Topological Magnons in CoTiO3

Prof. Xiaoqin Elaine Li Physics Department, Univ. of Texas-Austin

Funding: NSF-MRSEC

The University of Texas at Austin Department of Physics College of Natural Sciences

Jeongheon ChoeDavid LujanT. Nathan NunleyJiaming HeImage: Strain St

Prof. Gregory Fiete Dr. Martin Rodriguez-Vega

Prof. Jianshi Zhou Prof. Rui He

Materials Physics Center (CFM), Spain

M. Arruabarrena, Prof. A. Ayuela

University of the Basque Country UPV/EHU, Spain

Dr. Aritz Leonardo

Magnons probed by inelastic light scattering

Topological terahertz magnons in antiferromagnetic insulator

Magnonics (spintronics) application

Antiferromagnetic insulator

- Optimal for low-dissipation applications
- Robust in the presence of fluctuating field

THz frequency

- Fast dynamics

Topological magnons

- Protection from local defects in the materials

Long-lived zone boundary magnons and chiral phonons in CoTiO3

https://arxiv.org/abs/2504.14742; PNAS 2024, 121, e2304360121; PRB, 110, 104419

Topological fermions and bosons

Fermionic system: graphene, topological insulators

Bosonic system: phonons, photonic crystals, and magnons

How to probe bosonic magnon band structure?

Topological magnons from inelastic neutron scattering

Crl₃

L. Chen et al. Phys. Rev. X 8,041028 (2018)

B. Yuan *et al.* Phys. Rev. X **10**, 011062 (2020) M. Elliot et al. Nat Comm 12, 3936 (2021)

 $(01\frac{3}{2})$ $(\frac{1}{2}1)$

- Limited energy resolution and sensitivity; no spatial resolution ۲
- Thermal Hall effect observed in CTO

Honeycomb Magnetic Structure of CoTiO₃

- 2D honeycomb lattice plane of Co²⁺ ions with buckling
- ABC stack
- FM order within each plane
- AFM order along the c axis
- Néel temperature (~38 K)

 $H = \sum_{i\delta} J_1(S_i^x S_{i+\delta}^x + S_i^y S_{i+\delta}^y) + \sum_{i\gamma} J_2(S_i \cdot S_{i+\gamma})$ $J_1 = -4.4 \ meV$ $J_2 = 0.57 \ meV$ Easy-plane anisotropy

Collective excitations and their coupling

Raman spectrum

Extended Data Fig. 1: Raman spectra taken at 12 K at zero field in the σ^+/σ^+ polarization channel. Multiple magnons (Γ_1 , Γ_1 , M_1 , M_2), phonons (A_g , E_g), a spin-orbit exciton (SOE) and a zone-folded phonon (ZFP) are observed. Asterisks are laser noise lines.

Dirac Magnon Dispersion

Dirac Magnon Dispersion

Identifying phonons and magnons

Multiple magnon peaks are observed below Néel temperature (~38 K)

2-magnon resonance

Large magnon DOS at $M_{1,2}$ contributes to 2-magnon Raman signal with from the zone-boundary

2-magnon resonance in other materials

Sr₃Ir₂O₇, PRL, 125, 087202, 2020

2-magnon resonance in other materials

NiPS₃, Nat. Comm, 10, 345, 2019

Magnetic field dependence

Zone-centered magnon, $M(\Gamma_2)$: peak center is nearly constant at AFM, red shift at AFM' Zone-boundary magnons, $2M(M_2)$: peak centers are constant but intensity drops Phonon: both frequency and intensity stay constant

Long-lived Dirac magnon

- Measured linewidth is limited by instrumental resolution
- Magnon linewidth increases in the AFM' phase

Long-lived Dirac magnon: magnetic field dependence

- 2M excitation comparison with other AFM materials
- Linewidth
 CoTiO₃ (~ 0.46 cm⁻¹), KMnF3 (~ 10 cm⁻¹),
 (La_{1-x}Sr_x)₂CuO₄ (~ 1000 cm⁻¹),
 NiPS3 (~ 200 cm⁻¹)
- Q-factor (ω/Δω)
 CoTiO₃ (> 300), NiO (~ 23),
 α-Fe2O3 (~ 30)

Long-lived Dirac magnon: magnetic field dependence

Additional 3 magnon scattering occurs in AFM'

Zhitomirsky and Chernyshev RMP, 85, 219, 2013

Magnon damping mechanism: magnon-magnon interaction

- # of decay channels: Zone boundary << Zone centered magnons
- The gap at the Gamma point limits the phase space
- Lifetimes for zone-boundary magnons 2-3 orders of magnitude longer than those at the zone center

Beyond Linear Spin Wave Model

 $H = H^{(2)} + H^{(3)} + H^{(4)} + \cdots$

PHYSICAL REVIEW X 11, 021061 (2021)

Interaction-Stabilized Topological Magnon Insulator in Ferromagnets

Alexander Mook[®], Kirill Plekhanov[®], Jelena Klinovaja[®], and Daniel Loss[®] Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

PHYSICAL REVIEW X 8, 011010 (2018)

Dirac Magnons in Honeycomb Ferromagnets

Sergey S. Pershoguba,¹ Saikat Banerjee,^{1,2,3} J. C. Lashley,² Jihwey Park,⁴ Hans Ågren,³ Gabriel Aeppli,^{4,5,6} and Alexander V. Balatsky^{1,2,7}

Spin-Wave Lifetimes Throughout the Brillouin Zone Science, 312,

Science, 312, 1928, 2006

S. P. Bayrakci,^{1*} T. Keller,^{1,2} K. Habicht,³ B. Keimer¹

- Neutron echo experiment: MnF_2 linewidth ~ 0.1 cm-1
- Shorter lifetimes near zone boundary; lifetime quickly reduces at higher temperature

Temperature dependent intensity and frequency

Zone-folded phonon?

Summary of Key Results

- Raman spectra reveal rich magnons and phonon modes (some chiral phonons) in CTO
- A long-lived mode attributed to zone-boundary magnons
 - Temperature dependent frequency and intensity
 - Comparison to neutron scattering experiments
 - Magnetic-field dependent linewidth
- Ruled out folded phonon interpretation
- Magnon-magnon interaction taken into account; Beyond single-particle band picture

Wishlist

- Long-lived magnons
- Dirac dispersion tunable in BZ

Lessons learned

- Minimal magnon-phonon coupling
- AFM order and honeycomb spin lattice symmetry
- Magnon dispersion including topology and magnon gap at the zone center
- Magnetic anisotropy

$$H = \sum J(S_i^x S_j^x + S_i^y S_j^y + \alpha S_i^z S_j^z)$$

• Small joint two-magnon density of states

	$T_N(K)$	$\mathbf{T}_{C}\left(\mathbf{K}\right)$	\boldsymbol{S}	α	Magnetic configuration
CoTiO ₃	38	-	1/2	0	A-type AFM
$CrCl_3$	14	17.2	3/2	1	A-type AFM
CrBr ₃	_	32	3/2	1	FM
CrI ₃	-	61	3/2	1	FM (bulk), A-type AFM (few-layer)
CrGeTe ₃	-	63	3/2	1	FM
CrSiTe ₃	-	33	3/2	1	FM
FePS ₃	120	_	2	1	Zigzag AFM
NiPS ₃	155	_	1	1	Zigzag AFM
CoPS ₃	120	_	3/2	1	Zigzag AFM
$MnPS_3$	78	_	5/2	1	G-type AFM

Topological SOE

Phonon chirality from coupling to SOE

- Circular ionic motion leads to underestimate of phonon g factor
- Coupling to electrons:
 - phonon induced adiabatic evolution of electron states;
 - phonon induced mixing of electron states

PNAS 2024, 121, e2304360121 https://doi.org/10.1073/pnas.2304360121

Magnon gap due to spin-lattice coupling

Zone-center magnon gap: lattice distortion induces symmetry breaking and enables higher order spin-spin coupling

Collective excitations and their coupling

Thank you for your attention!

Humboldt fellowship applicants welcomed

The University of Texas at Austin Department of Physics College of Natural Sciences