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Linear Spin Waves



 Consider a general (bilinear) spin model in classical limit (1/S = 0)

 Find a classical ground state: unit vectors zr  such that Sr = S zr 
minimizes the energy

Review: Spin-wave Theory

Goal: Describe the physics near the 1/S = 0 where quantum and/or 
thermal fluctuations allow the spins to weakly deviate from the 
classical ordering direction



Local Basis
 Can define local frame using this ordering: a right-handed (mutually 

orthogonal) coordinate system at each site

 Work in frame aligned with local frame at each site

 Spin Hamiltonian is re-expressed as

Transverse 
terms

Transverse-
Longitudinal 

terms
Longitudinal 

terms



Holstein-Primakoff Expansion
 Bosonic representation of spin operators with respect to classical 

ground state

 where we have that                             and 
 Non-linear in boson number
 Natural expansion parameter -  boson occupancy 

Transverse part

Longitudinal 
part



Linear Spin-Wave Theory
 Leading order expansion – drop the roots

 Representation

 Bosons represent spin raising/lowering operators in direction 
transverse to the ordering



Linear Spin-Wave Theory
 Plug this back into Hamiltonian and keep only leading terms in 1/S

 Constant part at O(S2) is classical energy
 Quadratic boson Hamiltonian at O(S)

“Pairing” 
like terms

“Hopping” 
like terms



Linear Spin-Wave Theory
 In Fourier space this becomes

 The matrices given by

Group into enlarged matrix



Linear Spin-Wave Theory
 Stability of classical ground state restricts spin-wave Hamiltonian

Condition #1: Linear terms in bosons must vanish
○ Since the ground state is an extremum of the energy

Condition #2: Matrix Mk  must be positive definite
○ Since the ground state is a minimum of the energy

 Linear terms can be removed by shift of bosons
 Interaction effects can sometimes allow expansion about unstable 

ground state



Linear Spin-Wave Theory
 Can diagonalize by Bogoliubov transformation

 Yields independent new bosonic degrees of freedom

 Ground state energy at O(S) acquires zero-point correct; zero γ bosons 
in the ground state

Diagonalize

Eigenvector

Eigenvalue



Beyond Linear Spin-Wave Theory
 Many reasons why we often need to go beyond LSWT

Quantitative comparisons: Need more accurate spin-wave dispersion 
for comparison to other model calculations or experimental data
Intrinsic interactions effects: Physics of interest only appears at next 
to leading order (pseudo-Goldstone gaps, spontaneous decay)
Transport properties: Many require interactions to avoid unphysical 
results due to non-interacting particles (thermal conductivity)



Non-linear Spin Waves



Magnon-Magnon Interactions
 Continue to next order in O(1/S)

 Will introduce cubic and quartic interactions between the magnons
 General expressions are quite complicated

Will show you the formalism for simpler case: 
○ One sublattice with inversion symmetry at zero temperature



 Leading order parts are O(S)1/2 and O(S)

 Interactions do not conserve boson number (from D and T)
 Interactions do not conserve boson number mod 2 (from T)

Symmetrization factors 
simplify perturbative 

expansion



 More natural in Fourier space; momentum conserved in each 
interaction



 Vertices are 
(somewhat) simple 
functions of local 
exchange matrices



Free theory
 Use (diagrammatic) many-body perturbation theory about free limit

 Need Green’s function for this free theory
 Work in imaginary time 

 Consider normal and anomalous propagators 



Free Theory

Anomalous partsNormal parts

Organize into 2 by 2 matrix mirroring the Mk

(Imaginary) time ordered



Free Theory
 Can calculate explicitly (assume inversion so that Ak = A-k)

 Alternatively:



Green’s Function

 Compute these Green’s functions perturbatively in the interactions
 Only two of these are independent

○ G+-(k,ω) and G-+(k,ω) are related by symmetry
○  G++(k,ω) and G--(k,ω) are related by symmetry



 Compute perturbative contributions diagrammatically
○ Green’s function can be computed as sum of diagrams

 Since have normal and anomalous Green’s function have four kinds of 
free propagators

Diagrammatic Rules



 Three kinds of interaction vertices: two particle scattering, two 
magnon decay and three magnon decay



1. Draw all distinct connected diagrams consisting of n4 four point 
vertices (of type V, D), n3 three point vertices (of type T), connected 
by normal or anomalous propagators. Order is n4 +n3/2

2. For each line assign a momentum and Matsubara frequency, consistent 
with conservation of wave-vector and frequency at each vertex and 
sums over them

3. For each line include the correct free Green’s function from g(k,ω)
4. For each vertex include the appropriate factor of V, D, T . Vertices with 

more outgoing lines than incoming lines always have a conjugation. 
5. Compute the symmetry factor σ and multiply by 1/σ
6. For each bundle of m lines starting at the same vertex with a m1 -fold 

redundancy and ending at the same vertex with a m2-fold redundancy 
multiply by 1/[m!(m1 − m)!(m2 − m)!] .

Often easier just to manually count contractions

Overcounting of 
permutations



Negele & Orland, 
Quantum Many-
Particle Systems 



Self-Energy
 Resummation of diagrams ala Dyson/Gorkov gives self-energy 

G-+ G-+Σ-+

G++Σ--

 Self-energy and Dyson series also has normal and anomalous parts

New piece due 
to anomalous 
parts



 Doing this for all Green’s functions gives the form

 Self-energy is now a 2 by 2 matrix like Green’s function

 The self-energy will be the focus of our calculations

Self-Energy



 To extract information about the magnons, we need to analytically 
continue to real-time

 Effectively substitution of frequency
 Retarded Green’s function given by

 Similar definition for the retarded self-energy

Continuing to Real Time



Aside: Choice of Basis
 I showed you this in original 

basis of magnons
 This perturbation theory 

(usually) is carried out in the 
diagonalized basis

Practically:
○ Write in terms of 
○ Normal order the operators
○ Perturbation theory but with 

larger set of vertices

New vertices

E.g. from 
normal 
ordering

Zhitomirsky & Chernyshev, RMP (2013)



Example: Normal Self-Energy

Analytic 
continue to 
real time

Perform 
sum at T=0



Example: Normal Self-Energy

Evaluate sum at T=0

To 
real 
time



 Excitations appear as poles

 If interactions are well-behaved can solve via 
perturbation theory

Quasi-particle poles

 Solution for poles can be 
complex; real and imaginary 
part

LSWT

NLSWT



Spontaneous Decay
 When do we get an imaginary contribution?
 Non-zero if frequency in two-magnon continuum

Non-zero when 
ω = εq+εq-k

 If T vertex vanishes, leading process 
can be O(D2)

Set uk = 1, vk = 0 
for simplicity



Dynamical Structure Factor
 Computing the dynamical structure factor not entirely from the 

magnon Green’s function
Renormalize/mix the usual Green’s functions

Renormalize/mix the usual Green’s 
functions & involve “bubbles”

Density-density: Probes 
two-magnon properties

Just G-+

Mourigal et al, PRB (2013)



Effects of Interactions



Example: Renormalization
 Rare-earth magnet: YbCl3

 Honeycomb lattice 
antiferromagnet (Seff = 1/2)

 Neel order below ~0.6 K 
 Surprisingly isotropic exchange 

interactions
 Model with Heisenberg exchange

Xing et al, Phys. Rev. B 102, 014427 (2020) 
Sala et al, Phys. Rev. B 100, 180406 (2019); 

Rau & Gingras, Phys. Rev. B 98, 054408 (2018)



Sala et al, Nat. Comm.  12, 171 (2021) 

Fit using 
linear spin-
wave 
theory

J = 0.421 meV



 Non-linear effects renormalize 
spectrum

 At leading order rescales

 Factor is approximately Z ~ 1.3  
 If fit with NLSWT would find

 Validated by high-field 
experiment; LSWT becomes 
exact when |B|/J  large

Sala et al, Comm. Phys. 6, 234 (2023) 



Example: Renormalization
 … some well known cases where 

interactions aren’t enough
 Square lattice Heisenberg 

antiferromagnet

 … some well known cases where 
interactions aren’t enough

 Square lattice Heisenberg 
antiferromagnet

 Spin-waves are flat along line at 
leading order in interactions

Singh & Gelfand, Phys. Rev. B 52, R15695 (1995); Verresen et al. Phys Rev. B 98, 155102 (2018) 



Example: Spontaneous Decay
 Triangular Heisenberg anti-

ferromagnet
 Isotropic interactions, but non-

collinear order
 Spontaneous magnon decay is 

allowed
 Presence of gapless Goldstone 

mode means kinematic condition 
not too hard to satisfy

Zhitomirsky & Chernyshev, PRB (2009)



Example: Spontaneous Decay

S=3/2S=1/2

 Significant decay at small S; approaches LSWT as S increases
Mourigal et al, PRB (2013)



 Not always apparent in real materials
 Ba3CoSb2O9 is (near) ideal triangular 

S=1/2 HAFM
 Quasi-particle decay (mostly) avoided

Macdougal et al, Phys. Rev. B 102, 064421 (2020)



Magnons in spin-ladder

Triplons in 
Dimerized 
magnet

Superfluid Helium-4

Beauvois et al, PRB (2018); Stone et al, Nature (2005), Plumb et al, Nat Phys (2016)



Rau et al, Phys. Rev. B 100, 104423 (2019)

 … often amount 
of (apparent) 
decay isn’t  
enough as 
compared to 
experiment

Yb2Ti2O7 
(anisotropic FM)



Pseudo-Goldstone Modes



 Rotation of spins in “soft” direction is shift of bosons

 Accidental degeneracy implies zero mode

Two kinds of zero modes
– Type I: Conjugate momentum is “hard”
– Type II: Conjugate momentum also soft

Determined by ordering 
pattern & direction of 
deformation

i.e. H ~ P2 

i.e. H = 0

Pseudo-Goldstone Modes
47



 More mathematically for a mode at k = 0:

at k = 0
Type I Type II

or

Non-diagonalizable (Jordan block)

Perturbations to 
zero mode ~ ε1/2

Perturbations to 
zero mode ~ ε

e.g. AFM e.g. FM

48



Pseudo-Goldstone gaps
49

 Generated by quantum fluctuations
 Can be calculated at O(1/S2) in spin-wave 

theory
○ Directly via perturbation theory in 

magnon-magnon interactions
○ Indirectly via curvature formula* 

involving fluctuation corrected energy 
density

 Intrinsic interaction effect
 Expect (hope) they are small, perturbative in 

1/S

*Rau et al, Phys. Rev. Lett 121, 237201 (2018) 



50

Er2Ti2O7 Ca3Fe2Ge3O12

Ross et al, Phys. Rev. Lett. 112, 057201 (2014), Petit et al, Phys. Rev. B 90, 060410(R) (2014); T. Bruekel et al, Z. Phys. B 72, 477 
(1988), Elliot et al, Nat. Comm. 12 3936 (2021), …. 

Ca3Fe2Ge3O12

CoTiO3
In all cases less than ~10% of 
the spin-wave bandwidth, 
weak effects away from 
pseudo-Goldstone mode



51

K2IrCl6
 Cubic crystal (SG #225)
 Magnetic Ir4+ ions (5d5)

○ Octahedral Cl- cages
○ Strong spin-orbit coupling
○ Jeff  = 1/2 doublets

 Face-centered cubic lattice 
(no detectable distortion)

 Same bond symmetry as in 
(idealized) Kitaev materials

Ir 4+Cl6 -

K+

Separated; 
not edge-
shared

No trigonal 
or tetragonal 
distortions

Cooke et al. Proc. Royal Soc. A 250, 97–109 (1959), ibid, 84–96, … ; Khan et al, Phys. Rev. B. 99, 144425 (2019)



Magnetic Order
52

 Order appears at low temperature TN ~ 3 K 
via sharp phase transition
○ Curie-Weiss temperature estimated to 

be ΘCW ~ 30 K
○ Highly frustrated

 Bragg peaks appear at [½,1,0] and 
equivalents below TN

○ Antiferromagnetic “Type III” order
 Polarization analysis yields moment 

parallel to ½ direction

Wang et al., Phys. Rev. X 15, 021021 (2025)
Hutchings et al, Proc. Phys. Soc. 91, 928 (1967), 
Lynn et al., Phys. Rev. Lett. 37, 154 (1976)

One sharp peak (no shoulders)

Looks 
continuous



Type-III: AFM planes stacked ++−−...

+ + +

Each 
plane is
AFM 
aligned

Repeats 
after 4 
planes

Stacking shiftX domain

σ = +1 σ = +1 σ = -1 σ = -1 σ = +1

− −
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x y

z

 Anisotropic spin-1/2 exchange model on FCC lattice

 Three bond types: x, y, z. αβ(γ) is cyclic permutation
 Γ has sign structure determined by

where dij = ri – rj is the bond direction
 Isotropic J2 for simplicity  

Model
54

Judd et al. Proc. Royal Soc. A 250, 110-120 (1959);  Cook et al, Phys. Rev. B 92, 020417(R) (2015), Khan et al, Phys. Rev. B. 99, 
144425 (2019), Bhaskaran et al., Phys. Rev. B 104, 184404 (2021), ...



 Three nodal lines in all ground states in 
Heisenberg limit

 Correspond to continuous mixing with other 
stacked states  – “pseudo-Goldstone modes”

 Nodal line along 
stacking direction is 
lifted by Kitaev 
interaction

 Two nodal lines left

X stacked Y stacked Z stacked

Nodal line 
gapped

55

Nodal 
lines Ordered Phase Excitations

Spectrum 
in folded 
zone
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*Iridium is strong neutron absorber
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Wang et al., Phys. Rev. X 15, 021021 (2025)
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Fully gapped 
spectrum

Well-defined 
spin-waves

Fully 
gapped 
spectrum

Very different than expectations! 

No obvious 
magnon decay

Well-defined 
spin-waves

Gap is ~30% of 
bandwidth

Wang et al., Phys. Rev. X 15, 021021 (2025)



K/J = 0.20, 1/S → 0

Type III
5858

Line of 
zero 
modes

Divide out leading S 
dependence 

LSWT



Type III

K/J = 0.20, S = 1/2

59

K/J = 0.20, S = 1/2

Kitaev 
exchange 
essential 

Gap is 
O(J)

No remnant of line of 
PG modes

NLSWT



Type III
60

Set Γ = 0 (no decay) and J2 = 0 (simplicity)

… set by 
value of K

[100] feature nearly 
K/J independent

Set by 
value of J



61
Including: Experim

ental averaging, Ir 4+ 
form

 factor
J = 0.74 meV,  K = 0.15 meV

*Also gives ΘCW ~ 27.5 K and mode at 1.22 meV (q = 0) mode from ESR [Bhaskaran et al., Phys. Rev. B 104, 184404 (2021)]

-0.15 < δh < +0.15
-0.15 < δl < +0.15

-0.2 < δl < +0.2

-0.1 < δh < +0.1
-0.1 < δk < +0.1
-0.1 < δl < +0.1

ESR 
mode



62
Including: Experim

ental averaging, Ir 4+ 
form

 factor + background
J = 0.74 meV,  K = 0.15 meV



63
Including: Experim

ental averaging, Ir 4+ 
form

 factor + background + noise
J = 0.74 meV,  K = 0.15 meV



Conclusion
 Spin-wave theory can describe the excitations of ordered states of 

quantum magnets
 Often linear spin-waves work surprising well even at S = 1/2

… but magnon-magnon interactions can often be important
○ (More) quantitative comparison to small S limit (& experiment)
○ Magnons are not always sharp; spontaneous decay can imbue them a 

finite lifetime
○ Other features also require interactions to describe at any level: pseudo-

Goldstone modes, transport, ...


