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 is a mirror 
containing 

the spin axis

τ2⊥

bℤ2 ≅ {E, τ2⊥}
2⊥ :  rotation about 

axis  to normal
π

⊥

 is a mirror in the 
plane of the spins

τ2⊥

btriv ≅ {E}

No global spin 
operation preserves 

the spin configuration

D.B. Litvin, W.  
Opechowski, Physica 
Vol. 76, Iss. 3, (1974)

https://www.sciencedirect.com/science/article/pii/0031891474901578?ref=pdf_download&fr=RR-2&rr=93b6fc8edcb8cb96
https://www.sciencedirect.com/science/article/pii/0031891474901578?ref=pdf_download&fr=RR-2&rr=93b6fc8edcb8cb96
https://www.sciencedirect.com/science/article/pii/0031891474901578?ref=pdf_download&fr=RR-2&rr=93b6fc8edcb8cb96
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For each ordinary parent group  : 

✦ List all normal subgroups  

✦ Determine quotient groups   
๏ Option 1: determine explicit 

isomorphism between  and  
๏ Option 2: generate  

representation of  with kernel  

✦ Form  

G
g ◃ G

B ≅ G/g

B G/g
O(3)

G g

S = g + [B2∥G2] g + [B3∥G3] g + . . .

Pair with allowed 
spin-only groups

X = b × S

Remove 
duplicates

Two spin groups  and  are 
equivalent if they are 

conjugate in 

X X′ 

Os(3) × E(3)

:     ∃y ∈ Os(3) × E(3) X′ = yXy−1
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when  
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when 

B = {E}
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✦ 252 coplanar SPGs 
๏ When  or B = Cn Dn

Qihang Liu

Xiaobing Chen 
Jun Ren 
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Pengfei Liu, 
Jiayu Li, 
Yuntian Liu 
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+ HS
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Original Litvin table

D. B. Litvin, Acta 
Crystallographica 
A 33 (2), 279 (1977)

HS, A. Corticelli, A. 
Guerreiro, J. Romhányi, 

P. McClarty, SciPost 
Phys. 18, 109 (2025)

https://doi.org/10.1107/S0567739477000709
https://doi.org/10.1107/S0567739477000709
https://doi.org/10.1107/S0567739477000709
https://doi.org/10.1107/S0567739477000709
https://scipost.org/SciPostPhys.18.3.109/pdf
https://scipost.org/SciPostPhys.18.3.109/pdf
https://scipost.org/SciPostPhys.18.3.109/pdf
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Qihang Liu Zhi-Da Song Chen Fang

Zhenyu Xiao 
Jianzhou Zhao 
Yanqi Li 
Ryuichi Shindou

Xiaobing Chen 
Jun Ren 
Yanzhou Zhu 
Yutong Yu 
Ao Zhang 
Pengfei Liu, 
Jiayu Li, 
Yuntian Liu 
Caiheng Li

Yi Jiang 
Ziyin Song 
Tiannian Zhu 
Zhong Fang 
Hongming 
Weng 
Zheng-Xin Liu 
Jian YangDepends on unit cell enlargement

67475 SSGs  
✦ 1421 collinear  
✦ 9542 coplanar  
✦ 56512 non-coplanar

100612 SSGs  

✦ 1421 collinear 

✦ 16383 coplanar 

✦ 87308 non-coplanar

183498 SSGs 

✦ 1421 collinear 

✦ 24788 coplanar 

✦ 157289 non-coplanar

Supercells up to order 8 Families ~ mod. symmetry 
of the propagation vector

Supercells up to order 12 

Identify the spin group from .cif, .mcif or .txt

FINDSPINGROUP

Groups & group elements for SSGs:
Search based on 
parent group, list 
elements, etc…

Spin Space Group 
Database

https://findspingroup.com/
https://cmpdc.iphy.ac.cn/ssg/#/search
https://cmpdc.iphy.ac.cn/ssg/#/search
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(Co-)representation Theory

Quantum Geometry and Transport of Collective Excitations in (Non-)Magnetic Insulators
Hana Schiff 
Thursday, May 8th, 2025



Ordinary representation theory

20

G = {E, g1, g2, g3, . . . }

D(G) ={ }. . .

• Linear 
• Homomorphism 

D(g)D(g′ ) = D(gg′ )

. . .

Irreducible representation 
“building blocks”
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X = X1/2 + [τ2⊥∥E] X1/2

S = S⋆ + aS⋆ Let a = [τ∥ao]

with

Recall: b∞ ≅ SO(2) ⋊ {E, τ2⊥}

Irreps of  are  where 
 and  is an irrep of .
SO(2) × G eiμφ Δ(ν)

μ ∈ ℤ Δ(ν) G

Indicators of  given by  
in grey PG  (i.e. reality)

eiμφΔ(ν) Δ(ν)

G + τG

Irreps of  a priori unknown & new!X1/2

Co-irreps are not trivially found from 
knowledge of irreps  of .Δ(ν) G

HS, A. Corticelli, A. Guerreiro, J. Romhányi, P. McClarty, SciPost Phys. 18, 109 (2025)

https://scipost.org/SciPostPhys.18.3.109/pdf
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Irreps of parent PG 
, or co-irreps of 

B&W PG 
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G + τao G
a = [as∥ao]

Coplanar SPGs

Co-irreps of grey 
PG G + τ G
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Unitary :S

Antiunitary :S

Co-irreps induced from 
, based on 

reality of 
SO(2) × G

Δ(ν)(G)

Co-irreps induced 
from , are new and 
non-trivial!

X1/2
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Do we need the spin groups?

Quantum Geometry and Transport of Collective Excitations in (Non-)Magnetic Insulators
Hana Schiff 
Thursday, May 8th, 2025
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Do we need the spin groups?

Quantum Geometry and Transport of Collective Excitations in (Non-)Magnetic Insulators
Hana Schiff 
Thursday, May 8th, 2025

Usually yes, sometimes no!



Band structure degeneracy
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Fermionic band structures

Altermagnetic band structures

Ex: 12-fold degenerate fermions

Magnon band structures

Ex: hyper-honeycomb Heisenberg-
Kitaev model

Unconventional magnons

Need spin 
group theory!

HS, A. Corticelli, A. Guerreiro, 
J. Romhányi, P. McClarty, 

SciPost Phys. 18, 109 (2025)

L. Šmejkal, J. Sinova 
and T. Jungiwirth, Phys. 
Rev. X 12, 040501 (2022) 

J. Yang, Z.X. Liu, C. Fang, Nature Comm. 15 10203 (2024)

HS, A. Corticelli, A. Guerreiro, 
J. Romhányi, P. McClarty, 

SciPost Phys. 18, 109 (2025)

A. Corticelli, R. Moessner, 
P. McClarty Phys. Rev. B 

105, 064430 (2022)

X. Chen, Y. Liu, P. 
Liu, Y. Yui, J. Ren, 
J, Li, A. Zhang, Q. 
Liu, Nature 640, 
349-354 (2025)

https://scipost.org/SciPostPhys.18.3.109/pdf
https://doi.org/10.1103/PhysRevX.12.040501
https://doi.org/10.1103/PhysRevX.12.040501
https://doi.org/10.1103/PhysRevX.12.040501
https://www.nature.com/articles/s41467-024-53862-6
https://scipost.org/SciPostPhys.18.3.109/pdf
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.105.064430
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.105.064430
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.105.064430
https://www.nature.com/articles/s41586-025-08715-7
https://www.nature.com/articles/s41586-025-08715-7
https://www.nature.com/articles/s41586-025-08715-7


Landau theory for 
collinear altermagnets 
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Can avoid spin 
group theory!

Equivalent formulation for collinear 
systems without spin groups

Salient physics from the SO-free limit 
even for real materials with some SOC
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Preserves  and ↑ ↓ Swaps  and ↑ ↓

or

We focus on case where translations act trivially!

Any crystal structure defined by 
Wyckoff position(s) in space group

For all Wyckoff positions: 
Form permutation representation, 
check if it contains 1D,  inversion 
even irrep of crystal point group
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Symmetry constraints
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Where to place magnetic ions?

Altermagnetic if:  
 transforms as a 1D,  inversion even 
irrep of the crystal point group: 

N ℝ
ΓN

Under space group operations

N → N N → − N
Preserves  and ↑ ↓ Swaps  and ↑ ↓

or

We focus on case where translations act trivially!

Any crystal structure defined by 
Wyckoff position(s) in space group

For all Wyckoff positions: 
Form permutation representation, 
check if it contains 1D,  inversion 
even irrep of crystal point group

ℝ

Symmetry constraints

Translation & inversion 
don’t connect ↑ / ↓

Decoupled spin & 
orbital space

Spins and lattice 
can transform 
independently

Spin groups

Ideal Altermagnets

Spin-orbit free

Compensated

Alternating spin-splitting

k

ε
Symmetry constraints

Translation & inversion 
don’t connect ↑ / ↓

Ideal Altermagnets

Spin-orbit free

Compensated

Alternating spin-splitting

k

ε

N = SA − SB

independently

etc…

210/230 
space 
groups

1197/1731 
Wyckoff 
positions

HS, McClarty, Rau, Romhányi, 
arXiv:2412.18025, (2024)

30

Structures

https://arxiv.org/abs/2412.18025
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Spin group

If crystalline & magnetic 
unit cells coincide:  

only need collinear 
spin point groups

Correspondence

Collinear spin 
point groups

1D  irrep of an 
ordinary point group

ℝ

Trade-off

Break into non-trivial irrep of ordinary point group

GSO−free = Os(3) × Gspace

Global spin rotations 
& time-reversal

Crystal 
space group

Irrep  under which  transforms is non-trivialΓ N

SO-free paramagnetic group

If crystalline & magnetic unit cells coincide: can use point group of Gspace

Ideal Altermagnets

Spin-orbit free

Compensated

Alternating spin-splitting

k

ε

High symmetry phase

GSO−free

Low symmetry phase

X

N = SA − SB

HS, McClarty, Rau, Romhányi, 
arXiv:2412.18025, (2024)

Evading spin groups

https://arxiv.org/abs/2412.18025
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What is the correspondence between point group irreps and (non-trivial) spin 
point groups, that allows us to avoid using the spin groups entirely?

Point Group

f

 represented by -1f
Non-trivial Irrep:

Non-trivial Spin Point Group

 or [τ∥f ] [2⊥∥f ]

 composed with spin-only 
 or  represented by +1

f
τ 2⊥

Trivial Irrep:

Each 1D, , inversion-even irrep of a point group corresponds to 
one of the possible altermagnetic (non-trivial) spin point groups.

ℝ

SPG  PG Irrep Correspondence↔



33

Spin-orbit free Landau Theory
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Ideal Altermagnets
Spin-orbit free & 
compensated

Alternating spin-
splitting

k

ε

Order parameter:     N = SA − SB
(transforms as  in crystal point group)ΓN

Multipolar pseudo-primary 
order parameter

∫ d3r [rμ1
. . . rμn

] m(r)

Transforms as  in crystal point group[Vn]

McClarty, Rau, Phys. Rev. Lett. 132, 176702 (2024)

Spin-orbit free Landau Theory
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Spin splitting

∫ d3r xy m(r)
Multipole Fermi-surface

kxky s

Lowest order multipole determines spin splitting

Hayami, Yanagi, Kusunose J. Phys. Soc. Jpn. 88, 123702 (2019)
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Spin splitting

∫ d3r xy m(r)
Multipole Fermi-surface

kxky s

Lowest order multipole determines spin splitting

Coupling to N
Condition for linear 
coupling between 
multipole and :N

ΓN ∈ [Vn]

F ∼ N ⋅ ∫ d3r xy m(r)

Allowed term in the free energy

Hayami, Yanagi, Kusunose J. Phys. Soc. Jpn. 88, 123702 (2019)
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Spin-orbit free Landau Theory
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Spin splitting

∫ d3r xy m(r)
Multipole Fermi-surface

kxky s

Lowest order multipole determines spin splitting

Coupling to N
Condition for linear 
coupling between 
multipole and :N

ΓN ∈ [Vn]

F ∼ N ⋅ ∫ d3r xy m(r)

Allowed term in the free energy

Classify
Multipoles fully specify the the SO-

free Landau theory

For each 1D,  irrep of a crystal 
point group (i.e. for each ) 
find lowest order  multipole

ℝ
ΓN

n

Find explicit multipole 
component(s)  

(by finding invariant polynomial of order n)

Just 54 possible SO-free Landau 
theories for collinear altermagnets 
(whose chemical and magnetic unit cells coincide)

Find n = 1, 2, 3, 4, 6

Hayami, Yanagi, Kusunose J. Phys. Soc. Jpn. 88, 123702 (2019)
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Alternating spin-
splitting

k
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Order parameter:     N = SA − SB
(transforms as  in crystal point group)ΓN

Multipolar pseudo-primary 
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∫ d3r [rμ1
. . . rμn
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Transforms as  in crystal point group[Vn]
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Spin-orbit free Landau Theory
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HS, McClarty, Rau, Romhányi, arXiv:2412.18025, (2024)

Spin-orbit coupled Landau Theory

https://arxiv.org/abs/2412.18025
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SOC < Splitting

Dominant 
features from 
SO-free limit

Presence of 
SOC changes 

symmetry

Locked spin & 
orbital space

Spins 
transform with 

lattice

Magnetic 
groups

Real Altermagnets

Spin-orbit coupled …but SOC is small!

k

ε

Order parameter:     N = SA − SB

(transforms as )ΓN ⊗ aeV

Multipolar pseudo-primary 
order parameter

∫ d3r [rμ1
. . . rμn
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Physical property tensors
: tensor for physical property of interest  

(e.g. Hall conductivity, magnetoresistance…)
ξ

Γξ
SOC paramagnetic group rep. 

(point group + time-reversal)

I

σA =

0 σxy σxz
−σxy 0 σyz
−σxz −σyz 0

Response Tensors

Spin-orbit coupled Landau Theory
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Néel components transform as

{Nx, Ny} ∼ E2g Nz ∼ B1g{Nx, Ny} ∼ E2g

Observed experimentally!

Example: MnTe
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https://arxiv.org/abs/2412.18025
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and these are tabulated.

Whenever band structure 
degeneracy plays a crucial role in the 

phenomenon we’re studying, we 
cannot avoid using spin group theory 

in the limit of negligible SOC.

For collinear systems especially, we 
can avoid directly using spin groups, 
taking advantage of an equivalent 
approach via non-trivial irreps of the 

paramagnetic group.
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