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Linear Spin Waves



Review: Spin-wave Theory

+ Consider a general (bilinear) spin model in classical limit (1/S = 0)

H= Z §,J,S,

¢ Find a classical ground state: unit vectors z, such that §,= § z,
minimizes the energy

Goal: Describe the physics near the 1/S = 0 where quantum and/or
thermal fluctuations allow the spins to weakly deviate from the
classical ordering direction



Local Basis

¢ Can define local frame using this ordering: a right-handed (mutually

orthogonal) coordinate system at each site
Xr Yr Z
+ Work 1n frame aligned with local frame at each site

¢ Spin Hamiltonian 1S re-expressed as

D)

1
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Holstein-Primakoff Expansion

+ Bosonic representation of spin operators with respect to classical
ground state

Transverse part
1/2 1/2
n n
S=\/§(1——r) aé‘_+a7(1——r) e+ (S —ne
r l 2S r€r, r 25 r,+ ( r) I’,O
; Longitudinal
+ where we have that [a,,a)] =6, andn, =dlaq, part

+ Non-linear in boson number
+ Natural expansion parameter - boson occupancy

ﬁ<<1
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Linear Spin-Wave Theory

¢ Leading order expansion — drop the roots

+ Representation
Sr ~ VS (aré\r,_ + ajé\r,_i_) + (S - nr)é\r’()

+ Bosons represent spin raising/lowering operators in direction
transverse to the ordering



Linear Spin-Wave Theory

¢ Plug this back into Hamiltonian and keep only leading terms in 1/S
H=S°Ey+SH +...

+ Constant part at O(S8?) 1s classical energy  Ej = Z 2 I 2

¢ Quadratic boson Hamiltonian at O(S)

SH, = Z [A,,r/a:faw + % (Brrzaiai, + h.c.)]

rr’ : .
“Hopping” “Pairing”

like terms like terms



Linear Spin-Wave Theory

¢ In Fourier space this becomes

SHy= ) » [A;;‘“’a};aaka, ¥ % (Beafa’,, + h.c.)]
k oo

+ The matrices given by
, Group into enlarged matrix
AC;C/CY — S Ij,c_za’ B 5““' Z j(()),(c)w
T ( Ay By )
, M=\ po 4=
B =89, & Ak



Linear Spin-Wave Theory

+ Stability of classical ground state restricts spin-wave Hamiltonian

Condition #1: Linear terms 1n bosons must vanish

o Since the ground state 1s an extremum of the energy

Condition #2: Matrix M, must be positive definite

o Since the ground state 1s a minimum of the energy
¢ Linear terms can be removed by shift of bosons

+ Interaction effects can sometimes allow expansion about unstable
ground state



Linear Spin-Wave Theory

¢ Can diagonalize by Bogoliubov transformation

A Bk)

0-3Mk — ( _Bik _Aik O'ZMkaa — Ekavka

+ Yields independent new bosonic degrees of freedom

: !
Z €ka yka?/ka + 5

ka

+ Ground state energy at O(S) acquires zero-point correct; zero y bosons
in the ground state



Beyond Linear Spin-Wave Theory

¢+ Many reasons why we often need to go beyond LSWT

Quantitative comparisons: Need more accurate spin-wave dispersion
for comparison to other model calculations or experimental data

Intrinsic interactions effects: Physics of interest only appears at next
to leading order (pseudo-Goldstone gaps, spontaneous decay)

Transport properties: Many require interactions to avoid unphysical
results due to non-interacting particles (thermal conductivity)



Non-linear Spin Waves



Magnon-Magnon Interactions

+ Continue to next order in O(1/S)

(1_ﬁ)1/2 1
28

+ Will introduce cubic and quartic interactions between the magnons

&
|
|
4+

+ General expressions are quite complicated

Will show you the formalism for simpler case:

o One sublattice with inversion symmetry at zero temperature
ko — Ak k- —k T =0



¢ Leading order parts are O(S)"2and O(S)

1 _

— i Tt

H2 - Z [Arerarlarz + 5 (Brlrzarlal‘z + Brlf‘zarlarg) ’
nr )

1 i T T
H; = — Z [T,,l,ﬂz,garlczzr261z,,3 + 1, 4,040 ],

2! Mrri~r~rn*r
) rinmra

1 1 _
= Tal Tt o
H4 B Z {(2')2 Vr1r2r3r4arl st " 5 (Dr1r2r3r4a’”1 AryGryly, T Dr1r2r3r4ar4ar3ar2ar1)

r1rariry

¢ Interactions do not conserve boson number (from D and 7)

+ Interactions do not conserve boson number mod 2 (from 7)



More natural in Fourier space; momentum conserved in each
interaction

k k' k k'
1

_ T
= Z [Akakak 7 (Bkak a_, + h.C.)]

k
B Z Tkttt yppe + hoc.) ek kg K-

\/_ kk’

k/
_ a4t k g
AT Z (2')2 ka [q] k+q k' akak’
kk’

— Tl of
- Z 31 Dkk 4N gk g T h'c°)
kk' k+k' +gq



k+k +gq

Ay =39 (jk_ — j—(())O) + Vertices are

By
Ty

Vi (q)

Dy ¢

(somewhat) simple

— S j;{r+ functions of local

exchange matrices

_Sl/Z(j’l-cl-O_l_j-l—’O)
(jk ML RN MEN )

-5 (T + T+ T+ T

_%(j;g+ + 7. +j;+)



Free theory

¢ Use (diagrammatic) many-body perturbation theory about free limit

1
Hy = Z [Aka,tak + 7 (Bka};aik + h.C.)]
- !
+ Need Green’s function for this free theory

¢ Work in imaginary time

TH() —THO

ap(t) = e age

+ Consider normal and anomalous propagators



Free Theory

4 _ PB iwT T ++ — FIB
g (k,w)= | dre™ (Tar(t)a,(0))o g (k,w) =

J, A dre (T a (t)a,(0))
rﬁ . (‘,3 ,

g (k,w) = J dre" (T a};(T)ak(O»o g (k,w)= | dre (T ar(t)a,(0))o
0

0

Normal parts Anomalous parts

Organize into 2 by 2 matrix mirroring the M,

(o ko) g (ko)
k0= ey 5o )



Free Theory

¢ Can calculate explicitly (assume inversion so that A; = A)

g(ka w) = [_iwo-z + Zwk]_1

¢ Alternatively:

2 2
g w) = g* (—k, —w) = —k_ 1

—lw+ € Iw+ €

E

26kukvk

g (k,w)=g"(k,w) =

2 2
W +Ek



Green’s Function

s 5

Gt (k,w) = f dre“ (T ar(m)ay(0)) G (k,w) = f dre (T al (t)a (0))
0 0
5 5

G (k,w) = JF dre“ (Ta (1)a, (0)) G (k,w) = JF dre' (T ax(t)a, (0))
0 0

+ Compute these Green’s functions perturbatively in the interactions
¢ Only two of these are independent

o G*(k,w)and G*(k,w) are related by symmetry

o G**(k,w)and G(k,w) are related by symmetry



Diagrammatic Rules

+ Compute perturbative contributions diagrammatically

o Green’s function can be computed as sum of diagrams

+ Since have normal and anomalous Green’s function have four kinds of
free propagators

k, w > k, w = g—+(k’ w) —k, —W k, w — g++(k, a))

e =g hw) 25 T =g (ko)




+ Three kinds of interaction vertices: two particle scattering, two
magnon decay and three magnon decay

k,w Ko k,w k. o k,w q,Q

k+k,0+ k+qou+Q kK -q0 -Q k+k+qw+w +Q

. I 1
Ve L e BN Vi 1q) BN Diq



. Draw all distinct connected diagrams consisting of n4 four point
vertices (of type V, D), n; three point vertices (of type T), connected
by normal or anomalous propagators. Order 1s ny +ns/2

. For each line assign a momentum and Matsubara frequency, consistent
with conservation of wave-vector and frequency at each vertex and
sums over them

. For each line include the correct free Green’s function from g(k,w)

. For each vertex include the appropriate factor of V, D, T'. Vertices with
more outgoing lines than incoming lines always have a conjugation.

5. Compute the symmetry factor o and multiply by 1/0

. For each bundle of m lines starting at the same vertex with a m, -fold
redundancy and ending at the same vertex with a m,-fold redundancy
multiply by 1/[m!(m; — m)!(m, — m)!] .



PROBLEM 2.9 Generalize the Hugenholts diagram rules to the case in which
V contains one-body, two-body, ... up to n-body interactions. The principal issue
18 what to do about m-tuples of equivalent lines. Note that in general an m-tuple
of equivalent lines could start at an n;-body vertex and terminate at an ny-body
vertex and that multiple m-tuples could originate or terminate at the same vertex.

B Jarn W NegELE

HeNRI ORLAND

ADVANCED BOOK CL(ISSLICS

Negele & Orland,
Quantum Many-
Particle Systems



Self-Energy

¢ Resummation of diagrams ala Dyson/Gorkov gives self-energy

O - OO
OO

+ Self-energy and Dyson series also has normal and anomalous parts



Self-Energy

¢ Doing this for all Green’s functions gives the form
G(k,w) = |-iwo, + My + X(k, a))]_1
¢ Self-energy 1s now a 2 by 2 matrix like Green’s function

> (k,w) X (k,w)

) = sk o) Sk w)

¢ The self-energy will be the focus of our calculations



Continuing to Real Time

+ To extract information about the magnons, we need to analytically
continue to real-time

+ Effectively substitution of frequency iw — w + i0"

¢ Retarded Green’s function given by
Gr(k,w) = —=G(k, —iw + 0%) = [wo, — My — gk, )]
+ Similar definition for the retarded self-energy

Yr(k,w)=-X(k,—iw+0")



Aside: Choice of Basis
New vertices

¢ I showed you this in original
basis of magnons

¢ This perturbation theory
(usually) 1s carried out 1n the
diagonalized basis

Practically:

YEYE Y -k—Fk YV Yi+k'+qY—k-k'—q
o Write in terms of Yk
o Normal order the operators
E.g. from
o Perturbation theory but with —<—>——  jormal
larger set of vertices YiY—k ordering

Zhitomirsky & Chernyshev, RMP (2013)



Example:
ple: Normal Self-Energy

k N
w k,w = _l L
> BN Z g (q,Q)Dy
k\i/" : .
D 2 Z a
i ? >0Dkq q



Example: Normal Selt-Energy

NZQ_+((I,Q)9_+(’€ g0 =T, Tei—q

2 2
z :lT . |2[ |uq| |uk—q| 4 |Uq|2|Uk—q|2 ]
q.Kk—q . .

2
Z |T |2 |uq| |uk—q|2 |Uq|2|Uk—q|2
k- — ,
e W—€ —€—qt+I0"  w+ete_g+i0F




Quasi-particle poles

+ EXxcitations appear as poles NLSWT
I'x
det [wo, — M — Xr(k,w)] =0
o If interactions are well-behaved can solve via w
perturbation theory = jex

€k
w = € + V,tER(k, ex) Vi

¢ Solution for poles can be e, = Re[VZZ r(k, e)Vi]
complex; real and imaginary

part [y = —Im[V;:ZR(k, €x)Vi]



Spontaneous Decay

¢ When do we get an imaginary contribution?

+ Non-zero if frequency in two-magnon continuum

ReX " (k,w) = LPZ Toql”
’ 2N — w

— €9 — €k—q  Non-zero when
W = €4E,4

_ 1
X (k,0) = 55 3 [Ty P6@ ~ & = €1y)
q

o If T vertex vanishes, leading process
can be O(D?)



Dynamical Structure Factor

¢ Computing the dynamical structure factor not entirely from the
magnon Green’s function

Renormalize/mix the usual Green’s functions

1
(STDS (O = S {a, (1)) (0)) = 7 ((@r(@ay, O)ny(0)) + (n,(T)ax(1)ay (0)))

(S%(t) Sz 0)). ~ (n,()n,(0)) Density-density: Probes

two-magnon properties

(SYT)S(0))e = =S *(n.(1)a’, (0))

Renormalize/mix the usual Green’s
functions & involve “bubbles”

Mourigal et al, PRB (2013)



Effects of Interactions



Example: Renormalization

+ Rare-earth magnet: YbCl;

+ Honeycomb lattice
antiferromagnet (S.q = 1/2)

¢ Neel order below ~0.6 K

+ Surprisingly isotropic exchange
interactions

+ Model with Heisenberg exchange

1 > . | _
H=— E ’]rr’Sr'Sr’
P , Xing et al, Phys. Rev. B 102, 014427 (2020)
rr

Sala et al, Phys. Rev. B 100, 180406 (2019);
Rau & Gingras, Phys. Rev. B 98, 054408 (2018)



12 a h d e f =3.7K
| T Fit using
| | linear spin-
S o8l 1 t 1 wave
S
5 theory
fles
04 -
0 1
g -0.5 -1
(10L)
3
E o4l _ 04
= g5 o2
0 0
-4 -3 -2 -1 0 0 0.5 1 0.5 0 0.5 1 -0.5 -1
(0 K 0) (H10) (HH0) (H00) (10L)
J=0421 meV

Sala et al, Nat. Comm. 12, 171 (2021)



¢ Non-linear effects renormalize
spectrum

+ At leading order rescales

o .

€ + 0ex = Ze,

o
w

¢ Factor 1s approximately Z ~ 1.3
o If fit with NLSWT would find

J = 0.344 meV

+ Validated by high-field
experiment; LSWT becomes
exact when |B|/J large

o
N

0.1

Intensity (arb. units)

o

Sala et al, Comm. Phys. 6, 234 (2023)



Example: Renormalization

¢ ... some well known cases where - -
interactions aren’t enough 2 | .
¢ Square lattice Heisenberg i ]
antiferromagnet
1 + -
150 © © DVRG (Lae=10) e |
pert. order A n - .
2 025 A0 ]
=020 N b
W S )\1() //g O ,
| 0.15- — A2 “CUT,
Y U 0,0 (m,0) (10/2,7/2) (0,0)
L 040 Padé 1/8°, . ]
0.05. 152 + Spin-waves are flat along line at
000" oy ws oe ba leading order in interactions
(Ising) A (HAF)

Singh & Gelfand, Phys. Rev. B 52, R15695 (1995); Verresen et al. Phys Rev. B 98, 155102 (2018)



Example: Spontaneous

*

Triangular Heisenberg anti-
ferromagnet

Isotropic interactions, but non-
collinear order

Spontaneous magnon decay is
allowed

Presence of gapless Goldstone
mode means kinematic condition
not too hard to satisty

Zhitomirsky & Chernyshev, PRB (2009)

Decay




Example: Spontaneous Decay

+ Significant decay at small §; approaches LSWT as S increases

Mourigal et al, PRB (2013)



Intensity (arb. units)
100 200 300 400 500 600 70O 800 900 1000

+ Not always apparent in real materials

¢ Ba;CoSb,0y 1s (near) ideal triangular s
S=1/2 HAFM I
3.5
¢ Quasi-particle decay (mostly) avoided
3 k
=
iEiQ.o
Domain 1 2 ;
Co éj 2 :
d - ]‘z‘-’:
. . g
K,/ (011) ¥
= 1’1! ! }e
0.5 - JREA VA
(001) # I-{"l _
S
0+ T ‘ . i
I K/ M), K I

Macdougal et al, Phys. Rev. B 102, 064421 (2020) Wave vector
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Rau et al, Phys. Rev. B 100, 104423 (2019)
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-0.5 0
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-0.5 0
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*

[oo1]

B [[HJ] /
[110]

... often amount
of (apparent)
decay 1sn’t
enough as
compared to
experiment



Pseudo-Goldstone Modes



Pseudo-Goldstone Modes

+ Rotation of spins in “soft” direction 1s shift of bosons
a. — a, + A,

+ Accidental degeneracy implies zero mode

(o )2

Two kinds of zero modes
— Type I: Conjugate momentum 1s “hard”

— Type II: Conjugate momentum also soft

47



+ More mathematically for a mode at k = 0:

Type I
A  Byg atk =0 Ay A or
~B. —Ag " -4 -4

Non-diagonalizable (Jordan block)

Type 1 Type 11

e.g. AFM o

Perturbations to
zero mode ~ &2

48

Type 11

0 0
0 O

e.g. FM

Perturbations to

zero mode ~ €
o< |k|*

k
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Pseudo-Goldstone gaps

w Vv
v
¢ Generated by quantum fluctuations &Qx
A
¢ (Can be calculated at O(1/5?) in spin-wave
theory A gl 1
O Directly via perturbation theory in (a) | k

magnon-magnon interactions

O Indirectly via curvature formula*
involving fluctuation corrected energy

density
¢ Intrinsic interaction effect
* Expect (hope) they are small, perturbative in by A% s01 .
Y

*Rau et al, Phys. Rev. Lett 121, 237201 (2018)



r A (x) x(r)K (M) T r A LR)

0.7 1 057 R
0.6 F 04 CGsFezGeson
o
~ 0.75 L !
> e “z’o.3/ B i
£04 g e >
> 0.5 > 02
20.3 oY
i
w 0.2 0.25 E 01
0.1 .
0 (111) ('211) """" (151515)

0.15

In all cases less than ~10% of
the spin-wave bandwidth,
weak effects away from
pseudo-Goldstone mode

0.10

w [meV]

0.05

(=)}

Energy (meV)

0.00

Q=[111]

0
(313) (113) (3%
Ross et al, Phys. Rev. Lett. 112, 057201 (2014), Petit et al, Phys. Rev. B 90, 060410(R) (2014); T. Bruekel et al, Z. Phys. B 72, 477
(1988), Elliot et al, Nat. Comm. 12 3936 (2021), ....

(103) (013) (41

50



Kzll’Clé

o Cubic crystal (SG #225) No trigonal

or tetragonal
¢ Magnetic Ir** ions (5d°) distortions
o Octahedral Cl cages
o Strong spin-orbit coupling
o Jer = 1/2 doublets

+ Face-centered cubic lattice Separated:

(no detectable distortion) not edge-
. shared
+ Same bond symmetry as in

(1dealized) Kitaev materials

Cooke et al. Proc. Royal Soc. A 250, 97-109 (1959), ibid, 84-96, ... ; Khan et al, Phys. Rev. B. 99, 144425 (2019)
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One sharp peak (no shoulders) >

Magnetic Order @ w,

¢ Order appears at low temperature 7x ~ 3 K Eg“ 10 ¢
via sharp phase transition S
o Curie-Weiss temperature estimated to © 100k
be @CW ~30K
o Highly frustrated (b) 107

* Bragg Feaks appear at [1/2’1’0] and ]cqc?r?t%liuous
equivalents below Tx |

O Antiferromagnetic “Type III” order

¢ Polarization analysis yields moment
parallel to Y2 direction

T(K)

Hutchings et al, Proc. Phys. Soc. 91, 928 (1967),
Lynn et al., Phys. Rev. Lett. 37, 154 (1976) Wang et al., Phys. Rev. X 15, 021021 (2025)



Type-lll: AFM planes stacked ++——...

X domain

Each
plane 1s
AFM
aligned

Stacking shift

Repeats
after 4
planes

53



Model

¢ Anisotropic spin-1/2 exchange model on FCC lattice

H= Y |78;-8;+ K878+ 1T (sysh+ 5058+ Y5008,

i Dapey (i
¢ Three bond types: x, y, z. af(y) is cyclic permutation ~ <®
¢ I has sign structure determined by ; y y
o = sgn(dld.) ¢
where d; = r; — r; is the bond direction ( ‘
o Isotropic J; for simplicity ¢ M

Judd et al. Proc. Royal Soc. A 250, 110-120 (1959); Cook et al, Phys. Rev. B 92, 020417(R) (2015), Khan et al, Phys. Rev. B. 99,
144425 (2019), Bhaskaran et al., Phys. Rev. B 104, 184404 (2021), ...
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Nodal

Ordered Phase Excitations

¢ Three nodal lines in all ground states in
Heisenberg limit

¢ Correspond to continuous mixing with other
stacked states — “pseudo-Goldstone modes”

Spectrum
in folded
X stacked Y stacked / stacked
+ Nodal line along
stacking direction is
lifted by Kitaev

Interaction

¢ Two nodal lines left

Nodal line
gapped
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*Iridium is strong neutron absorber Wang et al., Phys. Rev. X 15, 021021 (2025)



Well-defined
Spin-waves

Well-defined No obvious
spin-waves magnon decay

Fully gapped Gap is ~30% of Fully

spectrum bandwidth gapped
spectrum

° [1,-2,0] [1,0,0] [1,2,0] [0,-2,0] [0,0,0]

Very different than expectations!
Wang et al., Phys. Rev. X 15, 021021 (2025)



Sk/JS
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Divide out leading S
_| dependence

17 N4
0 1]

[000] 010] [010]  [100] [150]
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NLSWT '\j
§®)
@
o
o
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zero
130 120 modes
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Kitaev LSWT
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1, value of J

Z 4 Set by
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. —
,’J / 24 N L2 N ‘\n
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Set I' = 0 (no decay) and J> = 0 (simplicity)

[120]
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[0,k,0]

J=0.74 meV, K=0.15 meV

20.15 < 8k < +0.15 01<oh<+0.1 14450 ],
- ,1.5,014 200
0.15 < 5 < +0.15 01 <at< 401
‘3% -4 100
WM_ ;
(1,1,014 200
4100
_% b |
0
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u H 0
I X [1.0.01 200
3 o
1< lo & .
_ i AL AT ; 100
1 I 1 0
2 0 2 0 1 2 3
[h,0,0] o [meV]
! T —
0 50 (ki/k¢) 1(k,w) [barn/eV/Ir] 100 150

(ki/ks) 1(k,w) [barn/eV/Ir]

(@)

= j—
S 3
3=
S 09
—_ oo

A ‘Surseroae [ejudWLIddXH

*Also gives Ocw ~ 27.5 Kand mode at 1.22 meV (g = 0) mode from ESR [Bhaskaran et al., Phys. Rev. B 104, 184404 (2021)]



[0,k,0]

J=0.74 meV, K= OlSmeV
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[0,k,0]

—
N [1,1.5,0]14 200

J=0.74 meV, K=0.15 meV
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Conclusion

+ Spin-wave theory can describe the excitations of ordered states of
quantum magnets

¢ Often linear spin-waves work surprising well even at S = 1/2

... but magnon-magnon interactions can often be important
o (More) quantitative comparison to small § limit (& experiment)

o Magnons are not always sharp; spontaneous decay can imbue them a
finite lifetime

o Other features also require interactions to describe at any level: pseudo-
Goldstone modes, transport, ...



