electrons,
Gk. By taking summations in terms of qν (ν = 1, 2, . . .,
2n) in Eq. (8), we can obtain the multiple spin interactions
at any order of J . In the following sections, we discuss
the specific form of such interactions by focusing on the
second order (Sec. II C) and fourth order (Sec. II D) of J , and
give the general expression for the higher-order contributions

FIG. 1. Feynman diagrams for the first three terms in the
perturbative expansion of the free energy in Eq. (5): n = 1, 2, and 3
in Eq. (8) from left to right. The vertices with wavy lines denote the
scattering by localized spins and the solid curves represent the bare
propagators of itinerant electrons, Gk.

(Sec. II E). Hereafter, we do not explicitly indicate the
Matsubara frequency dependence in Green’s functions for
simplicity.

C. Second-order RKKY interaction

First, let us consider the lowest-order contribution in Eq. (8),
i.e., the second order of J (n = 1). It is explicitly written as

F (2) = T
J 2

N

∑

k,q,ωp

Gk+qGkSq · S−q. (9)

By taking the summation of ωp, Eq. (9) turns into

F (2) = −J 2
∑

q

χ0
q Sq · S−q, (10)

where χ0
q is the bare susceptibility of itinerant electrons,

χ0
q = T

N

∑

k,ωp

Gk+qGk (11)

= 1
N

∑

k

f (εk) − f (εk+q)
εk+q − εk

. (12)

Equation (10) gives a pairwise interaction between localized
spins, which is called the RKKY interaction [19–21]. The sign
and amplitude of the interaction depend on the band structure
and electron filling through Eq. (12).

The magnetic state that optimizes the RKKY interaction
in Eq. (10) is a single-Q helical (spiral) state, whose spin
structure is represented by

Si = (cos Q · ri , sin Q · ri ,0). (13)

Here, Q is the ordering vector defining the pitch and direction
of the spiral, which is dictated by the peak of χ0

q in Eq. (12).
Note that the spiral axis in the helical state in Eq. (13) is
arbitrary because of the spin rotational symmetry of the RKKY
interaction in Eq. (10). The reason why the helical state
is preferred is understood from the normalization condition
|Si | = 1, which imposes a constraint

∑
q |Sq|2 = N : the

helical state, in which |SQ|2 = |S−Q|2 = N/2 and Sq = 0 for
q ̸= ±Q, gives the lowest energy of Eq. (10). In other words,
any superposition with another wave number or any higher
harmonics leads to an energy cost compared to the helical
state. Thus, the second-order free energy for the helical state
is given by

F (2) = −J 2(χ0
Q

∣∣SQ
∣∣2 + χ0

−Q

∣∣S−Q
∣∣2)

. (14)

The corresponding Feynman diagram is shown in Fig. 2.
An important point in the RKKY analysis is that there

still remains degeneracy related to the lattice symmetry.
Besides the twofold degeneracy due to the chiral symmetry

FIG. 2. Feynman diagram for the lowest second-order contribu-
tion in the single-Q helical state with ordering vector Q [Eq. (14)].
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relevant wave vectors are dictated by the Fermi surface nesting 
• size of spin textures can be extremely small 
• inversion symmetry breaking is not necessary (unlike DMI)

review: S. Hayami and Y. Motome, J. Phys.: Condens. Matter 33, 443001 (2021)



Skyrmion crystal by itinerant frustration

R. Ozawa, S. Hayami, and Y. Motome, Phys. Rev. Lett. 118, 147205 (2017)

๏ large-scale numerical simulation of the Kondo lattice model on a triangular lattice 

spontaneous formation of 3q skyrmion crystal with a high skyrmion number of Nsk=2

J. Phys.: Condens. Matter 33 (2021) 443001 Topical Review

Figure 3. (a) and (c) The contour plots of the bare susceptibility χ0
q as a function of q for (a) the square lattice model with t3 = −0.5 and

µ = 0.98 and (c) the triangular lattice model with t3 = −0.85 and µ = −3.5; we take t1 = 1. The maxima of χ0
q are located at Q1 and Q2 in

(a), while Q1, Q2, and Q3 in (c). In both cases, Qν are connected with each other by the rotational symmetry of the lattice structure. The
white square in (a) and hexagon in (c) represent the first Brillouin zone. (b) and (d) Display the Fermi surfaces corresponding to (a) and (c),
respectively. Qν are the nesting vectors giving the maxima of χ0

q in (a) and (c). Reprinted figure with permission from [23], Copyright (2017)
by the American Physical Society.

where εk is the energy dispersion of the electrons given by

εk = −
∑

i j

ti je−ik·(ri−r j), (8)

and c†
kσ and ckσ are the Fourier transform of c†

iσ and ciσ , respec-
tively. In the second term in (7), Sq is the Fourier transform
of Si and N is the number of sites. This term represents the
scattering of itinerant electrons by the localized spins with
momentum transfer q.

The model in (6) and (7) is one of the fundamental mod-
els to describe the electronic and magnetic properties in rare-
earth compounds [147–149]. It is, however, also relevant to a
wider range of itinerant magnetism, e.g., in transition metal
compounds which are described by the Hubbard-type mod-
els [150–153], when the mean-field approximation for the
Coulomb interaction is justified [12].

Although the instability toward multiple-Q topological spin
crystals in (6) has been studied in both strong-coupling regime
(JK ≫ ti j) [154–160] and weak-coupling regime (JK ≪ ti j)
[12, 23, 82–85], we focus on the latter in the following. In
the weak-coupling limit, the ground state can be elucidated by
deriving effective magnetic interactions by the perturbation in

terms of the second term in (7). As will be detailed in the next
section 2.3, the lowest-order contribution is written in the form
of

HRKKY = −J2
K

∑

q

χ0
qSq · S−q, (9)

where χ0
q is the bare susceptibility of itinerant electrons [see

(16) for the expression]. This is called the RKKY interaction
[79–81]. It is noteworthy that the lowest-order effective spin
Hamiltonian in (9) is formally equivalent to (2) by reading the
coupling constant −J2

Kχ
0
q as Jq. This correspondence harbors

frustration similar to that discussed in section 2.1, as shown
below.

The magnetic ground state to optimize the RKKY interac-
tion in (9) is obtained by maximizing χ0

q. Hence, the ordering
vector is set by the peak position of χ0

q, which depends on
the dispersion εk in (8) and the electron density. For example,
when we consider the third-neighbor hopping t3 in addition to
the nearest-neighbor t1, εk for the square lattice case is given
by

εk = −2
∑

l=1,2

(t1 cos k · el + t3 cos 2k · el), (10)

6

triangular lattice 
t1=1, t3=-0.85, J=0.3, n~0.149

kernel polynomial method  
with Langevin dynamics 

192 x 192 ~ 3.7 x 104 sites



Control of skyrmion size by Fermi surface
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FIG. S1: (a)-(c)[(d)-(f)] Bare susceptibility χ0
q (SkX patterns) obtained for t2 = 0, t3 = −0.85, and T = 0.01: (a) µ = −4.05 (n ∼ 0.24),

(b) µ = −3.8 (n ∼ 0.32), and (c) µ = −3.5 (n ∼ 0.4). (g)-(i)[(j)-(l)] χ0
q (SkX patterns) for t2 = 0.3, t3 = 0, and T = 0.01: (g) µ = 0

(n ∼ 0.66), (h) µ = 0.4 (n ∼ 0.73), and (i) µ = 0.8 (n ∼ 0.83). χ0
q are calculated for a triangular lattice with Ns = 2402 with taking the

broadening factor 0.01. The SkX patterns are drawn by Eq. (2) in the main text. The gray hexagons represent the 1st Brillouin zones and the
gray arrows show the wave vectors for the peaks.
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An important challenge is the search for an appropriate material 
system to experimentally realize these situations. Very recently, it 
was discovered that the centrosymmetric triangular-lattice magnet 
Gd2PdSi3 hosts a hexagonal lattice of skyrmions, which is character-
ized by a small skyrmion diameter, λsk of 2.4 nm with an associated 
giant topological Hall effect29. A similar skyrmion formation was 
also reported for the centrosymmetric Gd3Ru4Al12 with a breath-
ing kagomé network30. For these compounds, the existence of a 
geometrically frustrated lattice is considered to be the key for the 
skyrmion formation. Nevertheless, in principle, the competition of 
long-range magnetic interactions mediated by itinerant electrons 
can be allowed for any type of crystal lattice. Therefore, it remains 
an important question whether similar skyrmion formation in cen-
trosymmetric magnets without geometrically frustrated lattices 
is possible or not. In this study, we focus on the centrosymmetric 
tetragonal magnet GdRu2Si2 without a geometrically frustrated 
lattice, and investigated its magnetic structure in detail. We found 
the emergence of the double-Q square skyrmion lattice state in an 
out-of-plane magnetic field. The observed skyrmion diameter is 
as small as 1.9 nm, which is the smallest among those reported for 
single-component bulk materials. Our present results demonstrate 
that a skyrmion lattice can be formed even without a geometrically 

frustrated lattice or inversion symmetry breaking, and suggest that, 
in general, rare-earth intermetallics with a highly symmetric crystal 
lattice can be a promising material platform to realize nanometric 
skyrmions of exotic origins.

Magnetic phase diagram for B!//![001]
GdRu2Si2 belongs to the family of RM2X2 compounds crystallized 
in a ThCr2Si2-type structure with centrosymmetric tetragonal space 
group I4/mmm (R, rare-earth element; M, a 3d, 4d or 5d element; 
X, Si or Ge)31. The crystal structure consists of alternate stacking of 
square lattice Gd layers and Ru2Si2 layers as presented in Fig. 1a, with 
the magnetism governed by Gd3+ (spin = 7/2, orbital moment = 0) 
ions with a Heisenberg magnetic moment. According to previous 
reports, this compound hosts incommensurate magnetic order below 
a Néel temperature of ~46 K (refs. 31,32), with the magnetic modulation 
vector Q = (0.22, 0, 0) confined within the tetragonal basal plane33. 
Application of a magnetic field B along the [001] axis induces several 
magnetic phase transitions as summarized in Fig. 1b, but the detailed 
magnetic structure in each phase has not been identified31–34.

Figure 1f–h,j–l indicates the magnetic field dependence of mag-
netization M, longitudinal resistivity ρxx and Hall resistivity ρyx mea-
sured at 5 K for B // [001]. The magnetization profile shows clear 
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Fig. 1 | Crystal structure, magnetic structure and magnetic phase diagram of GdRu2Si2. a, Crystal structure of GdRu2Si2. b, B–T phase diagram for 
B!//![001] based on the measurements of temperature (T) and magnetic field (B) dependence of magnetization M. Multiple magnetic phases can be 
clearly identified, including (modulated) screw (phase I), double-Q square skyrmion lattice (SkL) (phase II) and fan structure (phase III). c, Schematic 
illustration of the screw magnetic structure in phase I. d, Square SkL in phase II described by equation (3), that is, the superposition of two screw 
spin structures with orthogonally arranged magnetic modulation vectors Q1 and Q2. e, Fan structure in phase III. f–h, Magnetic field dependence of 
magnetization M (f), longitudinal resistivity ρxx (g) and Hall resistivity ρyx (h) at T!=!5!K for B!//![001] and I!//![100]. i–l, Expanded view of data in b (i), f (j), 
g (k) and h (l). f.u., formula unit; FM, ferromagnetic; PM, paramagnetic.
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An important challenge is the search for an appropriate material 
system to experimentally realize these situations. Very recently, it 
was discovered that the centrosymmetric triangular-lattice magnet 
Gd2PdSi3 hosts a hexagonal lattice of skyrmions, which is character-
ized by a small skyrmion diameter, λsk of 2.4 nm with an associated 
giant topological Hall effect29. A similar skyrmion formation was 
also reported for the centrosymmetric Gd3Ru4Al12 with a breath-
ing kagomé network30. For these compounds, the existence of a 
geometrically frustrated lattice is considered to be the key for the 
skyrmion formation. Nevertheless, in principle, the competition of 
long-range magnetic interactions mediated by itinerant electrons 
can be allowed for any type of crystal lattice. Therefore, it remains 
an important question whether similar skyrmion formation in cen-
trosymmetric magnets without geometrically frustrated lattices 
is possible or not. In this study, we focus on the centrosymmetric 
tetragonal magnet GdRu2Si2 without a geometrically frustrated 
lattice, and investigated its magnetic structure in detail. We found 
the emergence of the double-Q square skyrmion lattice state in an 
out-of-plane magnetic field. The observed skyrmion diameter is 
as small as 1.9 nm, which is the smallest among those reported for 
single-component bulk materials. Our present results demonstrate 
that a skyrmion lattice can be formed even without a geometrically 

frustrated lattice or inversion symmetry breaking, and suggest that, 
in general, rare-earth intermetallics with a highly symmetric crystal 
lattice can be a promising material platform to realize nanometric 
skyrmions of exotic origins.

Magnetic phase diagram for B!//![001]
GdRu2Si2 belongs to the family of RM2X2 compounds crystallized 
in a ThCr2Si2-type structure with centrosymmetric tetragonal space 
group I4/mmm (R, rare-earth element; M, a 3d, 4d or 5d element; 
X, Si or Ge)31. The crystal structure consists of alternate stacking of 
square lattice Gd layers and Ru2Si2 layers as presented in Fig. 1a, with 
the magnetism governed by Gd3+ (spin = 7/2, orbital moment = 0) 
ions with a Heisenberg magnetic moment. According to previous 
reports, this compound hosts incommensurate magnetic order below 
a Néel temperature of ~46 K (refs. 31,32), with the magnetic modulation 
vector Q = (0.22, 0, 0) confined within the tetragonal basal plane33. 
Application of a magnetic field B along the [001] axis induces several 
magnetic phase transitions as summarized in Fig. 1b, but the detailed 
magnetic structure in each phase has not been identified31–34.

Figure 1f–h,j–l indicates the magnetic field dependence of mag-
netization M, longitudinal resistivity ρxx and Hall resistivity ρyx mea-
sured at 5 K for B // [001]. The magnetization profile shows clear 
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Fig. 1 | Crystal structure, magnetic structure and magnetic phase diagram of GdRu2Si2. a, Crystal structure of GdRu2Si2. b, B–T phase diagram for 
B!//![001] based on the measurements of temperature (T) and magnetic field (B) dependence of magnetization M. Multiple magnetic phases can be 
clearly identified, including (modulated) screw (phase I), double-Q square skyrmion lattice (SkL) (phase II) and fan structure (phase III). c, Schematic 
illustration of the screw magnetic structure in phase I. d, Square SkL in phase II described by equation (3), that is, the superposition of two screw 
spin structures with orthogonally arranged magnetic modulation vectors Q1 and Q2. e, Fan structure in phase III. f–h, Magnetic field dependence of 
magnetization M (f), longitudinal resistivity ρxx (g) and Hall resistivity ρyx (h) at T!=!5!K for B!//![001] and I!//![100]. i–l, Expanded view of data in b (i), f (j), 
g (k) and h (l). f.u., formula unit; FM, ferromagnetic; PM, paramagnetic.
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An important challenge is the search for an appropriate material 
system to experimentally realize these situations. Very recently, it 
was discovered that the centrosymmetric triangular-lattice magnet 
Gd2PdSi3 hosts a hexagonal lattice of skyrmions, which is character-
ized by a small skyrmion diameter, λsk of 2.4 nm with an associated 
giant topological Hall effect29. A similar skyrmion formation was 
also reported for the centrosymmetric Gd3Ru4Al12 with a breath-
ing kagomé network30. For these compounds, the existence of a 
geometrically frustrated lattice is considered to be the key for the 
skyrmion formation. Nevertheless, in principle, the competition of 
long-range magnetic interactions mediated by itinerant electrons 
can be allowed for any type of crystal lattice. Therefore, it remains 
an important question whether similar skyrmion formation in cen-
trosymmetric magnets without geometrically frustrated lattices 
is possible or not. In this study, we focus on the centrosymmetric 
tetragonal magnet GdRu2Si2 without a geometrically frustrated 
lattice, and investigated its magnetic structure in detail. We found 
the emergence of the double-Q square skyrmion lattice state in an 
out-of-plane magnetic field. The observed skyrmion diameter is 
as small as 1.9 nm, which is the smallest among those reported for 
single-component bulk materials. Our present results demonstrate 
that a skyrmion lattice can be formed even without a geometrically 

frustrated lattice or inversion symmetry breaking, and suggest that, 
in general, rare-earth intermetallics with a highly symmetric crystal 
lattice can be a promising material platform to realize nanometric 
skyrmions of exotic origins.

Magnetic phase diagram for B!//![001]
GdRu2Si2 belongs to the family of RM2X2 compounds crystallized 
in a ThCr2Si2-type structure with centrosymmetric tetragonal space 
group I4/mmm (R, rare-earth element; M, a 3d, 4d or 5d element; 
X, Si or Ge)31. The crystal structure consists of alternate stacking of 
square lattice Gd layers and Ru2Si2 layers as presented in Fig. 1a, with 
the magnetism governed by Gd3+ (spin = 7/2, orbital moment = 0) 
ions with a Heisenberg magnetic moment. According to previous 
reports, this compound hosts incommensurate magnetic order below 
a Néel temperature of ~46 K (refs. 31,32), with the magnetic modulation 
vector Q = (0.22, 0, 0) confined within the tetragonal basal plane33. 
Application of a magnetic field B along the [001] axis induces several 
magnetic phase transitions as summarized in Fig. 1b, but the detailed 
magnetic structure in each phase has not been identified31–34.

Figure 1f–h,j–l indicates the magnetic field dependence of mag-
netization M, longitudinal resistivity ρxx and Hall resistivity ρyx mea-
sured at 5 K for B // [001]. The magnetization profile shows clear 
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Fig. 1 | Crystal structure, magnetic structure and magnetic phase diagram of GdRu2Si2. a, Crystal structure of GdRu2Si2. b, B–T phase diagram for 
B!//![001] based on the measurements of temperature (T) and magnetic field (B) dependence of magnetization M. Multiple magnetic phases can be 
clearly identified, including (modulated) screw (phase I), double-Q square skyrmion lattice (SkL) (phase II) and fan structure (phase III). c, Schematic 
illustration of the screw magnetic structure in phase I. d, Square SkL in phase II described by equation (3), that is, the superposition of two screw 
spin structures with orthogonally arranged magnetic modulation vectors Q1 and Q2. e, Fan structure in phase III. f–h, Magnetic field dependence of 
magnetization M (f), longitudinal resistivity ρxx (g) and Hall resistivity ρyx (h) at T!=!5!K for B!//![001] and I!//![100]. i–l, Expanded view of data in b (i), f (j), 
g (k) and h (l). f.u., formula unit; FM, ferromagnetic; PM, paramagnetic.
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period of 1.9 nm formed on the atomic lattice. Figure 4f,g show  
filtered images obtained from the under-focused and over-focused 
L-TEM images, respectively, based only on the magnetic reflections 
circled in Fig. 4c. Both under-focused and over-focused images 
show a square-lattice-like pattern but with an opposite black/
white contrast. By performing the transport-of-intensity equation 
analysis15 based on these two images, the spatial distribution of the 
in-plane local magnetization is deduced as shown in Fig. 4h. We 
can confirm the square lattice of the vortex-like spin arrangements, 
which is revealed to be consistent with the spin texture in Fig. 1d 
and represents the square skyrmion lattice described by equation 
(3). Above Curie temperature, all the magnetic contrast and the cor-
responding magnetic reflections disappear, as shown in Fig. 4d.

Microscopic origins of square skyrmion lattice
Theoretically, several distinct mechanisms for the emergence 
of multiple-Q spin textures have been proposed, such as (1) the 
Dzyaloshinskii–Moriya interaction in non-centrosymmetric mag-
nets2,3,8, (2) the competition of short-ranged exchange interactions 
in geometrically frustrated magnets20–22 and (3) the interplay of 
RKKY and four-spin interactions related to the coupling between 
a conduction electron and localized moment in itinerant magnets 
with a highly symmetric lattice22–26. Here, mechanisms (2) and (3) 
are associated with magnetic frustration in a broad sense, and the 
magnetic modulation is generated by the sign-alternating compet-
ing spin exchange interactions in both cases. In the latter case for 

itinerant magnets, the presence or absence of magnetic frustration 
is not directly linked to the underlying crystal lattice geometry.

As the crystal structure of GdRu2Si2 is centrosymmetric, the con-
tribution from the Dzyaloshinskii–Moriya interaction is not relevant 
in the present case. Instead, the family of RRu2Si2 systems commonly 
shows incommensurate magnetic modulation along in-plane direc-
tions, which has been discussed in terms of (mQ·m−Q)-type RKKY 
interactions that reflect Fermi surface properties31. In this sense, 
the present formation of a square skyrmion lattice can potentially 
be ascribed to the four-spin interaction mediated by itinerant elec-
trons23–28. This mechanism was originally proposed for an Fe atomic 
monolayer on an Ir(111) surface, for which the formation of a 
double-Q square skyrmion lattice was confirmed by spin-polarized 
scanning tunnelling microscopy experiments26. A similar mecha-
nism was also discussed to describe the coplanar triple-Q magnetic 
order in the hexagonal magnet Y3Co8Sn4 (ref. 27). Here, the four-spin 
interaction is generally described as 

P
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among the four magnetic sites i, j, k, l in real space or P
~KQ1Q2Q3Q4
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among the wavenumbers Qυ (υ = 1, 2, 3, 4) to give multiple max-
ima in the bare susceptibility in reciprocal space, which lifts the 
degeneracy between multiple-Q and single-Q magnetic orders. 
The present discovery of a square skyrmion lattice in GdRu2Si2 sug-
gests that a similar mechanism may also promote the SkL formation  
in single-component bulk materials. In this case, the tetragonal 
symmetry of the underlying crystal lattice allows the existence of a 
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centrosymmetric system: Dzyaloshinskii-Moriya interaction is inactive 
extremely short period ~1.9 nm: importance of itinerant frustration?



Square skyrmion crystal: theory

S. Hayami and Y. Motome, Phys. Rev. B 103, 024439 (2021)

Square-lattice type skyrmion crystal with short period is realized in a magnetic field. 
Phase sequence and regions are qualitatively consistent with the experimental results.

J. Phys.: Condens. Matter 33 (2021) 443001 Topical Review

Figure 13. (a) Magnetic phase diagram at zero magnetic field for the model given by HBBQ + HBA + HZ obtained by the simulated
annealing. The parameters are set as Q1 = (Q, 0) and Q2 = (0, Q) with Q = π/3 and Iz = 0.2. 2Q-I and 2Q-II stand for two different
double-Q states, while 1Q is for the single-Q state. The hatched area shows the parameter region where the system undergoes a phase
transition to a double-Q state with nonzero scalar chirality including the square SkX in an applied magnetic field. (b) Magnetic field
dependences of the magnetizations m0 and (mλ

Qν
)2 (λ =∥,⊥, z) at IBA = 0.1 and K = 0.2; the other parameters are common to (a). The

green region indicates the state with nonzero scalar chirality, which is identified as the square SkX. (c)–(e) Snapshots of the spin
configurations in (c) the 2Q-I state at H = 0, (d) the square SkX at H = 0.78, and (e) the 2Q-IV state at H = 1. The arrows and the contour
show the xy and z components of the spin moment, respectively. Reprinted figure with permission from [208], Copyright (2021) by the
American Physical Society.

tices. This state exhibits a chirality density wave along the
Q1 direction, similar to the double-Q CS state discussed in
sections 3.3.1 and 4.2.1. Meanwhile, in the 2Q-II state, both xy
and z spin components have the single-Q sinusoidal structures.
This state also exhibits a chirality density wave along the Q1
direction.

Although these three states at zero field show no net scalar
chirality χsc

0 , the system undergoes a phase transition to a
double-Q state with χsc

0 ̸= 0 under the magnetic field in the
hatched area in figure 13(a), lying across the 2Q-I and 2Q-II
states [208]. Figure 13(b) exemplifies such behavior by plot-
ting the magnetic field dependences of the squared magneti-
zations at IBA = 0.1, K = 0.2, and Iz = 0.2 [208]. Here, m∥

Qν

and m⊥
Qν

are the in-plane parallel and perpendicular compo-
nents of the magnetization with Qν , respectively [cf (41) and
(42)]. Three double-Q states are obtained while increasing H,
in addition to the fully polarized state above H ≃ 2.2. The
low-field state below H ≃ 0.775 corresponds to the 2Q-I state
connected to that at H = 0, while the high-field state before

entering the fully polarized state corresponds to a different
double-Q state dubbed 2Q-IV, whose spin structure is charac-
terized by a superposition of two sinusoidal waves along the Q1
and Q2 directions as shown in figure 13(e). The intermediate-
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Comparison between experiments and theory
๏ STM measurement for GdRu2Si2 ๏ spin-polarized STM measurement

by means of Monte Carlo simulations for the N = 962 sites at
J = 1, K = 0.5, γ1 = 0.9, γ2 = 0.72, and γ3 = 1, we obtained the
screw, skyrmion lattice, fan, and fully polarised states while
increasing H. We show the spin configurations for each phase at
H = 0, 0.6, 0.725, and ∞ in Fig. 4a, 4b, 4c, and 4d, respectively.

The square skyrmion lattice (Phase II) is found to be stabilised
with the help of the anisotropy for the tetragonal crystal structure.
Note that square skyrmion lattices in square crystal structures
were not expected to be stabilised in previous reports, in which
the magnetic anisotropy was not considered15. At a higher
magnetic field, the calculation predicts a double-Q fan structure
in Phase III, consistent with the experiments (Fig. 3c, g).

The charge density is calculated by considering itinerant elec-
trons coupled with the spin textures obtained as above. The
Hamiltonian is given as:

H ¼ "t
X

hi;ji;σ
ðcyiσcjσ þ h:c:Þ þ JK

X
i
si & Si; ð2Þ

where cyiσ (ciσ) is the creation (annihilation) operator of an itin-
erant electron at site i and with spin σ. The first term represents
the nearest-neighbour hopping of electrons. The second term
represents the spin–charge coupling between the electron spin
si ¼ ð1=2Þ

P
σ;σ 0c

y
iσσσσ0ciσ 0 and the underlying spin texture; σ

denotes the Pauli matrix. We set t = JK = 1 and the chemical
potential μ = − 3. The charge density at site i, hnii ¼ h

P
σc

y
iσciσi,

is obtained by diagonalising the Hamiltonian in Eq. (2) for each
spin texture. The results and their Fourier transforms are shown
in Fig. 4e–l. (see Supplementary Fig. 11 for the results with dif-
ferent chemical potentials.)

By comparing Fig. 4a–d and Fig. 4e–h, it can be seen that
charge-distribution patterns reflect the magnetic structures. This

can be interpreted as follows. Since the itinerant electrons’ spins
are aligned with localised moments, kinetic energy of the itinerant
electrons depends on the relative angle between localised mag-
netic moments at neighbouring sites. Thus, itinerant electrons
reflect local magnetic structures. The charge modulations on the
magnetic textures are qualitatively understood from the scattering
process via the spin–charge coupling JK. Within the second-order
perturbation theory, the charge density at momentum q is pro-
portional to J2K

P
q1q2

Λq1q2
ðSq1 & Sq2Þδq;q1þq2

, where Λq1q2
is a form

factor depending on the electronic structure and δ is the Kro-
necker delta. The nonzero Sq components in each magnetic
texture satisfying Sq1 & Sq2≠0 explain the wave numbers q for the
charge modulations.

The calculated charge modulations resemble the basic features
of the observed LDOS structures. The wavy modulation ortho-
gonal to the screw structure in Phase I results in the stripe pattern
in charge density (Fig. 4e). 2Q1 and 2Q2 appear in all the mag-
netic phases except for the FP phase and dominate in Phase I and
III (Fig. 4i–l). This is because the local configuration of relative
angles between neighbouring spins becomes almost the same
every half periodicity of the magnetic modulations. In contrast, in
Phase II, the angles between neighbouring spins at the skyrmion
core and in between the cores are different. Therefore, Q1 and Q2
modulations appear in the charge sector. It should be noted that
the peak at Q1 + Q2 in Phase I cannot be explained by the present
model, and more advanced model may be necessary to explain
this behaviour. Nevertheless, the overall good agreement between
the observed and calculated spatial patterns in the double-Q states
suggests that the present theoretical framework based on
multiple-spin interactions well captures the physics behind the
skyrmion formation in this centrosymmetric magnet.
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We note that magnetic structures, including skyrmions, have
also been detected with non-magnetic STM tips via the
mechanisms known as the tunnelling anisotropic magnetoresis-
tance (TAMR)3,25–28 and the non-colinear magnetoresistance
(NCMR)28,29 in 3d transition metals where the magnetic struc-
tures are originated from magnetic moments carried by itinerant
electrons. The TAMR effect may not explain the present obser-
vation. This is because the centre and the edges of skyrmions
show different contrast in the present LDOS map, whereas spins
pointing in and out of the surface should appear similarly for the
TAMR effect. By contrast, the observed LDOS modulations are
similar to those caused by the NCMR. In the case of GdRu2Si2;
however, the NCMR effect alone is not enough to explain the
present observation because the coupling between itinerant
electrons and localised moments is indispensable. Our observa-
tions evidence such a coupling, which not only allows us to access
the localised moments from the charge sector but also may play a
role for the itinerant-electron mediated magnetic interactions
responsible for the skyrmion formation.

In conclusion, our observation of modulations of itinerant
electrons associated with magnetic structures provides evidence
for a coupling between itinerant-electron states and local mag-
netic moments in the centrosymmetric skyrmion magnet
GdRu2Si2. The observed modulations are reproduced by charge
density calculations which consider exchange coupling between
itinerant electrons and localised magnetic moments fixed by
anisotropic multiple-spin interactions. We interpret that this
happens because spatially varying kinetic energy of itinerant
electrons reflects neighbouring configurations of Gd moments.
These results together have established the basic framework of the
coupling between itinerant electrons and local magnetic moments
in GdRu2Si2. Further theoretical and experimental investigation is
required to explain the detailed features in the observed mod-
ulations (such as Q1 + Q2 component in Phase I), which may also

lead to identify the microscopic formation mechanism of the
square skyrmion lattice in the absence of the DM interaction.

Methods
Sample preparation and STM measurements. GdRu2Si2 single crystals were
grown with the floating zone method9. The samples were cleaved in an ultra-high
vacuum chamber (~10−10 Torr) at around 77 K to expose clean and flat (001)
surfaces and then transferred to the microscope30 without breaking vacuum. As
scanning tips, tungsten wires were used after electro-chemical etching in KOH
aqueous solution, followed by tuning using field ion microscopy and controlled
indentation at clean Cu(111) surfaces. All the measurements were conducted at
temperature T ≃ 1.5 K, and magnetic field was applied along the crystalline c-axis.
Tunnelling conductance was measured using the standard lock-in technique with
AC frequency of 617.3 Hz.

Calculation of the density of states. The local density of states shown in the main
text are obtained from first principles calculations for slab systems. The actual
calculations are performed based on DFT with VASP code31,32, where we assume a
collinear ferromagnetic order. We consider the conventional cell of GdRu2Si2 with
the experimental lattice parameters33, a = 4.1634 Å, c = 9.6102 Å, and zSi = 0.375,
and then, stack it to construct the supercell systems with eight Ru-layers. Finally,
we insert a vacuum layer with 10 Å at the edge of the slabs, and perform a surface
relaxation calculation to optimise the positions of surface atoms. The LDOS spectra
are calculated as the summation of partial charge densities of the Bloch states,P0 jψnkðrÞj

2, where the summation
P0 is restricted to (nk) with the energy

εnk ∈ [ε − Δ, ε + Δ]. We employ the exchange-correlation functional proposed by
Perdew et al.34, Ec = 450 eV as the cutoff energy for the planewave basis set, and
Nk = 10 × 10 × 1 as the number of k-points for the self-consistent calculation. In
the LDOS calculations, we use a denser k-mesh, Nk = 40 × 40 × 1 and Δ = 25 meV.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request. SI-STM data for Gd-terminated surface and additional
data supporting the main observation are presented in the Supplementary Information.

Code availability
The codes used for this study are available from the corresponding author upon
reasonable request.
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FIG. 2. SP-STM measurement of the Si-terminated surface in
Phase I. (a) Constant-current SP-STM image with strong spin-
polarized contrast measured with in-plane magnetized tip (U = −20
mV, I = 100 pA, T = 8 K, and Fe-coated W tip). (b) FFT of (a);
the highlighted spots correspond to different modulation vectors: Q1

(green circle), Q1 + Q2 (black square), 2Q2 (orange diamond), and
a replica spot at G2 − 2Q2 (red diamond). (c),(d),(e) The expected
SP-STM contrast of Phase I for different tip magnetization directions
as indicated.

stripe pattern for Phase I; see Fig. 1(a). However, while this
measurement clearly demonstrates the spin spiral nature of
the magnetic state it does not provide evidence for a multi-Q
state. Only the observation of a two-dimensionally modulated
pattern as displayed in (e) can prove the multi-Q nature of
Phase I.

A measurement of Phase I with a different Fe-coated W
tip is shown in Fig. 3(a); for this measurement the TMR
contribution to the signal is much smaller and the atomic
corrugation (see bottom right) is removed for better visibility
(see Supplemental Fig. S2 [28]). The pattern observed in this
measurement is in agreement with the TMR displayed in
Fig. 2(e), providing evidence for the multi-Q nature of the
magnetic texture. Indeed the tip magnetization appears to be
along the diagonal of the magnetic unit cell, which is also
evident from the equal intensity of the magnetic spots Q1 and
Q2 in the FFT; see green circles in Fig. 3(d). The simultane-
ous observation of Q1 and Q2 in our SP-STM measurements
clearly demonstrates the previously debated multi-Q nature
of Phase I, in agreement with a recent neutron diffraction
study [29].

At an applied out-of-plane magnetic field of 1.9 T, see
Fig. 3(b), the sample is still in Phase I; however, the tip
magnetization direction is expected to be partly aligned with
the applied field. This means that, while in Fig. 3(a) the tip is
sensitive to the in-plane components of Phase I, in Fig. 3(b)
we are also picking up some of the out-of-plane components.
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FIG. 3. Magnetic field dependent SP-STM measurement on the
Si-terminated surface. (a) Constant-current SP-STM image in zero
magnetic field, for which the atomic corrugation (see bottom right
inset) has been removed; see Supplemental Fig. S2 [28]. (b) Same
at 1.9 T. (c) Same at 2.3 T, i.e., in Phase II. The insets show the
tentative tip magnetization direction, which is in-plane at B = 0 T
and is rotated towards the out-of-plane for increasing magnetic fields.
(d),(e),(f) Corresponding FFTs of (a),(b),(c). (Measurement parame-
ters U = −20 mV, I = 100 pA, T = 8 K, and Fe-coated W tip.)

Indeed, looking at the FFT in Fig. 3(e) we see that the
intensity of the magnetic spots Q1 and Q2 is not equal any-
more, suggesting that the TMR pattern can be best described
by a combination of out-of-plane and in-plane magnetization
components [as in Fig. 1(a) and Fig. 2(e), respectively], i.e.,
originating from a canted tip magnetization. The spots marked
with the orange diamond remain unchanged, which supports
their interpretation as EMR contrast contributions.

At B = 2.3 T, see Fig. 3(c), the GdRu2Si2 crystal is in
Phase II and the tip magnetization is expected to be mostly
aligned with the field, i.e., it is sensitive to the out-of-plane
sample magnetization components. The TMR contrast shows
a lattice with fourfold symmetry, similar to the simulated
SP-STM contrast for Phase II; see Fig. 1(b). The intensity of
the magnetic spots Q1 and Q2 is again equal, in accordance
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(see Supplemental Fig. S2 [28]). The pattern observed in this
measurement is in agreement with the TMR displayed in
Fig. 2(e), providing evidence for the multi-Q nature of the
magnetic texture. Indeed the tip magnetization appears to be
along the diagonal of the magnetic unit cell, which is also
evident from the equal intensity of the magnetic spots Q1 and
Q2 in the FFT; see green circles in Fig. 3(d). The simultane-
ous observation of Q1 and Q2 in our SP-STM measurements
clearly demonstrates the previously debated multi-Q nature
of Phase I, in agreement with a recent neutron diffraction
study [29].

At an applied out-of-plane magnetic field of 1.9 T, see
Fig. 3(b), the sample is still in Phase I; however, the tip
magnetization direction is expected to be partly aligned with
the applied field. This means that, while in Fig. 3(a) the tip is
sensitive to the in-plane components of Phase I, in Fig. 3(b)
we are also picking up some of the out-of-plane components.
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FIG. 3. Magnetic field dependent SP-STM measurement on the
Si-terminated surface. (a) Constant-current SP-STM image in zero
magnetic field, for which the atomic corrugation (see bottom right
inset) has been removed; see Supplemental Fig. S2 [28]. (b) Same
at 1.9 T. (c) Same at 2.3 T, i.e., in Phase II. The insets show the
tentative tip magnetization direction, which is in-plane at B = 0 T
and is rotated towards the out-of-plane for increasing magnetic fields.
(d),(e),(f) Corresponding FFTs of (a),(b),(c). (Measurement parame-
ters U = −20 mV, I = 100 pA, T = 8 K, and Fe-coated W tip.)

Indeed, looking at the FFT in Fig. 3(e) we see that the
intensity of the magnetic spots Q1 and Q2 is not equal any-
more, suggesting that the TMR pattern can be best described
by a combination of out-of-plane and in-plane magnetization
components [as in Fig. 1(a) and Fig. 2(e), respectively], i.e.,
originating from a canted tip magnetization. The spots marked
with the orange diamond remain unchanged, which supports
their interpretation as EMR contrast contributions.

At B = 2.3 T, see Fig. 3(c), the GdRu2Si2 crystal is in
Phase II and the tip magnetization is expected to be mostly
aligned with the field, i.e., it is sensitive to the out-of-plane
sample magnetization components. The TMR contrast shows
a lattice with fourfold symmetry, similar to the simulated
SP-STM contrast for Phase II; see Fig. 1(b). The intensity of
the magnetic spots Q1 and Q2 is again equal, in accordance
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The concept of topology provides a powerful scheme for the
classification of electronic and magnetic states, and also for
the description of their physical properties1. Topology of a

magnetic structure is characterized by the winding number
w ¼ 1

8π ϵ
ijk
R
S dSknðrÞ $ ½∂inðrÞ ´ ∂jnðrÞ&. This quantity counts how

many times the direction of the local magnetization, i.e., n(r)=m
(r)/|m(r)|, wraps the unit sphere within the unit area S. When a
magnetic structure possesses a non-zero integer winding number,
it behaves as a topologically stable spin-object, producing emer-
gent phenomena unique to its topological class.

A representative example is the magnetic skyrmion, which is a
two-dimensional (2D) nanometric vortex-like structure consist-
ing of many electron spins2–4. In the bulky compounds, sky-
rmions elongate in cylindrical forms, usually assembling in a
hexagonal lattice, i.e., the skyrmion lattice (SkL). In reciprocal
space, the hexagonal SkL can be approximately described as a
superposition of three helical modulations with the wavevectors
(q-vectors) forming a mutual angle of 120° in a plane perpendi-
cular to external magnetic field H, as shown in Fig. 1a. Skyrmion-
hosting materials are of great variety, including non-
centrosymmetric bulk magnets5 and multilayered thin films6,7.
Through the interaction with conduction electrons, skyrmions
generate the effective magnetic field confined in each interior, so-
called emergent magnetic field as defined by the Berry curvature
bk ¼ 1

2 ϵ
ijkn rð Þ $ ∂in rð Þ ´ ∂jn rð Þ

h i
. Owing to their topology, sky-

rmions carry the quantized emergent flux ϕ0 ¼ ' h
e in case of the

strong spin-charge coupling, which offers attractive spintronic

functionalities conserved even in nano-scale devices;8–10 such as
topological Hall effects11–13 and emergent electromagnetic
inductions1,14–16.

Also as a result of the geometric constraint, transitions of
topological spin textures are accompanied by dynamics of topo-
logical spin defects, as exemplified by the emergence of spin
hedgehogs in the course of creation or annihilation of
skyrmions17,18. Because transformations between skyrmions and
conventional magnetic orders need discrete changes in the
winding number, they cannot be realized by smooth change of
the directions of local spins. Instead, it is necessary to introduce
hedgehog point defects, which are three-dimensional (3D)
topological spin structures, behaving as emergent magnetic
monopoles or anti-monopoles with non-zero divergence of
emergent magnetic field 1

4π∇ $ b ¼ ± 1
! "

19. The motions of
hedgehogs locally give or remove the topological winding num-
ber, causing the topological transition through the elongation,
contraction, coalescence, and division of skyrmion strings17,18. In
association with such dynamics of topological charges, the
topological transition of a spin texture often involves non-trivial
emergent phenomena, e.g., the formation of fluctuating topolo-
gical magnetic order20, the concomitant non-Fermi-liquid like
behavior21 and electrical magnetochiral effect22. Spin hedgehogs
are also found as a dense lattice form in MnGe, namely the array
of hedgehogs and anti-hedgehogs connected by skyrmion strings.
This state can be described approximately by three helical mod-
ulations with their q-vectors forming the orthogonal sides of a
cube23 and is here referred to as cubic-3q hedgehog lattice (HL)
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Fig. 1 Schematics of topological multiple-q spin textures and two-step magnetic transitions in MnSi1−xGex. a Spin configurations of two-dimensional
skyrmion lattice (2D SkL), which is a hexagonal array of skyrmion cylinders. It is characterized by three helical modulation vectors q1 þ q2 þ q3 ¼ 0ð Þ
perpendicular to external magnetic field H. b Spin configurations of tetrahedral-4q hedgehog lattice (4q-HL), which is described by four q-vectors pointing
in the apical directions of a regular tetrahedron. Those q-vectors are fixed along 〈111〉 crystal axes at zero H. Hedgehogs and anti-hedgehogs are at face-
centered-cubic positions as illustrated in the bottom right green box representing the magnetic unit cell. c Spin configurations of cubic-3q hedgehog lattice
(3q-HL), which is described by three orthogonal q-vectors, which are pinned along 〈100〉 crystal axes at zero H. In a–c the red (blue) arrows drawn in each
spin texture represent up (down) magnetic moments. d Variation of phase boundary between ferromagnetic and helimagnetically ordered states as a
function of magnetic field H, temperature T, and x in MnSi1−xGex. Red, green, and blue color denote 3q-HL, 4q-HL, and helical(H)/SkL states, respectively.
The variation of magnetic transition temperature is indicated by the black line on the bottom plane. (See also Supplementary Fig. 2) e, f Composition x
dependence of ferromagnetic transition field Hc (e) and saturation magnetization Ms (f)
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The concept of topology provides a powerful scheme for the
classification of electronic and magnetic states, and also for
the description of their physical properties1. Topology of a

magnetic structure is characterized by the winding number
w ¼ 1

8π ϵ
ijk
R
S dSknðrÞ $ ½∂inðrÞ ´ ∂jnðrÞ&. This quantity counts how

many times the direction of the local magnetization, i.e., n(r)=m
(r)/|m(r)|, wraps the unit sphere within the unit area S. When a
magnetic structure possesses a non-zero integer winding number,
it behaves as a topologically stable spin-object, producing emer-
gent phenomena unique to its topological class.

A representative example is the magnetic skyrmion, which is a
two-dimensional (2D) nanometric vortex-like structure consist-
ing of many electron spins2–4. In the bulky compounds, sky-
rmions elongate in cylindrical forms, usually assembling in a
hexagonal lattice, i.e., the skyrmion lattice (SkL). In reciprocal
space, the hexagonal SkL can be approximately described as a
superposition of three helical modulations with the wavevectors
(q-vectors) forming a mutual angle of 120° in a plane perpendi-
cular to external magnetic field H, as shown in Fig. 1a. Skyrmion-
hosting materials are of great variety, including non-
centrosymmetric bulk magnets5 and multilayered thin films6,7.
Through the interaction with conduction electrons, skyrmions
generate the effective magnetic field confined in each interior, so-
called emergent magnetic field as defined by the Berry curvature
bk ¼ 1

2 ϵ
ijkn rð Þ $ ∂in rð Þ ´ ∂jn rð Þ

h i
. Owing to their topology, sky-

rmions carry the quantized emergent flux ϕ0 ¼ ' h
e in case of the

strong spin-charge coupling, which offers attractive spintronic

functionalities conserved even in nano-scale devices;8–10 such as
topological Hall effects11–13 and emergent electromagnetic
inductions1,14–16.

Also as a result of the geometric constraint, transitions of
topological spin textures are accompanied by dynamics of topo-
logical spin defects, as exemplified by the emergence of spin
hedgehogs in the course of creation or annihilation of
skyrmions17,18. Because transformations between skyrmions and
conventional magnetic orders need discrete changes in the
winding number, they cannot be realized by smooth change of
the directions of local spins. Instead, it is necessary to introduce
hedgehog point defects, which are three-dimensional (3D)
topological spin structures, behaving as emergent magnetic
monopoles or anti-monopoles with non-zero divergence of
emergent magnetic field 1

4π∇ $ b ¼ ± 1
! "

19. The motions of
hedgehogs locally give or remove the topological winding num-
ber, causing the topological transition through the elongation,
contraction, coalescence, and division of skyrmion strings17,18. In
association with such dynamics of topological charges, the
topological transition of a spin texture often involves non-trivial
emergent phenomena, e.g., the formation of fluctuating topolo-
gical magnetic order20, the concomitant non-Fermi-liquid like
behavior21 and electrical magnetochiral effect22. Spin hedgehogs
are also found as a dense lattice form in MnGe, namely the array
of hedgehogs and anti-hedgehogs connected by skyrmion strings.
This state can be described approximately by three helical mod-
ulations with their q-vectors forming the orthogonal sides of a
cube23 and is here referred to as cubic-3q hedgehog lattice (HL)
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Fig. 1 Schematics of topological multiple-q spin textures and two-step magnetic transitions in MnSi1−xGex. a Spin configurations of two-dimensional
skyrmion lattice (2D SkL), which is a hexagonal array of skyrmion cylinders. It is characterized by three helical modulation vectors q1 þ q2 þ q3 ¼ 0ð Þ
perpendicular to external magnetic field H. b Spin configurations of tetrahedral-4q hedgehog lattice (4q-HL), which is described by four q-vectors pointing
in the apical directions of a regular tetrahedron. Those q-vectors are fixed along 〈111〉 crystal axes at zero H. Hedgehogs and anti-hedgehogs are at face-
centered-cubic positions as illustrated in the bottom right green box representing the magnetic unit cell. c Spin configurations of cubic-3q hedgehog lattice
(3q-HL), which is described by three orthogonal q-vectors, which are pinned along 〈100〉 crystal axes at zero H. In a–c the red (blue) arrows drawn in each
spin texture represent up (down) magnetic moments. d Variation of phase boundary between ferromagnetic and helimagnetically ordered states as a
function of magnetic field H, temperature T, and x in MnSi1−xGex. Red, green, and blue color denote 3q-HL, 4q-HL, and helical(H)/SkL states, respectively.
The variation of magnetic transition temperature is indicated by the black line on the bottom plane. (See also Supplementary Fig. 2) e, f Composition x
dependence of ferromagnetic transition field Hc (e) and saturation magnetization Ms (f)
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The concept of topology provides a powerful scheme for the
classification of electronic and magnetic states, and also for
the description of their physical properties1. Topology of a

magnetic structure is characterized by the winding number
w ¼ 1

8π ϵ
ijk
R
S dSknðrÞ $ ½∂inðrÞ ´ ∂jnðrÞ&. This quantity counts how

many times the direction of the local magnetization, i.e., n(r)=m
(r)/|m(r)|, wraps the unit sphere within the unit area S. When a
magnetic structure possesses a non-zero integer winding number,
it behaves as a topologically stable spin-object, producing emer-
gent phenomena unique to its topological class.

A representative example is the magnetic skyrmion, which is a
two-dimensional (2D) nanometric vortex-like structure consist-
ing of many electron spins2–4. In the bulky compounds, sky-
rmions elongate in cylindrical forms, usually assembling in a
hexagonal lattice, i.e., the skyrmion lattice (SkL). In reciprocal
space, the hexagonal SkL can be approximately described as a
superposition of three helical modulations with the wavevectors
(q-vectors) forming a mutual angle of 120° in a plane perpendi-
cular to external magnetic field H, as shown in Fig. 1a. Skyrmion-
hosting materials are of great variety, including non-
centrosymmetric bulk magnets5 and multilayered thin films6,7.
Through the interaction with conduction electrons, skyrmions
generate the effective magnetic field confined in each interior, so-
called emergent magnetic field as defined by the Berry curvature
bk ¼ 1

2 ϵ
ijkn rð Þ $ ∂in rð Þ ´ ∂jn rð Þ

h i
. Owing to their topology, sky-

rmions carry the quantized emergent flux ϕ0 ¼ ' h
e in case of the

strong spin-charge coupling, which offers attractive spintronic

functionalities conserved even in nano-scale devices;8–10 such as
topological Hall effects11–13 and emergent electromagnetic
inductions1,14–16.

Also as a result of the geometric constraint, transitions of
topological spin textures are accompanied by dynamics of topo-
logical spin defects, as exemplified by the emergence of spin
hedgehogs in the course of creation or annihilation of
skyrmions17,18. Because transformations between skyrmions and
conventional magnetic orders need discrete changes in the
winding number, they cannot be realized by smooth change of
the directions of local spins. Instead, it is necessary to introduce
hedgehog point defects, which are three-dimensional (3D)
topological spin structures, behaving as emergent magnetic
monopoles or anti-monopoles with non-zero divergence of
emergent magnetic field 1

4π∇ $ b ¼ ± 1
! "

19. The motions of
hedgehogs locally give or remove the topological winding num-
ber, causing the topological transition through the elongation,
contraction, coalescence, and division of skyrmion strings17,18. In
association with such dynamics of topological charges, the
topological transition of a spin texture often involves non-trivial
emergent phenomena, e.g., the formation of fluctuating topolo-
gical magnetic order20, the concomitant non-Fermi-liquid like
behavior21 and electrical magnetochiral effect22. Spin hedgehogs
are also found as a dense lattice form in MnGe, namely the array
of hedgehogs and anti-hedgehogs connected by skyrmion strings.
This state can be described approximately by three helical mod-
ulations with their q-vectors forming the orthogonal sides of a
cube23 and is here referred to as cubic-3q hedgehog lattice (HL)
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Fig. 1 Schematics of topological multiple-q spin textures and two-step magnetic transitions in MnSi1−xGex. a Spin configurations of two-dimensional
skyrmion lattice (2D SkL), which is a hexagonal array of skyrmion cylinders. It is characterized by three helical modulation vectors q1 þ q2 þ q3 ¼ 0ð Þ
perpendicular to external magnetic field H. b Spin configurations of tetrahedral-4q hedgehog lattice (4q-HL), which is described by four q-vectors pointing
in the apical directions of a regular tetrahedron. Those q-vectors are fixed along 〈111〉 crystal axes at zero H. Hedgehogs and anti-hedgehogs are at face-
centered-cubic positions as illustrated in the bottom right green box representing the magnetic unit cell. c Spin configurations of cubic-3q hedgehog lattice
(3q-HL), which is described by three orthogonal q-vectors, which are pinned along 〈100〉 crystal axes at zero H. In a–c the red (blue) arrows drawn in each
spin texture represent up (down) magnetic moments. d Variation of phase boundary between ferromagnetic and helimagnetically ordered states as a
function of magnetic field H, temperature T, and x in MnSi1−xGex. Red, green, and blue color denote 3q-HL, 4q-HL, and helical(H)/SkL states, respectively.
The variation of magnetic transition temperature is indicated by the black line on the bottom plane. (See also Supplementary Fig. 2) e, f Composition x
dependence of ferromagnetic transition field Hc (e) and saturation magnetization Ms (f)
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The concept of topology provides a powerful scheme for the
classification of electronic and magnetic states, and also for
the description of their physical properties1. Topology of a

magnetic structure is characterized by the winding number
w ¼ 1

8π ϵ
ijk
R
S dSknðrÞ $ ½∂inðrÞ ´ ∂jnðrÞ&. This quantity counts how

many times the direction of the local magnetization, i.e., n(r)=m
(r)/|m(r)|, wraps the unit sphere within the unit area S. When a
magnetic structure possesses a non-zero integer winding number,
it behaves as a topologically stable spin-object, producing emer-
gent phenomena unique to its topological class.

A representative example is the magnetic skyrmion, which is a
two-dimensional (2D) nanometric vortex-like structure consist-
ing of many electron spins2–4. In the bulky compounds, sky-
rmions elongate in cylindrical forms, usually assembling in a
hexagonal lattice, i.e., the skyrmion lattice (SkL). In reciprocal
space, the hexagonal SkL can be approximately described as a
superposition of three helical modulations with the wavevectors
(q-vectors) forming a mutual angle of 120° in a plane perpendi-
cular to external magnetic field H, as shown in Fig. 1a. Skyrmion-
hosting materials are of great variety, including non-
centrosymmetric bulk magnets5 and multilayered thin films6,7.
Through the interaction with conduction electrons, skyrmions
generate the effective magnetic field confined in each interior, so-
called emergent magnetic field as defined by the Berry curvature
bk ¼ 1

2 ϵ
ijkn rð Þ $ ∂in rð Þ ´ ∂jn rð Þ

h i
. Owing to their topology, sky-

rmions carry the quantized emergent flux ϕ0 ¼ ' h
e in case of the

strong spin-charge coupling, which offers attractive spintronic

functionalities conserved even in nano-scale devices;8–10 such as
topological Hall effects11–13 and emergent electromagnetic
inductions1,14–16.

Also as a result of the geometric constraint, transitions of
topological spin textures are accompanied by dynamics of topo-
logical spin defects, as exemplified by the emergence of spin
hedgehogs in the course of creation or annihilation of
skyrmions17,18. Because transformations between skyrmions and
conventional magnetic orders need discrete changes in the
winding number, they cannot be realized by smooth change of
the directions of local spins. Instead, it is necessary to introduce
hedgehog point defects, which are three-dimensional (3D)
topological spin structures, behaving as emergent magnetic
monopoles or anti-monopoles with non-zero divergence of
emergent magnetic field 1

4π∇ $ b ¼ ± 1
! "

19. The motions of
hedgehogs locally give or remove the topological winding num-
ber, causing the topological transition through the elongation,
contraction, coalescence, and division of skyrmion strings17,18. In
association with such dynamics of topological charges, the
topological transition of a spin texture often involves non-trivial
emergent phenomena, e.g., the formation of fluctuating topolo-
gical magnetic order20, the concomitant non-Fermi-liquid like
behavior21 and electrical magnetochiral effect22. Spin hedgehogs
are also found as a dense lattice form in MnGe, namely the array
of hedgehogs and anti-hedgehogs connected by skyrmion strings.
This state can be described approximately by three helical mod-
ulations with their q-vectors forming the orthogonal sides of a
cube23 and is here referred to as cubic-3q hedgehog lattice (HL)
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Fig. 1 Schematics of topological multiple-q spin textures and two-step magnetic transitions in MnSi1−xGex. a Spin configurations of two-dimensional
skyrmion lattice (2D SkL), which is a hexagonal array of skyrmion cylinders. It is characterized by three helical modulation vectors q1 þ q2 þ q3 ¼ 0ð Þ
perpendicular to external magnetic field H. b Spin configurations of tetrahedral-4q hedgehog lattice (4q-HL), which is described by four q-vectors pointing
in the apical directions of a regular tetrahedron. Those q-vectors are fixed along 〈111〉 crystal axes at zero H. Hedgehogs and anti-hedgehogs are at face-
centered-cubic positions as illustrated in the bottom right green box representing the magnetic unit cell. c Spin configurations of cubic-3q hedgehog lattice
(3q-HL), which is described by three orthogonal q-vectors, which are pinned along 〈100〉 crystal axes at zero H. In a–c the red (blue) arrows drawn in each
spin texture represent up (down) magnetic moments. d Variation of phase boundary between ferromagnetic and helimagnetically ordered states as a
function of magnetic field H, temperature T, and x in MnSi1−xGex. Red, green, and blue color denote 3q-HL, 4q-HL, and helical(H)/SkL states, respectively.
The variation of magnetic transition temperature is indicated by the black line on the bottom plane. (See also Supplementary Fig. 2) e, f Composition x
dependence of ferromagnetic transition field Hc (e) and saturation magnetization Ms (f)
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tetrahedral-4q toron crystal cubic-3q toron crystal

skyrmion crystal

SkL, which is approximately described by the in-plane superposition
of three helical modulations (Fig. 2). The internal spin structures are
determined by the detail of the crystal symmetry: Bloch-type sky-
rmions [Fig. 1(a)] arise from proper-screw helices in chiral magnets
(e.g., B20-type alloys,4,5,29,30 Cu2OSeO3,

31 and b-Mn-type CoZnMn
alloys13,32), while N!eel-type skyrmions [Fig. 1(a)] are formed by cycloi-
dal helices in polar magnets with Cnv crystal symmetry (e.g., GaV4S8

33

and VOSe2O5
34). Moreover, the anti-skyrmion lattice (w ¼ þ1) [Fig.

1(b)] was recently confirmed in a Heusler compound with D2d crystal
symmetry,35,36 which consists of both the screw and cycloid-type heli-
ces. We note that engineering magnetic anisotropy can also expand
the diversity of the topological spin crystals, as exemplified by the
observation of triangular-square lattice structure transition of the sky-
rmions13 or the meron/anti-meron lattice (w ¼ 6 1

2) in CoZnMn
alloys.37 In addition to these DMI-based topological spin crystals
observed in non-centrosymmetric magnets,11,38,39 theoretical studies
have shown that SkLs can be realized in a greater variety of materials
via magnetic frustration.40–42 Indeed, SkLs based on geometrical frus-
tration and/or Ruderman–Kittel–Kasuya–Yoshida (RKKY) interaction
were recently reported in various systems including centrosymmetric
crystals (e.g., Gd2PdSi3

43 and Gd3Ru4Al12
44), showing extremely short

magnetic periods of k ¼ 1:9–2.8nm.43–46

In the meantime, there has been no clear consensus about the
formation mechanism of a three-dimensional topological spin crystal
[i.e., hedgehog lattice (HL)]42,47–59 since its first observation in the
B20-type chiral magnet MnGe.60,61 The spin texture of HL is a dense
array of hedgehogs and anti-hedgehogs connected by skyrmion
strings, which serve as the source (monopole) and sink (anti-mono-
pole) of the emergent magnetic field [Fig. 1(c)],62,63 respectively,
(Fig. 2). In terms of the multiple-q state, it can be approximately
described by the superposition of three orthogonal helices fixed along
the h100i crystal axes (cubic-3 q HL), which has been confirmed in
reciprocal space via the neutron scattering experiment,61 as well as in
real-space via Lorentz transmission electron microscopy (LTEM),64

despite its technical difficulty due to extremely short k (¼ 2:8 nm) in
MnGe. However, interpretations of the magnetic structure, especially
those based on neutron scattering experiments, have been

controversial since we cannot distinguish the multi-domain helical
state and the multiple-q state in poly crystalline samples. Indeed, sev-
eral studies on powder neutron scattering50–54and muon spin rota-
tion56 experiments make their interpretations in terms of the multi-
domain helical state, while the first-principles calculation57 suggests
the sensitivity of the magnetic ground state in MnGe to various
parameters including interatomic distances. Nevertheless, such a
multi-domain scenario can hardly explain the unusual transport prop-
erties of MnGe discussed in the later sections, nor the real-space obser-
vation of the spin configuration by LTEM,64 which rather suggests the
presence of dense spin-singularities with topological nature. Although
the full identification of the magnetic structure in MnGe remains elu-
sive as discussed above, one notable fact is that the short k in MnGe
(k ¼ 2:8 nm) cannot be explained by the DMI-based model used for
SkLs; such a short k would require an unusually large DMI compara-
ble with the ferromagnetic exchange interaction, being contradictory
to the theoretical calculations suggesting a far smaller, i.e., ordinary,
value of DMI for MnGe.65,66

Recently, it was demonstrated that controlling the lattice constant
via chemical pressure induces the transition between SkL and HL in
MnSi1#xGex,

71 offering new insights into the underlying magnetic
interactions. As shown in Fig. 2, the triangular-3q SkL (x¼ 0.0–0.25)
undergoes the transition into cubic-3 q HL (x¼ 0.7–1.0), by way of
the new type of HL characterized by tetrahedral-4 q (x¼ 0.4–0.6).
Here, the magnetic texture can be regarded as the superposition of
four q-vectors along the h111i crystal axes, where hedgehogs and anti-
hedgehogs are located at the face-centered-cubic positions.47,49,71 The
magnetic period k shows the discontinuous change at the transition
point (x $ 0:3), while the change of DMI with the lattice constant is
predicted to be small by first-principles calculation.71 Therefore, the
underlying magnetic interactions relevant to the topological transitions
among the SkL and HLs observed in MnSi1#xGex are different from
the conventional DMI.

One possibility is the conduction-electron mediated exchange
interactions (e.g., RKKY interaction), which stabilize the short-period
helices with particular wave numbers and directions dictated by the
Fermi surface. A change in the lattice constant may modify the band
structure, leading to the transitions among SkL, 4 q-HL, and 3 q-HL as
observed in MnSi1#xGex. Whereas the conventional RKKY interaction
corresponds to the second-order contribution in terms of spin-charge
coupling (/ Si % Sj), recent theoretical studies have also suggested the
importance of higher-order interactions.42,55 For instance, the biqua-
dratic interaction ½/ ðSi % SjÞ2) at the fourth-order58 or the
topological-chiral interaction ½/ ðSi % ðSj % SkÞÞ2) at the sixth-order59

has been proposed to stabilize HLs. The reason why these higher-
order interactions become dominant may be related to the large mag-
netic moment in HLs; the Mn moment is 1.9 lB in MnGe (3 q-HL)
while it is 0.4 lB in MnSi (SkL).71 Hence, the essential parameter con-
trolled in MnSi1#xGex can be the electron bandwidth, the reduction of
which enhances the localized nature of the Mn moment through the
electron correlation effect. Indeed, the two-step variation of magnetic
moment73,74 observed in MnSi1#xGex coincides with the topological
transition of spin textures, implying the relevance of the higher-order
interactions in the stabilization of short-period HLs.

We note that 4 q-HL has also been observed in SrFeO3, where
the centrosymmetric crystal structure allows the coexistence of mag-
netic domains with different helicities and vorticities.72,75 Hence, a

FIG. 1. Topological spin textures and their emergent magnetic fields (Beff ). (a)
Bloch-type and N!eel-type skyrmion, (b) anti-skyrmion, and (c) hedgehog and anti-
hedgehog. The sign of skyrmion number w corresponds to the direction of Beff
against the external magnetic field (Bext), where it is anti-parallel in the skyrmion (w
¼#1) and parallel in the anti-skyrmion (w ¼ þ1). Hedgehog and anti-hedghog
serve as the source (monopole) and the sink (anti-monopole) of Beff , respectively.
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SkL, which is approximately described by the in-plane superposition
of three helical modulations (Fig. 2). The internal spin structures are
determined by the detail of the crystal symmetry: Bloch-type sky-
rmions [Fig. 1(a)] arise from proper-screw helices in chiral magnets
(e.g., B20-type alloys,4,5,29,30 Cu2OSeO3,

31 and b-Mn-type CoZnMn
alloys13,32), while N!eel-type skyrmions [Fig. 1(a)] are formed by cycloi-
dal helices in polar magnets with Cnv crystal symmetry (e.g., GaV4S8

33

and VOSe2O5
34). Moreover, the anti-skyrmion lattice (w ¼ þ1) [Fig.

1(b)] was recently confirmed in a Heusler compound with D2d crystal
symmetry,35,36 which consists of both the screw and cycloid-type heli-
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among the SkL and HLs observed in MnSi1#xGex are different from
the conventional DMI.

One possibility is the conduction-electron mediated exchange
interactions (e.g., RKKY interaction), which stabilize the short-period
helices with particular wave numbers and directions dictated by the
Fermi surface. A change in the lattice constant may modify the band
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netic moment in HLs; the Mn moment is 1.9 lB in MnGe (3 q-HL)
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trolled in MnSi1#xGex can be the electron bandwidth, the reduction of
which enhances the localized nature of the Mn moment through the
electron correlation effect. Indeed, the two-step variation of magnetic
moment73,74 observed in MnSi1#xGex coincides with the topological
transition of spin textures, implying the relevance of the higher-order
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FIG. 1. Topological spin textures and their emergent magnetic fields (Beff ). (a)
Bloch-type and N!eel-type skyrmion, (b) anti-skyrmion, and (c) hedgehog and anti-
hedgehog. The sign of skyrmion number w corresponds to the direction of Beff
against the external magnetic field (Bext), where it is anti-parallel in the skyrmion (w
¼#1) and parallel in the anti-skyrmion (w ¼ þ1). Hedgehog and anti-hedghog
serve as the source (monopole) and the sink (anti-monopole) of Beff , respectively.
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rmions [Fig. 1(a)] arise from proper-screw helices in chiral magnets
(e.g., B20-type alloys,4,5,29,30 Cu2OSeO3,
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1(b)] was recently confirmed in a Heusler compound with D2d crystal
symmetry,35,36 which consists of both the screw and cycloid-type heli-
ces. We note that engineering magnetic anisotropy can also expand
the diversity of the topological spin crystals, as exemplified by the
observation of triangular-square lattice structure transition of the sky-
rmions13 or the meron/anti-meron lattice (w ¼ 6 1

2) in CoZnMn
alloys.37 In addition to these DMI-based topological spin crystals
observed in non-centrosymmetric magnets,11,38,39 theoretical studies
have shown that SkLs can be realized in a greater variety of materials
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tration and/or Ruderman–Kittel–Kasuya–Yoshida (RKKY) interaction
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to the theoretical calculations suggesting a far smaller, i.e., ordinary,
value of DMI for MnGe.65,66
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MnSi1#xGex,

71 offering new insights into the underlying magnetic
interactions. As shown in Fig. 2, the triangular-3q SkL (x¼ 0.0–0.25)
undergoes the transition into cubic-3 q HL (x¼ 0.7–1.0), by way of
the new type of HL characterized by tetrahedral-4 q (x¼ 0.4–0.6).
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magnetic period k shows the discontinuous change at the transition
point (x $ 0:3), while the change of DMI with the lattice constant is
predicted to be small by first-principles calculation.71 Therefore, the
underlying magnetic interactions relevant to the topological transitions
among the SkL and HLs observed in MnSi1#xGex are different from
the conventional DMI.

One possibility is the conduction-electron mediated exchange
interactions (e.g., RKKY interaction), which stabilize the short-period
helices with particular wave numbers and directions dictated by the
Fermi surface. A change in the lattice constant may modify the band
structure, leading to the transitions among SkL, 4 q-HL, and 3 q-HL as
observed in MnSi1#xGex. Whereas the conventional RKKY interaction
corresponds to the second-order contribution in terms of spin-charge
coupling (/ Si % Sj), recent theoretical studies have also suggested the
importance of higher-order interactions.42,55 For instance, the biqua-
dratic interaction ½/ ðSi % SjÞ2) at the fourth-order58 or the
topological-chiral interaction ½/ ðSi % ðSj % SkÞÞ2) at the sixth-order59

has been proposed to stabilize HLs. The reason why these higher-
order interactions become dominant may be related to the large mag-
netic moment in HLs; the Mn moment is 1.9 lB in MnGe (3 q-HL)
while it is 0.4 lB in MnSi (SkL).71 Hence, the essential parameter con-
trolled in MnSi1#xGex can be the electron bandwidth, the reduction of
which enhances the localized nature of the Mn moment through the
electron correlation effect. Indeed, the two-step variation of magnetic
moment73,74 observed in MnSi1#xGex coincides with the topological
transition of spin textures, implying the relevance of the higher-order
interactions in the stabilization of short-period HLs.

We note that 4 q-HL has also been observed in SrFeO3, where
the centrosymmetric crystal structure allows the coexistence of mag-
netic domains with different helicities and vorticities.72,75 Hence, a

FIG. 1. Topological spin textures and their emergent magnetic fields (Beff ). (a)
Bloch-type and N!eel-type skyrmion, (b) anti-skyrmion, and (c) hedgehog and anti-
hedgehog. The sign of skyrmion number w corresponds to the direction of Beff
against the external magnetic field (Bext), where it is anti-parallel in the skyrmion (w
¼#1) and parallel in the anti-skyrmion (w ¼ þ1). Hedgehog and anti-hedghog
serve as the source (monopole) and the sink (anti-monopole) of Beff , respectively.

Applied Physics Letters PERSPECTIVE scitation.org/journal/apl

Appl. Phys. Lett. 116, 090501 (2020); doi: 10.1063/1.5139488 116, 090501-2

Published under license by AIP Publishing

SkL, which is approximately described by the in-plane superposition
of three helical modulations (Fig. 2). The internal spin structures are
determined by the detail of the crystal symmetry: Bloch-type sky-
rmions [Fig. 1(a)] arise from proper-screw helices in chiral magnets
(e.g., B20-type alloys,4,5,29,30 Cu2OSeO3,

31 and b-Mn-type CoZnMn
alloys13,32), while N!eel-type skyrmions [Fig. 1(a)] are formed by cycloi-
dal helices in polar magnets with Cnv crystal symmetry (e.g., GaV4S8

33

and VOSe2O5
34). Moreover, the anti-skyrmion lattice (w ¼ þ1) [Fig.

1(b)] was recently confirmed in a Heusler compound with D2d crystal
symmetry,35,36 which consists of both the screw and cycloid-type heli-
ces. We note that engineering magnetic anisotropy can also expand
the diversity of the topological spin crystals, as exemplified by the
observation of triangular-square lattice structure transition of the sky-
rmions13 or the meron/anti-meron lattice (w ¼ 6 1

2) in CoZnMn
alloys.37 In addition to these DMI-based topological spin crystals
observed in non-centrosymmetric magnets,11,38,39 theoretical studies
have shown that SkLs can be realized in a greater variety of materials
via magnetic frustration.40–42 Indeed, SkLs based on geometrical frus-
tration and/or Ruderman–Kittel–Kasuya–Yoshida (RKKY) interaction
were recently reported in various systems including centrosymmetric
crystals (e.g., Gd2PdSi3

43 and Gd3Ru4Al12
44), showing extremely short

magnetic periods of k ¼ 1:9–2.8nm.43–46

In the meantime, there has been no clear consensus about the
formation mechanism of a three-dimensional topological spin crystal
[i.e., hedgehog lattice (HL)]42,47–59 since its first observation in the
B20-type chiral magnet MnGe.60,61 The spin texture of HL is a dense
array of hedgehogs and anti-hedgehogs connected by skyrmion
strings, which serve as the source (monopole) and sink (anti-mono-
pole) of the emergent magnetic field [Fig. 1(c)],62,63 respectively,
(Fig. 2). In terms of the multiple-q state, it can be approximately
described by the superposition of three orthogonal helices fixed along
the h100i crystal axes (cubic-3 q HL), which has been confirmed in
reciprocal space via the neutron scattering experiment,61 as well as in
real-space via Lorentz transmission electron microscopy (LTEM),64

despite its technical difficulty due to extremely short k (¼ 2:8 nm) in
MnGe. However, interpretations of the magnetic structure, especially
those based on neutron scattering experiments, have been

controversial since we cannot distinguish the multi-domain helical
state and the multiple-q state in poly crystalline samples. Indeed, sev-
eral studies on powder neutron scattering50–54and muon spin rota-
tion56 experiments make their interpretations in terms of the multi-
domain helical state, while the first-principles calculation57 suggests
the sensitivity of the magnetic ground state in MnGe to various
parameters including interatomic distances. Nevertheless, such a
multi-domain scenario can hardly explain the unusual transport prop-
erties of MnGe discussed in the later sections, nor the real-space obser-
vation of the spin configuration by LTEM,64 which rather suggests the
presence of dense spin-singularities with topological nature. Although
the full identification of the magnetic structure in MnGe remains elu-
sive as discussed above, one notable fact is that the short k in MnGe
(k ¼ 2:8 nm) cannot be explained by the DMI-based model used for
SkLs; such a short k would require an unusually large DMI compara-
ble with the ferromagnetic exchange interaction, being contradictory
to the theoretical calculations suggesting a far smaller, i.e., ordinary,
value of DMI for MnGe.65,66

Recently, it was demonstrated that controlling the lattice constant
via chemical pressure induces the transition between SkL and HL in
MnSi1#xGex,

71 offering new insights into the underlying magnetic
interactions. As shown in Fig. 2, the triangular-3q SkL (x¼ 0.0–0.25)
undergoes the transition into cubic-3 q HL (x¼ 0.7–1.0), by way of
the new type of HL characterized by tetrahedral-4 q (x¼ 0.4–0.6).
Here, the magnetic texture can be regarded as the superposition of
four q-vectors along the h111i crystal axes, where hedgehogs and anti-
hedgehogs are located at the face-centered-cubic positions.47,49,71 The
magnetic period k shows the discontinuous change at the transition
point (x $ 0:3), while the change of DMI with the lattice constant is
predicted to be small by first-principles calculation.71 Therefore, the
underlying magnetic interactions relevant to the topological transitions
among the SkL and HLs observed in MnSi1#xGex are different from
the conventional DMI.

One possibility is the conduction-electron mediated exchange
interactions (e.g., RKKY interaction), which stabilize the short-period
helices with particular wave numbers and directions dictated by the
Fermi surface. A change in the lattice constant may modify the band
structure, leading to the transitions among SkL, 4 q-HL, and 3 q-HL as
observed in MnSi1#xGex. Whereas the conventional RKKY interaction
corresponds to the second-order contribution in terms of spin-charge
coupling (/ Si % Sj), recent theoretical studies have also suggested the
importance of higher-order interactions.42,55 For instance, the biqua-
dratic interaction ½/ ðSi % SjÞ2) at the fourth-order58 or the
topological-chiral interaction ½/ ðSi % ðSj % SkÞÞ2) at the sixth-order59

has been proposed to stabilize HLs. The reason why these higher-
order interactions become dominant may be related to the large mag-
netic moment in HLs; the Mn moment is 1.9 lB in MnGe (3 q-HL)
while it is 0.4 lB in MnSi (SkL).71 Hence, the essential parameter con-
trolled in MnSi1#xGex can be the electron bandwidth, the reduction of
which enhances the localized nature of the Mn moment through the
electron correlation effect. Indeed, the two-step variation of magnetic
moment73,74 observed in MnSi1#xGex coincides with the topological
transition of spin textures, implying the relevance of the higher-order
interactions in the stabilization of short-period HLs.

We note that 4 q-HL has also been observed in SrFeO3, where
the centrosymmetric crystal structure allows the coexistence of mag-
netic domains with different helicities and vorticities.72,75 Hence, a

FIG. 1. Topological spin textures and their emergent magnetic fields (Beff ). (a)
Bloch-type and N!eel-type skyrmion, (b) anti-skyrmion, and (c) hedgehog and anti-
hedgehog. The sign of skyrmion number w corresponds to the direction of Beff
against the external magnetic field (Bext), where it is anti-parallel in the skyrmion (w
¼#1) and parallel in the anti-skyrmion (w ¼ þ1). Hedgehog and anti-hedghog
serve as the source (monopole) and the sink (anti-monopole) of Beff , respectively.

Applied Physics Letters PERSPECTIVE scitation.org/journal/apl

Appl. Phys. Lett. 116, 090501 (2020); doi: 10.1063/1.5139488 116, 090501-2

Published under license by AIP Publishing

period ~2-3 nm: importance of itinerant frustration? 

๏ phase diagram for MnSi1-xGex



OKUMURA, HAYAMI, KATO, AND MOTOME PHYSICAL REVIEW B 101, 144416 (2020)

FIG. 1. Spin textures of (a) 4Q and (b) 3Q hedgehog lattices ob-
tained by simulated annealing for the model in Eq. (2). The enlarged
pictures display the magnetic unit cell with the spin configurations
on every two [001] layers for clarity. The magenta (cyan) balls
represent the (anti)monopoles at the (anti)hedgehog cores, which
locate at the interstitial positions of the cubic lattice sites. In (a), there
are eight monopoles and eight antimonopoles in the magnetic unit
cell, forming two interpenetrating body-centered-cubic lattices (one
of them is shown by the green guides). Meanwhile, there are four
monopoles and four antimonopoles in (b), which comprise spirals
running in the [100], [010], and [001] directions. The right panels
show the ordering vectors for the (a) 4Q and (b) 3Q cases. The thick
arrows (gray) represent the directions of the magnetic field along
the [001], [110], and [111] axes. (c) Correspondences between the
spin textures and the effective magnetic fields. The cube represents
the lattice unit composed of the eight lattice sites surrounding a
monopole and an antimonopole.

we use in this paper to investigate the ground state of the
effective spin model. In Sec. IV, we show the phase diagram
at zero field including the HLs. In Sec. V, we show the
phase diagram in magnetic fields applied in three symmetric
directions. In Sec. VI, we discuss field-induced topological
phase transitions caused by pair annihilation of monopoles
and antimonopoles. Section VII is devoted to the summary.

II. MODEL

In this section, we present the model which we use in the
present paper. Starting from an itinerant electron model with
spin-charge and spin-orbit couplings in Sec. II A, we discuss
the effective model with long-ranged exchange interactions
induced by the itinerant nature of electrons in Sec. II B.

A. Itinerant electron model

In order to investigate the microscopic origin of magnetic
HLs, we begin with a minimal model including itinerant
electrons, an extended Kondo lattice model that describes the
coupling between the itinerant electron spins and localized
magnetic moments. While the Kondo lattice model has been
studied for f electron systems, where the f electrons comprise
the localized moments [26,27], we note that it is also regarded
as an effective model for the Hubbard-type models, which
have been used widely, e.g., for d electron systems, at the level
of the mean-field approximation [28]. In the current paper,
we include an antisymmetric spin-orbit coupling arising from
spatial inversion symmetry breaking in noncentrosymmetric
systems. The Hamiltonian in the wave-number representation
is given by

H =
∑

kσ

(εk − µ)c†
kσ ckσ + JK

∑

kqσσ ′

c†
kσ σσσ ′ck+qσ ′ · Sq

+
∑

kσσ ′

gk · c†
kσσσσ ′ckσ ′ , (1)

where c†
kσ (ckσ ) is a creation (annihilation) operator of an

itinerant electron with wave vector k and spin σ =↑ or ↓. The
first term describes the kinetic energy of itinerant electrons; εk
is the energy dispersion and µ is the chemical potential. The
second term is for the Kondo coupling between itinerant elec-
tron spins and localized spin moments; σ = (σ x, σ y, σ z ) is
the vector of Pauli matrices, and Sq = 1√

N

∑
l Srl e

−iq·rl is the
Fourier transform of a localized moment Srl = (Sx

rl
, Sy

rl , Sz
rl

)
defined at site l , where N is the number of lattice sites. For
simplicity, Srl is regarded as a classical spin with the length
|Srl | = 1. JK is the exchange coupling constant the sign of
which is irrelevant for the classical spins. The last term repre-
sents the antisymmetric spin-orbit coupling induced by spatial
inversion symmetry breaking; gk = (gx

k, gy
k, gz

k ) is called the
g vector, which plays an important role in chiral magnets.
In the following, we consider the model on a simple cubic
lattice with the lattice constant being unity for simplicity;
noncentrosymmetric nature is effectively taken into account
in the g vector gk with an odd function of k.

B. Effective spin model

In general, the coupling between itinerant electrons and
localized spins generates effective exchange interactions be-
tween the localized spins. For instance, in the strong-coupling
case with JK ≫ |εk − µ|, an effective ferromagnetic interac-
tion is generated to maximize the kinetic energy of itinerant
electrons by aligning neighboring spins, which is called the
double-exchange interaction [29,30]. On the other hand, in
the weak-coupling case with JK ≪ |εk − µ|, the effective
magnetic interaction becomes long ranged and oscillating in
space, which is called the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction [31–33]. In this paper, we consider the
weak-coupling case of the model in Eq. (1) by an effective
spin model derived by perturbation expansion in terms of
JK. Our model includes a higher-order effect of the spin-
charge coupling beyond the RKKY interaction discussed in
the previous studies [34–36], and also a DM-type interaction
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FIG. 1. Spin textures of (a) 4Q and (b) 3Q hedgehog lattices ob-
tained by simulated annealing for the model in Eq. (2). The enlarged
pictures display the magnetic unit cell with the spin configurations
on every two [001] layers for clarity. The magenta (cyan) balls
represent the (anti)monopoles at the (anti)hedgehog cores, which
locate at the interstitial positions of the cubic lattice sites. In (a), there
are eight monopoles and eight antimonopoles in the magnetic unit
cell, forming two interpenetrating body-centered-cubic lattices (one
of them is shown by the green guides). Meanwhile, there are four
monopoles and four antimonopoles in (b), which comprise spirals
running in the [100], [010], and [001] directions. The right panels
show the ordering vectors for the (a) 4Q and (b) 3Q cases. The thick
arrows (gray) represent the directions of the magnetic field along
the [001], [110], and [111] axes. (c) Correspondences between the
spin textures and the effective magnetic fields. The cube represents
the lattice unit composed of the eight lattice sites surrounding a
monopole and an antimonopole.

we use in this paper to investigate the ground state of the
effective spin model. In Sec. IV, we show the phase diagram
at zero field including the HLs. In Sec. V, we show the
phase diagram in magnetic fields applied in three symmetric
directions. In Sec. VI, we discuss field-induced topological
phase transitions caused by pair annihilation of monopoles
and antimonopoles. Section VII is devoted to the summary.

II. MODEL

In this section, we present the model which we use in the
present paper. Starting from an itinerant electron model with
spin-charge and spin-orbit couplings in Sec. II A, we discuss
the effective model with long-ranged exchange interactions
induced by the itinerant nature of electrons in Sec. II B.

A. Itinerant electron model

In order to investigate the microscopic origin of magnetic
HLs, we begin with a minimal model including itinerant
electrons, an extended Kondo lattice model that describes the
coupling between the itinerant electron spins and localized
magnetic moments. While the Kondo lattice model has been
studied for f electron systems, where the f electrons comprise
the localized moments [26,27], we note that it is also regarded
as an effective model for the Hubbard-type models, which
have been used widely, e.g., for d electron systems, at the level
of the mean-field approximation [28]. In the current paper,
we include an antisymmetric spin-orbit coupling arising from
spatial inversion symmetry breaking in noncentrosymmetric
systems. The Hamiltonian in the wave-number representation
is given by

H =
∑

kσ

(εk − µ)c†
kσ ckσ + JK

∑

kqσσ ′

c†
kσ σσσ ′ck+qσ ′ · Sq

+
∑

kσσ ′

gk · c†
kσσσσ ′ckσ ′ , (1)

where c†
kσ (ckσ ) is a creation (annihilation) operator of an

itinerant electron with wave vector k and spin σ =↑ or ↓. The
first term describes the kinetic energy of itinerant electrons; εk
is the energy dispersion and µ is the chemical potential. The
second term is for the Kondo coupling between itinerant elec-
tron spins and localized spin moments; σ = (σ x, σ y, σ z ) is
the vector of Pauli matrices, and Sq = 1√

N

∑
l Srl e

−iq·rl is the
Fourier transform of a localized moment Srl = (Sx

rl
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rl , Sz
rl

)
defined at site l , where N is the number of lattice sites. For
simplicity, Srl is regarded as a classical spin with the length
|Srl | = 1. JK is the exchange coupling constant the sign of
which is irrelevant for the classical spins. The last term repre-
sents the antisymmetric spin-orbit coupling induced by spatial
inversion symmetry breaking; gk = (gx

k, gy
k, gz

k ) is called the
g vector, which plays an important role in chiral magnets.
In the following, we consider the model on a simple cubic
lattice with the lattice constant being unity for simplicity;
noncentrosymmetric nature is effectively taken into account
in the g vector gk with an odd function of k.

B. Effective spin model

In general, the coupling between itinerant electrons and
localized spins generates effective exchange interactions be-
tween the localized spins. For instance, in the strong-coupling
case with JK ≫ |εk − µ|, an effective ferromagnetic interac-
tion is generated to maximize the kinetic energy of itinerant
electrons by aligning neighboring spins, which is called the
double-exchange interaction [29,30]. On the other hand, in
the weak-coupling case with JK ≪ |εk − µ|, the effective
magnetic interaction becomes long ranged and oscillating in
space, which is called the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction [31–33]. In this paper, we consider the
weak-coupling case of the model in Eq. (1) by an effective
spin model derived by perturbation expansion in terms of
JK. Our model includes a higher-order effect of the spin-
charge coupling beyond the RKKY interaction discussed in
the previous studies [34–36], and also a DM-type interaction
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where S(q) is the spin structure factor defined by

S(q) = 1
N

∑

l,l ′
Srl · Srl′ e

−iq·(rl −rl′ ). (9)

In addition, following Ref. [17], we define the monopole
charge in each unit cube by using the fluxes !p penetrating
six square plaquettes of the cube as [40]

Qm(rc) = 1
4π

∑

p∈unit cube

!p · n̂p, (10)

where rc is the center position of the unit cube and n̂p is the
normal unit vector of the pth plaquette pointing outward of the
cube. We compute the flux !p by dividing the pth plaquette
into two triangles and taking the sum of the solid angles of
three spins on the two triangles i = 1 and 2. Each solid angle
is calculated by

"i = 2 tan−1
{

S1 · (S2 × S3)
1 + S1 · S2 + S2 · S3 + S3 · S1

}
, (11)

where S1, S2, and S3 are the three spins on the ith triangle in
the clockwise order viewed from the center of the cube, and
the sign of "i is taken to be the same as that of S1 · (S2 × S3):
"i ∈ [−2π , 2π ). The flux !p is defined as a perpendicular
vector to the pth plaquette as

!p =
∑

i∈p

"in̂p. (12)

By substituting Eq. (12) into Eq. (10), we obtain the monopole
charge Qm(rc). This quantity detects the monopoles and anti-
monopoles as it takes the value of +1 (−1) when a monopole
(antimonopole) exists in the unit cube. The monopoles and
antimonopoles are connected by flows of the flux !p in
Eq. (12). We compute the total number of monopoles and
antimonopoles in the magnetic unit cell, Nm, as

Nm =
∑

rc∈Vm

|Qm(rc)|, (13)

where Vm is the magnetic unit cell (83 sites in the following
calculations). We also measure the distances between the
monopoles and antimonopoles by using rc where Qm(rc) =
±1. In particular, we compute the minimum distance between
the monopoles and antimonopoles by

dm = min
∣∣rm

c − ra
c

∣∣, (14)

where rm
c and ra

c denote rc for the monopoles and anti-
monopoles. This is an important quantity for not only mon-
itoring topological phase transitions by pair annihilation be-
tween monopoles and antimonopoles but also understanding
the behavior of the net scalar spin chirality introduced below.
We note, however, that rm(a)

c gives an approximate position
of the (anti)monopole core within an accuracy of the lattice
constant, and dm changes discontinuously by definition.

Finally, we calculate the net scalar spin chirality which
gives rise to the topological Hall effect in itinerant electron
systems [41]. We define the local scalar spin chirality at each
lattice site rl by the sum of spin triple products on four

FIG. 2. Phase diagrams of the model in Eq. (2) at zero field
for the (a) 4Q and (b) 3Q cases. 4Q(3Q)-HL, 4Q(3Q)-NC, 2Q-VC,
2Q-CS, and 1Q-H represent the chiral 4Q (3Q) hedgehog lattice, the
nonchiral 4Q (3Q), the 2Q vortex crystal, the 2Q chiral stripe, and
the 1Q helical states, respectively.

triangles on the αβ plane (α,β = x, y, z) as [40]

χγ
sc(rl ) = 1

2

∑

αβνανβ

ϵαβγ νανβSrl ·
(
Srl +να δ̂α

× Srl +νβ δ̂β

)
, (15)

where γ is the perpendicular direction to the αβ plane, ϵαβγ

is the Levi-Civita symbol, να(β ) = ±1, and δ̂α(β ) is the unit
translation vector in the α(β ) direction. By taking the sum
over all the sites and three planes, we obtain the net scalar
spin chirality:

χsc = 1
N

∑

γ l

χγ
sc(rl ). (16)

Since Eqs. (11) and (15) share the spin triple products, χsc
is related with the (oriented) summation of the flux !p in
Eq. (12). As mentioned above, the flows of the flux connect
the monopoles and antimonopoles, and hence the lengths
of the flux flows, which are approximately given by the
distances |rm

c − ra
c |, affect χsc. We will discuss such a relation

in Sec. VI.

IV. PHASE DIAGRAM AT ZERO FIELD

First, we show the results in the absence of the magnetic
field obtained by the variational calculations in Sec. III A.
Figures 2(a) and 2(b) display the magnetic phase diagrams
for the 4Q and 3Q cases, respectively, while varying D =
|Dη| and K in Eq. (2). When K = 0, a nonzero D stabilizes
the chiral 1Q helical state (1Q-H), which remains stable
in the small K region for D > 0 in both 4Q and 3Q cases. On
the other hand, when introducing K with D = 0, the 2Q-CS
is stabilized in both cases, but replaced by the nonchiral 4Q
and 3Q states in the larger K region. A similar sequence of
the phase transitions was found in two dimensions [36,39].
When D and K are both relevant, however, we find the 4Q- and
3Q-HLs in the wide parameter range, in addition to a chiral 2Q
state in the 3Q case, which is a Bloch-type vortex crystal (2Q-
VC) [37]. We confirm the stability of these HLs also by the
simulated annealing in Sec. III B; typical spin configurations
for the 4Q- and 3Q-HLs are presented in Figs. 1(a) and 1(b),
respectively.

Thus, our results indicate that the 4Q- and 3Q-HLs are
stabilized by cooperation between the RKKY interaction,
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FIG. 3. Phase transitions in the magnetic fields along the (a) [001], (b) [110], and (c) [111] directions in the 4Q case: the magnetization
m in Eq. (6); the magnetic susceptibility χ in Eq. (7); the magnetic moments with wave vector Qη, mQη in Eq. (8); the number of monopoles
and antimonopoles, Nm in Eq. (13); and the net scalar spin chirality χsc in Eq. (16) (note that −χsc is plotted in the figure). The green,
purple, gray, and white regions represent the 4Q-HLs (Nm ̸= 0), the noncoplanar 4Q states (Nm = 0), the 1Q conical states, and the forced
ferromagnetic (FFM) state, respectively. The black-dashed vertical lines represent the topological transitions by pair annihilation of monopoles
and antimonopoles, while the gray ones represent other nontopological phase transitions. The insets in (a) and (b) show the changes in the
minimum distance between monopoles and antimonopoles, dm, in Eq. (14) when increasing the field before the topological transitions. See
also Figs. 5 and 6.

the biquadratic interaction, and the DM-type interaction. In
other words, both spin-charge and spin-orbit couplings play a
crucial role in the stabilization of the 4Q- and 3Q-HLs.

From the variational calculations, we find that the stable
positions of all the monopoles and antimonopoles of the 4Q-
and 3Q-HLs locate not at the lattice sites but at the interstitial
positions. This is concluded for the 3Q-HL by the fact that
the optimized phase shift in Eq. (4) always takes ϕη = π/8.
In this case, the eight spins surrounding the (anti)monopole
comprise a hyperbolic (anti)hedgehog the north and south
poles of which are in the [111] direction, as shown in Fig. 1(c).
Meanwhile, for the 4Q-HL, the set of ϕη depends on D and
K since the four ordering vectors Qη are dependent on each
other. In this case, however, the eight spins comprise a hy-
perbolic (anti)hedgehog with the north and south poles in the
[001] direction. In both cases, the (anti)hedgehog generates
an effective (anti)monopole field, as shown in Fig. 1(c). We
deduce that the stable monopoles and antimonopoles centered
at the interstitial positions might be ubiquitous to the systems
with fixed spin length on discrete lattices since their cores are
singular points where the spins vanish in the continuum limit.

V. PHASE TRANSITIONS IN MAGNETIC FIELDS

Next, we show the results for the phase diagrams of the
model in Eq. (2) in the magnetic fields along the [001], [110],
and [111] directions obtained by the simulated annealing in
Sec. III B. In Secs. V A and V B, we present the results for the
4Q and 3Q cases, respectively.

A. 4Q case

Let us first discuss the 4Q case, the ordering vectors of
which are shown in Fig. 1(a). Figure 3 summarizes the results
for the 4Q-HL at D = 0.3 and K = 0.6.

First, we discuss the results for the [001] field, h001 =
(0, 0, h), shown in Fig. 3(a). As plotted in the top panel, the
magnetization m shows kinks at h ≃ 0.575, 1.395, and 2.335,
and a small jump at h ≃ 0.595. Correspondingly, the mag-
netic susceptibility χ shows peaks at h ≃ 0.575 and 0.595,
a broad hump at h ≃ 1.395, and a shoulder at h ≃ 2.335.
These indicate the existence of at least four phase transitions:
one at h ≃ 0.595 is of first order, while the remaining three
are of second order. The magnetic moments mQη

plotted in the
middle panel show that the four phases below h ≃ 2.335 are
4Q states with the equal amplitudes for the four mQη

, whereas
the phase for h ! 2.335 is a FFM state. We note that these 4Q
states are distinguished by the higher Fourier components of
the spin structure factor S(q) (see Appendix A).

The number of monopoles and antimonopoles, Nm, is
plotted in the bottom panel. The result shows that Nm is halved
and vanishes through the second-order phase transitions at
h ≃ 0.575 and 1.395, respectively (black dashed lines). As
plotted in the inset, the minimum distance between the
monopoles and antimonopoles, dm, gets shorter from dm =
2
√

3 to 1 and 3 to 1 while approaching h ≃ 0.575 and
1.395, respectively. These suggest that the phase transi-
tions are topological ones caused by pair annihilation of
monopoles and antimonopoles. We will discuss the details in
Sec. VI A.
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FIG. 5. Positions of monopoles (magenta) and antimonopoles
(cyan) in the magnetic unit cell (cube) when approaching the topo-
logical transition at h ≃ 0.575 and 1.395 for the [001] field (denoted
by the gray arrow) in the 4Q case: (a) h = 0.00, (b) h = 0.57, (c) h =
0.60, and (d) h = 1.39. The arrows at the bottom show the slice of
the spin texture on the plane just below some of the monopoles and
antimonopoles. The black arrows represent the minimum distances
between the monopoles and antimonopoles, dm. The vertical dashed
lines and the dots at the bottom end represent the projections onto the
bottom plane as guides for the eye.

h ≃ 0.575 by increasing h, χsc decreases [−χsc increases in
Fig. 3(a)]. This is understood by the decrease of dm with
the flux flows in the same direction of the magnetic field:
The decrease of dm reduces the positive contribution to χsc,
which leads to the net decrease in χsc. On the other hand,
χsc increases (−χsc decreases) near the other topological
transition at h ≃ 1.395. This is due to the decrease of dm with
the flux flows in the opposite direction to the magnetic field.

Similarly, Nm changes from 8 to 0 for the [110] field
through the phase transition at h ≃ 1.325. The change of the
positions of monopoles and antimonopoles is shown in Fig. 6,
where dm changes in a similar manner to the case of the [001]
field at h ≃ 1.395 in Figs. 5(c) and 5(d); see also the inset of

FIG. 6. Positions of monopoles and antimonopoles when ap-
proaching the topological transition at h ≃ 1.325 for the [110] field
in the 4Q case: (a) h = 0.85 and (b) h = 1.32. The notations are
common to those in Fig. 5.

FIG. 7. Positions of monopoles and antimonopoles when ap-
proaching the topological transition at h ≃ 0.445, 0.745, and 0.945
for the [110] field in the 3Q case: (a) h = 0.41, (b) h = 0.44, (c) h =
0.45, (d) h = 0.73, (e) h = 0.94, and (f) h = 0.95. The notations are
common to those in Fig. 5.

the bottom panel of Fig. 3(b). The only difference from the
[001] case is in the direction of collisions. The corresponding
reduction of the lengths of the flux flows is also related to the
suppression of χsc in Fig. 3(b) since the fluxes !p have the
positive component in the opposite direction to the field.

B. 3Q case

In the case of the 3Q-HLs, we identified totally five
possible topological transitions in Sec. V B. Three of them
are at h ≃ 0.445, 0.745, and 0.945 for the [110] field, and
the remaining two are at h ≃ 0.495 and 1.305 for the [111]
field. Figure 7 shows the real-space pictures for the [110]
field. In a low field, there are totally eight monopoles and
antimonopoles as shown in Fig. 7(a) for h = 0.41, but one
pair annihilates through the transition at h ≃ 0.445 as shown
in Figs. 7(b) and 7(c). We note that the directions of pairs
change within the same 3Q state with spontaneous symmetry
breaking with respect to the [100] and [010] directions. In
the next topological transition at h ≃ 0.745, Nm changes from
10 to 6, where two pairs of monopoles and antimonopoles
annihilate as shown in Figs. 7(d) and 7(e). Through these
transitions, dm does not change from 1, since the distance
for the pairs that survive is already 1 before the transition.
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a variety of toron crystals even in the centrosymmetric case,  
including high-density toron crystals found in the spin moiré analysis

๏ experiment in SrFeO3
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right-hand side. (b) Double-q spin structure in phase I and (c) quadruple-q spin structure in phase II (the color of each spin corresponds to the
spin component along the direction perpendicular to both q1 and q2 for (b) and that along [111] for (c), respectively). The magnified views
around the singular points are shown at the bottom. Note that we adopt q1 and q2 instead of q′

1 and q′
2 for phase I.

symmetry [23–28]. In the absence of the DM interaction, these
helimagnets have the potential to show rich topological spin
textures due to fewer constraints on the spin helix. There
exist a large number of centrosymmetric helimagnets, some
of which show multiple-q spin modulations such as the rare-
earth magnets [29,30]. However, the presence of topologically
nontrivial helimagnetic phases in centrosymmetric systems
remains to be explored.

The simple cubic perovskite SrFeO3 with crystal structure
displayed in Fig. 1(a) is known to host a helimagnetic order
below 130 K with metallic conductivity [31,32]. The origin
of the helimagnetic order in SrFeO3 and related iron oxides
has been discussed in terms of the competing exchange inter-
actions, i.e., the nearest-neighbor and further-neighbor inter-
actions [33] or the double-exchange mechanism considering
the itinerant oxygen p holes [34,35]. Early neutron diffraction

data were described in terms of a single-q proper-screw spiral
with the propagation vector along the [111] or equivalent
directions of the cubic lattice [32]. Recently, however, SrFeO3
was shown to display a rich variety of helimagnetic phases
depending on temperature and external magnetic field, as
shown in Fig. 1(a) [36,37]. Among them, phases I and II are
extraordinary in the sense that they exhibit a large uncon-
ventional Hall effect [36,38,39]. The presence of sharp phase
transitions with unusual transport signatures indicates well-
ordered magnetic superstructures, rather than an incoherent
superposition of domains of the single-q structure with differ-
ent propagation vectors. In both phase I and phase II, the Hall
resistivity as a function of H along [111] increases nonlinearly
and reaches a maximum below the phase boundary to phase
IV or phase V. While this behavior implies the emergence of
noncoplanar and/or topological spin textures with scalar spin

134406-2

S. Ishiwata et al., Phys. Rev B 84, 054427 (2011) 
S. Ishiwata et al., Phys. Rev B 101, 134406 (2020) 

๏ theory: RKKY + biquadratic

3

(b)

(c)

χ z
sc

χy
scχ x

sc

χb
sc χa

sc
χc

sc

χd
sc

(a)

Si
Sj

Sk

χμ
sc

Si

Sj

Skχsc

Si
Sj

Skχp
scnp

Ωp

Si
Sj

Skχp
scnp

Ωp

Si Sj

Sk
χp

scnp

Ωp

(a1)

(a2)

(a3)

(a4)

(a2)-(a4) 立体角の説明にも使う

(a4) 立体角とスカラーカイラリティの
違いが感覚的にわかりやすいが、図形
的な意味としてはmisleading?

(a3) (a2)の色違い

前回

Si
Sj

Skχp
scn̂p

Ωp

FIG. 2. (a) Schematics of a solid angle on a triangular pla-
quette p with a noncoplanar spin configuration, Ωp, and a
scalar spin scalar chirality, χp

sc, along the unit vector np per-
pendicular to the plaquette p. (b) and (c) show the scalar
spin chirality pointing to the x, y, z and a, b, c, d directions,
respectively, and related plackets perpendicular to the direc-
tions.
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FIG. 3. Phase diagram for the 4Q model at zero magnetic
field. 4Q-H HL, 4Q(3Q)-S HLs, 2Q-CS, and 1Q-H repre-
sent the quadruple-Q helical hedgehog lattice, the quadruple-
Q(triple-Q) sinusoidal hedgehog lattices, the double-Q chi-
ral stripe, and the single-Q helical state, respectively. The
numbers in parentheses indicate the numbers of monopole-
antimonopole pairs in the L3 system.
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FIG. 1. Schematic pictures of the four ordering vectors in the
q-space. The yellow, red, green, and blue arrows represent
the wavenumber vectors Q1, Q2, Q3, and Q4, respectively.
The ellipsoids are pictorial representations of the q-dependent
anisotropic interactions for (a) ∆ < 0 and (b) ∆ > 0 cases.
The gray thick arrows represent the direction of a magnetic
field along the [111] axis. Spin textures in the real space ob-
tained by simulated annealing for the model in Eq. (??) at
zero field: (c) 4Q-H HL (8) at (K,∆) = (0.3,−0.03), (d)
4Q-S HL (24) at (K,∆) = (0.3, 0.1), (e) 3Q-S HL (16) at
(K,∆) = (0.2,−0.3), and (f) 4Q-S HL (16) at (K,∆) =
(0, 0.1). The numbers in parentheses indicate the numbers
of pairs of monopole (magenta) and antimonopole (cyan) in
the bluish region with the L3 lattice points. The color of the
arrows denotes the z component of the spins, Sz

rl , as indi-
cated in the inset. (g) Correspondence between a magnetic
(anti)hedgehog and (anti)monopole in a lattice unit with eight
spins.

qualitative understanding of the experimental phase diagram of SrFeO3



Current-induced dynamics of torons
๏ 2D skyrmion
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FIG. 1. Schematic illustrations of the topological spin textures and their drift motions driven by an electron
flow. a Real-space spin configuration of a skyrmion and the skyrmion Hall effect. The small arrows represent the spins and
their color displays the z component (see the inset). Skyrmions show a transverse drift motion as well as a longitudinal one with
the velocity v as a reaction to the topological Hall effect in the electron flow j̃e. b Real-space spin configurations of a magnetic
toron, given by a pair of hedgehog (magenta sphere) and antihedgehog (cyan sphere) connected by the skyrmion string (gray
line) (left). Corresponding real-space distribution of the stream of the EMF (right). The hedgehog and antihedgehog correspond
to a source and sink of the EMF, respectively. c Toron Hall effect. A magnetic toron shows a transverse drift motion similar
to the skyrmion Hall effect. The blue wavy surface represents the potential for the torons from a discrete lattice structure. d
Perfect toron Hall effect. Torons exhibit only a transverse motion without longitudinal one because of strong one-dimensional
anisotropy in the lattice potential. e Zero toron Hall effect. Torons exhibit only a longitudinal motion accompanied by no
transverse motion. The left and right panels correspond to the situations realized in Figs. 3d,e and 3a–c, respectively.

Here, we examine the responses of nanoscale magnetic
torons to an applied electric current by extensive numer-
ical simulations. We show that, similar to skyrmions, the
torons exhibit a Hall motion, which we call the toron Hall
effect (Fig. 1c). Strikingly, we discover that the toron
Hall effect can be controlled by the electric current and
the magnetic field in a wide range including two extremes:
a purely transverse motion without any longitudinal one
(perfect toron Hall effect; Fig. 1d) and an exclusively lon-
gitudinal motion with no transverse one (zero toron Hall
effect; Fig. 1e). These unique behaviors stem from the
modulation of potential barriers on the discrete lattice,
which is particularly relevant for the nanoscale torons re-
alized in experiments. Furthermore, we reveal that the
responses to the current act as efficient electrical probes
for topological characteristics hidden behind the spin tex-
tures that are challenging to observe experimentally.

TORON HALL EFFECT

To elucidate the current-induced dynamics of mag-
netic torons, we consider a spin model for a metallic
chiral magnet on a simple cubic lattice, and perform a

real-time simulation in an electric current based on the
Landau-Lifshitz-Gilbert equation. The model includes
effective interactions of Ruderman-Kittel-Kasuya-Yosida
and Dzyaloshinskii-Moriya (DM) types, which has been
shown to approximately reproduce the HLs discovered
in MnSi1−xGex [30–32] (see Methods). In the absence
of the electric current, the model stabilizes a HL repre-
sented by the superposition of three spin density waves,
called the 3Q-HL, at zero magnetic field (Fig. 2a)
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Supplementary
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1). The magnetic unit cell (MUC)

contains eight Bloch points (hedgehogs and antihedge-
hogs), which are connected in four pairs by the skyrmion
strings (Fig. 2d); namely, there are four torons denoted
as Nt = 4. In the magnetic field applied in the z di-
rection, H, the hedgehogs and antihedgehogs move to-
ward each other along the skyrmion strings (Figs. 2e,f),
and the half of them disappear with pair annihilation at
H = Htopo ≃ 0.465, leading to the topological transi-
tion to the 3Q-HL with Nt = 2 (Figs. 2b,g). By fur-
ther increasing H, the system turns into a 2Q state at
H = Hc ≃ 0.935, which is topologically trivial with no
Bloch points (Nt = 0) (Fig. 2c).

Let us first discuss drift motions caused by an electron
flow j̃e in the x direction perpendicular to the skyrmion

• driven by ultralow current density 
• transverse motion of skyrmion by Magnus force: 

skyrmion Hall effect 
➡ hindering application like racetrack memory

๏ 3D toron
How do the torons respond to an electric current? 

especially, short-period torons by itinerant frustration

K. Shimizu, S. Okumura, Y. Kato, and Y. Motome, preprint (arXiv:2407.02983)
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FIG. 3. Toron Hall effect. a,b The velocities of spin textures for the longitudinal (a) and transverse motions (b) under
the electron flow in the x direction (̃je ∥ x̂) on the plane of the magnetic field H and the current density j̃e. The white lines
represent the threshold current densities, j̃e,c∥ (a) and j̃e,c⊥ (b). The dashed and solid gray vertical lines denote the values of
H where dt and Nt show discontinuous changes, respectively; see Fig. 2. c The Hall angle of the drift motion, θHall [Eq. (1)].
In the black and white regions, the torons exhibit the zero and perfect Hall effects, respectively, while they are immobile in
the gray region. d,e The velocities of spin textures for the longitudinal (d) and transverse (e) motions under the electron flow
in the y direction (̃je ∥ ŷ). The latter is always zero in this parameter region, meaning that the zero toron Hall effect always
occurs for j̃e > j̃e,c∥ (above the white curve in d).
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f j̃e dependence of θHall at three

representative values of H for j̃e ∥ x̂ (top) and j̃e ∥ ŷ (bottom). For j̃e ∥ x̂, the perfect toron Hall effect with θHall = π/2 occurs
for small j̃e, and it can be switched to the zero toron Hall effect with θHall = 0 by increasing j̃e at H = 0.3. In contrast, for
j̃e ∥ ŷ, only the zero toron Hall effect with θHall = 0 is observed.

regions. The former occurs in the wide range of H ! 0.2,
especially for small j̃e in the 3Q-HL with Nt = 2 after
the topological transition, while the latter appears in the
3Q-HL with Nt = 4 for j̃e > j̃e,c∥.

Notably, one can achieve the zero toron Hall effect over
a wider range of H and j̃e simply by changing the cur-
rent direction. We demonstrate this by taking the elec-
tron flow in the y direction along the skyrmion strings
(̃je ∥ ŷ). In this case also, the longitudinal motion oc-
curs above nonzero threshold j̃e,c∥ (Fig. 3d); j̃e,c∥ shows a
different H dependence from the j̃e ∥ x̂ case with charac-
teristic dip structures, which will be discussed later.
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In stark contrast, the transverse

motion is not observed at all in this parameter region
(Fig. 3e). Thus, with this current setting, the zero toron
Hall effect appears in the entire region for j̃e > j̃e,c∥.

Our results show that the toron Hall effect is much
more flexible than the skyrmion Hall effect. It can be
controlled by the amplitudes and directions of the mag-
netic field and the electric current. Most strikingly, it
includes two extremes, the zero and perfect toron Hall

effects, which have never been reported in the skyrmion
Hall effect. By choosing appropriate parameters, one
can even achieve switching between the two extremes,
as demonstrated in Fig. 3f.

We note that the toron Hall effect vanishes when we
turn off the DM-type interaction in our model for the 3Q-
HL (see Supplementary Note 4

✿
5). Nonetheless, this does

not mean that the toron Hall effect never occur in nonchi-
ral magnets. In general, the net EMF can be nonzero
even in nonchiral cases in the presence of spin-orbit cou-
pling, leading to the topological Hall effect as observed
in SrFeO3 [33], allowing the toron Hall effect as its coun-
teraction.

ANISOTROPIC POTENTIAL BARRIER

The peculiar toron Hall effect originates from the en-
ergy potential for torons on the discrete lattice. Drift
motions of nanoscale torons are strongly affected by the
lattice discretization due to their short magnetic period
and singular structures of constituting Bloch points. The
magnetic field influences the spin textures, resulting in
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FIG. 3. Toron Hall effect. a,b The velocities of spin textures for the longitudinal (a) and transverse motions (b) under
the electron flow in the x direction (̃je ∥ x̂) on the plane of the magnetic field H and the current density j̃e. The white lines
represent the threshold current densities, j̃e,c∥ (a) and j̃e,c⊥ (b). The dashed and solid gray vertical lines denote the values of
H where dt and Nt show discontinuous changes, respectively; see Fig. 2. c The Hall angle of the drift motion, θHall [Eq. (1)].
In the black and white regions, the torons exhibit the zero and perfect Hall effects, respectively, while they are immobile in
the gray region. d,e The velocities of spin textures for the longitudinal (d) and transverse (e) motions under the electron flow
in the y direction (̃je ∥ ŷ). The latter is always zero in this parameter region, meaning that the zero toron Hall effect always
occurs for j̃e > j̃e,c∥ (above the white curve in d).
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regions. The former occurs in the wide range of H ! 0.2,
especially for small j̃e in the 3Q-HL with Nt = 2 after
the topological transition, while the latter appears in the
3Q-HL with Nt = 4 for j̃e > j̃e,c∥.

Notably, one can achieve the zero toron Hall effect over
a wider range of H and j̃e simply by changing the cur-
rent direction. We demonstrate this by taking the elec-
tron flow in the y direction along the skyrmion strings
(̃je ∥ ŷ). In this case also, the longitudinal motion oc-
curs above nonzero threshold j̃e,c∥ (Fig. 3d); j̃e,c∥ shows a
different H dependence from the j̃e ∥ x̂ case with charac-
teristic dip structures, which will be discussed later.
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(Fig. 3e). Thus, with this current setting, the zero toron
Hall effect appears in the entire region for j̃e > j̃e,c∥.

Our results show that the toron Hall effect is much
more flexible than the skyrmion Hall effect. It can be
controlled by the amplitudes and directions of the mag-
netic field and the electric current. Most strikingly, it
includes two extremes, the zero and perfect toron Hall

effects, which have never been reported in the skyrmion
Hall effect. By choosing appropriate parameters, one
can even achieve switching between the two extremes,
as demonstrated in Fig. 3f.

We note that the toron Hall effect vanishes when we
turn off the DM-type interaction in our model for the 3Q-
HL (see Supplementary Note 4
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5). Nonetheless, this does

not mean that the toron Hall effect never occur in nonchi-
ral magnets. In general, the net EMF can be nonzero
even in nonchiral cases in the presence of spin-orbit cou-
pling, leading to the topological Hall effect as observed
in SrFeO3 [33], allowing the toron Hall effect as its coun-
teraction.
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motions of nanoscale torons are strongly affected by the
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and singular structures of constituting Bloch points. The
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FIG. 3. Toron Hall effect. a,b The velocities of spin textures for the longitudinal (a) and transverse motions (b) under
the electron flow in the x direction (̃je ∥ x̂) on the plane of the magnetic field H and the current density j̃e. The white lines
represent the threshold current densities, j̃e,c∥ (a) and j̃e,c⊥ (b). The dashed and solid gray vertical lines denote the values of
H where dt and Nt show discontinuous changes, respectively; see Fig. 2. c The Hall angle of the drift motion, θHall [Eq. (1)].
In the black and white regions, the torons exhibit the zero and perfect Hall effects, respectively, while they are immobile in
the gray region. d,e The velocities of spin textures for the longitudinal (d) and transverse (e) motions under the electron flow
in the y direction (̃je ∥ ŷ). The latter is always zero in this parameter region, meaning that the zero toron Hall effect always
occurs for j̃e > j̃e,c∥ (above the white curve in d).
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especially for small j̃e in the 3Q-HL with Nt = 2 after
the topological transition, while the latter appears in the
3Q-HL with Nt = 4 for j̃e > j̃e,c∥.

Notably, one can achieve the zero toron Hall effect over
a wider range of H and j̃e simply by changing the cur-
rent direction. We demonstrate this by taking the elec-
tron flow in the y direction along the skyrmion strings
(̃je ∥ ŷ). In this case also, the longitudinal motion oc-
curs above nonzero threshold j̃e,c∥ (Fig. 3d); j̃e,c∥ shows a
different H dependence from the j̃e ∥ x̂ case with charac-
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more flexible than the skyrmion Hall effect. It can be
controlled by the amplitudes and directions of the mag-
netic field and the electric current. Most strikingly, it
includes two extremes, the zero and perfect toron Hall

effects, which have never been reported in the skyrmion
Hall effect. By choosing appropriate parameters, one
can even achieve switching between the two extremes,
as demonstrated in Fig. 3f.

We note that the toron Hall effect vanishes when we
turn off the DM-type interaction in our model for the 3Q-
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ral magnets. In general, the net EMF can be nonzero
even in nonchiral cases in the presence of spin-orbit cou-
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Hall angle of toron motion

perfect toron Hall effect 
(only transverse motion)

zero toron Hall effect 
(only longitudinal motion)

➡ controllable in a wide range by an electric 
current density and an external magnetic field

Kotaro Shimizu



Zero-to-perfect toron Hall effect

K. Shimizu, S. Okumura, Y. Kato, and Y. Motome, preprint (arXiv:2407.02983)

perfect toron Hall effect (only transverse)zero toron Hall effect (only longitudinal)

Lattice discretization significantly affects the motions of short-period torons.



Short summary

๏ We have proposed a new mechanism to stabilize topological spin textures, itinerant frustration. 
- generic mechanism for generating frustrated/multi-spin interactions in metallic magnets 
- many applications for new-generation topological spin crystals with extremely short period in 

centrosymmetric systems 

๏ We presented applications to 2D skyrmion crystals and 3D toron crystals. 
- 2D: higher-order skyrmions, flexible change of the magnetic period, application to GdRu2Si2 
- 3D: application to MnSi1-xGdx, phase diagrams, effect of magnetic fields, unconventional current-

induced motions of torons



Conclusion

spin moiré picture 
๏ superstructure, topology, and emergent electromagnetic field 
๏ spin moiré engineering: type, number, amplitude of waves, twist angle, phase shift 
๏ complete topological phase diagram for 2D skyrmions and 3D torons 

itinerant frustration 
๏ localized spin systems vs itinerant electron systems 
๏ effective long-range/multiple spin interactions by the Fermi surface effects 
๏ applications to 2D skyrmion crystals and 3D toron crystals

Both concepts will be useful for further exploration of topological spin superstructures 
and their physical properties. 
➡ new multi-q states, new topological transitions, topological responses, etc.
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