Tutorial Inelastic Neutron Scattering in the Quasiparticle Zoo

Magnons, Spinons, Bound States, and Their Interactions

<mark>Martin Mourig</mark>al

School of Physics, Georgia Institute of Technology, Atlanta, USA

DE-SC-0018660

Spice Workshop

Heavy Introduction

- Quantum Magnetism Big Picture
- Research Approach
- Inelastic Neutron Scattering
- Modeling

Heavy Introduction

- Quantum Magnetism Big Picture
- Research Approach
- Inelastic Neutron Scattering
- Modeling

Examples: Greatest Hits 2012-2025

- Spinons: Heisenberg spin-1/2 chains in copper sulfate
- Magnons: Square-lattice problems
- Bound-states: Triangular uniaxial spin-1 system Fel₂
- Continuous excitations does not always mean fractionalization/decay

Conclusion

• Magnetic insulators are important for quantum physics and applications

Emergence of a new low-energy scale J (quantum spin exchange)

Effective magnetic Hamiltonians are usually more complicated:

anisotropic bond-dependent exchange

spin-space

What is the correlated physics at (and below) the spin exchange scale?

Quantum paramagnet

entanglement

Quantum spin liquid

Multipolar Order

Dipolar Order

Classical paramagnet

Why do we care?

New states of matter, perhaps new forms of QFT

exotic quasiparticles

entanglement entropy

• Effective magnetic Hamiltonians are usually more complicated:

anisotropic bond-dependent exchange

spin-space

• What is the correlated physics at (and below) the spin exchange scale?

Quantum spin liquid

entanglement

Quantum paramagnet

Multipolar Order

Dipolar Order

Classical paramagnet

• Why do we care?

Understand low-energy excitations (perhaps for applications?)

Schultheiß Group (Dresden)

• Effective magnetic Hamiltonians are usually more complicated:

anisotropic bond-dependent exchange

spin-space

• What is the correlated physics at (and below) the spin exchange scale?

Quantum spin liquid

entanglement

Quantum paramagnet

Multipolar Order

Dipolar Order

Classical paramagnet

• Why do we care?

Accurate effective models of quantum magnets: "ground truth"

Chat GPT

Research approach adopted by most groups

• Feeback between sample discovery/growth, spectroscopy and modeling

Other spectroscopies are complimentary and often superior: ESR, FIRMS, TDTS, 2DS

For understanding/model extraction, often need semi-classical regime

Prote But things are changing (DMRG, MPS) trate $\int_{0}^{1} \int_{0}^{1} \int_{$

Inelastic magnetic neutron scattering

• Inelastic scattering cross-section for unpolarized neutrons:

Instrumentation advances have transformed quantum magnetism

\checkmark ideal for restricted sample environment

Thielemann, PRL (2009)

Inelastic magnetic neutron scattering

• Inelastic scattering cross-section for unpolarized neutrons:

Instrumentation advances have transformed quantum magnetism

 \checkmark allows wide surveys of momentum-energy space

Additional Neutron Scattering Tricks

• Model-free interpretation and sum-rules stem from quantitative x-section

Zeroth Moment Sum-Rule

$$\sum_{\alpha} \int_{-\infty}^{\infty} d\omega \int_{\rm BZ} d\mathbf{Q} \, \mathcal{S}^{\alpha\alpha}(\mathbf{Q},\omega) = N_{\rm BZ} \underbrace{S(S+1)}_{\rm Quantum Expectation Value}$$

Entanglement Witnesses

Scheie PRB (2023); Laurell AQT Review (2025)

For Heisenberg systems, energy-integrated quantities directly yield expectation values

Paddison PRL (2020)

Additional Neutron Scattering Tricks

• Model-free interpretation and sum-rules stem from quantitative x-section

Zeroth Moment Sum-Rule

$$\sum_{\alpha} \int_{-\infty}^{\infty} d\omega \int_{\rm BZ} d\mathbf{Q} \, \mathcal{S}^{\alpha\alpha}(\mathbf{Q},\omega) = N_{\rm BZ} \underbrace{S(S+1)}_{\rm Quantum Expectation Value}$$

Entanglement Witnesses

Scheie PRB (2023); Laurell AQT Review (2025)

For Heisenberg systems, energy-integrated quantities directly yield expectation values

The energy resolution gap

• Energy resolution

Modeling

• Semi-classical approaches

This has been generalized to multipolar degrees of freedom

• Full quantum approaches

Matrix Product States

Quantum Monte-Carlo, Exact Diagonalization

• Emerging/Exotic

Truncated Hilbert Space Exact Diagonalization

LSWT-Kernel Polynomial Method

Lane Scipost (2025)

Beyond Mean-Field Parton Decomposition

Ghioldi PRB (2018), Zhang (2022), Willsher (2025)

Outline

Heavy Introduction

- Quantum Magnetism Big Picture
- Research Approach
- Inelastic Neutron Scattering
- Modeling

Examples: Greatest Hits 2012-2025

- Spinons: Heisenberg spin-1/2 chains in copper sulfate
- Magnons: Square-lattice problems
- Bound-states: Triangular uniaxial spin-1 system Fel₂
- Continuous excitations does not always mean fractionalization/decay

Conclusion (maybe)

Outline

Heavy Introduction

- Quantum Magnetism Big Picture
- Research Approach
- Inelastic Neutron Scattering
- Modeling

Examples: Greatest Hits 2012-2025

• Spinons: Heisenberg spin-1/2 chains in copper sulfate

Mourigal, Enderle, Rønnow, Caux, Nature Physics 9, 435-441 (2013)

Weakly coupled Heisenberg spin-1/2 chains

Weakly coupled Heisenberg spin-1/2 chains

Magnon dispersion in the field polarized state

Triple-axis experiment

Quantitative analysis of scattering intensity

Resolution limited magnon peaks

Eigenvalues from dispersion relation

 \Box Quasi-one-dimensionality of Cu₁ chains

 \Box Quasi-isolated Cu₂ sites

Momentum-independent integrated intensity

Self absolute normalization of measured intensities

Spinon continuum in the zero-field state

Triple-axis experiment

Quantitative analysis in zero field

Absolute self normalization

Quantitative analysis in zero field

Absolute self normalization

Model and experimental intensity in agreement with a scaling factor 0.99(8)

Outline

Heavy Introduction

- Quantum Magnetism Big Picture
- Research Approach
- Inelastic Neutron Scattering
- Modeling

Examples: Greatest Hits 2012-2025

• Magnons: Square-lattice problems

Dalla Piazza, Mourigal, Enderle, Rønnow, Nature Physics 11, 62-68 (2015)

A spin-1/2 square-lattice Heisenberg AFM

\Box Known for zone-boundary spin-wave anomaly at (π ,0)

Cu(DCOO)₂.4D₂O "CFTD"

Néel order $T_N = 16.5$ K with 0.48 μ_B along **a**

Insights from neutron polarization analysis

Insights from neutron polarization analysis

Insights from neutron polarization analysis

 $\label{eq:spin-space components} \begin{gathered} \mathbf{\Box} \text{ Spin-space components} \\ \mathcal{S}(\mathbf{Q},\omega) = \mathcal{S}^{xx} + \mathcal{S}^{yy} + \mathcal{S}^{zz} \end{gathered}$

Longitudinal continuum

Mutually attracting magnons (non-perturbative)

Powalski, Uhrig, Scipost (2018)

Field dependence and decays

59. arXiv:1006.4838 [pdf, ps, other] cond-mat.str-el doi 10.1103/PhysRevB.82.144402

Field-induced decay dynamics in square-lattice antiferromagnet

Authors: M. Mourigal, M. E. Zhitomirsky, A. L. Chernyshev

Abstract: Dynamical properties of the square-lattice Heisenberg antiferromagnet in applied magnetic field are studied for arbitrary value S of the spin. Above the threshold field for two-particle decays, the standard spin-wave theory yields singular corrections to the excitation spectrum with logarithmic divergences for certain momenta. We develop a self-consistent approximation applicable for S >= 1, which... \bigtriangledown More

Submitted 1 October, 2010; v1 submitted 24 June, 2010; originally announced June 2010.

Comments: 12 pages, 11 figures, final version Journal ref: Phys. Rev. B, 82, 144402 (2010) 15 years anniversary

Need to switch compounds to track the field-evolution

(5CAP)₂CuCl₄ "CAPCC"

Spin ordering $T_{\rm N} = 0.74$ K

Spin saturation $H_s = 3.62$ T

Christensen, Nielsen, Mourigal (in PhD Thesis 2011), McMorrow, Ronnow

Outline

Heavy Introduction

- Quantum Magnetism Big Picture
- Research Approach
- Inelastic Neutron Scattering
- Modeling

Examples: Greatest Hits 2012-2025

• Bound-states: Triangular uniaxial spin-1 system Fel₂

Bai, Zhang x2, Batista, Mourigal, Nature Physics 17, 467–472 (2021)

Legros, Zhang x2, Bai, Mourigal, Batista, Armitage PRL 127, 267201 (2021)

Bai, Zhang x2, Mourigal, Batista, Nat. Comm. 14, 4199 (2023)

Dahlbom, Barros, Mourigal, Bai, Batista, Phys. Rev. B 109 014427 (2024)

Toy model for Fel₂

Consider a spin-1 ferromagnetic easy-axis chain

Spin-1 degrees of freedom

Anisotropy dominates exchange

Toy model for Fel₂

Consider a spin-1 ferromagnetic easy-axis chain

Toy model for Fel₂

Consider a spin-1 ferromagnetic easy-axis chain

Extended from: Petitgrand et al., JMMM 14, 275 (1979); Petitgrand et al., JMMM 15, 381 (1980); Katsumata et al., PRB 61, 11632 (2000)

Low-energy excitations are hybridized in Fel₂

Scale of exchange and anisotropy such that two flavors overlap in energy

single-ion anisotropy

hybridization

Result: Bound-state hybridized with magnons by anisotropic exchange

Bai, Zhang, Batista, Mourigal, Nature Physics 17, 467–472 (2021)

Low-energy excitations are hybridized in Fel₂

Scale of exchange and anisotropy such that two flavors overlap in energy

Result: Bound-state hybridized with magnons by anisotropic exchange

Bai, Zhang, Batista, Mourigal, Nature Physics 17, 467–472 (2021)

Time-domain Terahertz Spectroscopy

Right Polarized

A. Legros, S.-S. Zhang, X. Bai et al., PRL 127, 267201 (2021)

Fit

Time-domain Terahertz Spectroscopy

Right Polarized

1.4

1.2

1

0.6

0.4

Time-domain Terahertz Spectroscopy

Right Polarized

A. Legros, S.-S. Zhang, X. Bai et al., PRL 127, 267201 (2021)

6-magnon bound-state

Time-domain Terahertz Spectroscopy exquisite for field studies

Right Circ. Polarized

Truncated Hilbert Space Diag. 5x5x5 with up to 4m

Zhang

Shang-Shun Zhang

Anisotropic exchange and field misalignment stabilizes single-domain

Observe spontaneous decay

Mechanism for spontaneous decay in Fel₂

Anisotropic exchange opens decay channels between dipolar and quadrupolar modes

Control Conditions for generalized spin-wave theory with one-loop corr.

Shang-Shun Zhang

Mechanism for spontaneous decay in Fel₂

Anisotropic exchange opens decay channels between dipolar and quadrupolar modes

Recombination of decay products into a heavy bound-state suppresses rate

Outline

Heavy Introduction

- Quantum Magnetism Big Picture
- Research Approach
- Inelastic Neutron Scattering
- Modeling

- 2
- Examples: Greatest Hits 2012-2025
 - Spinons: Heisenberg spin-1/2 chains in copper sulfate
 - Magnons: Square-lattice problems
 - Bound-states: Triangular uniaxial spin-1 system Fel₂
 - Continuous excitations does not always mean fractionalization/decay

Conclusion (maybe)

Continuum does not always mean fractionalization/decay

 \Box Rare-earth triangular antiferromagnet in YbMgGaO₄ ($H_s \sim 5.0T$)

Paddison, Dun, Daum, Zhou, Mourigal, Nature Physics 13, 117 (2017)

Continuum does not always mean fractionalization/decay

The classical S=3/2 pyrochlore antiferromagnet MgCr₂O₄

Continuum does not always mean fractionalization/decay

] Finite T dynamics of the spin-1/2 chain emulated by classical dynamics

Classical non-linearities in the spin dynamics can mimic spinon continuum for temperatures as low as $T/J \sim 0.5$ for the Heisenberg chain

Kim and Mourigal, arXiv:2503.19975

Outline

Heavy Introduction

- Quantum Magnetism Big Picture
- Research Approach
- Inelastic Neutron Scattering
- Modeling

Examples: Greatest Hits 2012-2025

- Spinons: Heisenberg spin-1/2 chains in copper sulfate
- Magnons: Square-lattice problems
- Bound-states: Triangular uniaxial spin-1 system Fel₂
- Continuous excitations does not always mean fractionalization/decay

So magnons are stable, right?

Thank you for your attention!