# Terahertz and Raman Spectroscopies of Quantum Magnets.

# Rolando Valdés Aguilar Guest Researcher, NIST Gaithersburg







**Evan Jasper** 



**Chase Lyon** 

#### **OSU PHYSICS**



**Daniel Heligman** 



**Alex Giovannone** 



Yuan-Ming Lu





Yufei Li



Angela Hight Walker

#### **NIST GAITHERSBURG**

Jeff R. Simpson Kevin F. Garrity Maria Muñoz **Tehseen Adel** 



Nandini Trivedi



Thuc Mai



# Magnons

Spin waves (aka magnons) are elementary excitations in a magnetic system with long-range magnetic order.

E.g. spins precess around the direction of ordered moment (usually parallel to the external field)



Spin waves can be probed by neutrons and light scattering excitations, and thermal/spin transport

## Magnons



# **Topological Magnons**



Like in topological insulators, surface/edge states are protected from backscattering. Longer coherence lengths.

Can information be shared?

# **Terahertz Spectroscopy**

# **Terahertz Spectrum**



 $1 \text{ THz} \sim 1 \text{ ps} \sim 300 \mu \text{m} \sim 33 \text{ cm}^{-1} \sim 4.1 \text{ meV} \sim 47.6^{\circ} \text{K}$ 

#### **Natural Energy/Frequency/Time Scales in Materials**

- + 1 THz = 4.1 meV = 1 ps = 48 K = 33 cm<sup>-1</sup>
- + Momentum relaxation time in metals is ~ 100's fs to 10's ps
- + Energy gaps in superconductors ~ few meV
- + (Anti)-Ferromagnetic Resonances ~ few to 100's GHz
- + Spin-orbit energy in transition metal oxides ~ few meV to 100's meV



# **Electromagnetic Waves**



Electric field can accelerate charges, excite polarization waves. Magnetic field can excite magnetization waves.

Note that  $p = h/\lambda$  is the momentum of the wave. Long wavelength means small momentum.

# **Lattice Vibration (phonon)**



# Spin Wave (magnon)



# **THz Laboratory**





#### **Time-domain terahertz spectroscopy**



# **Magnon Polaritons**



Two sublattices AFM + Mean field



#### 1 THz ~ 4 meV ~ 44 K ~ 33 cm<sup>-1</sup>



T.T. Mai, PhD Thesis (2019).



#### **Raman Spectroscopy**

#### **Raman Spectroscopy**



**Ground State** 





The symmetry of the scattering mode determines the shape of the polar plots. E.g.

$$A_{g} \doteq \begin{pmatrix} b & 0 & d \\ 0 & c & 0 \\ d & 0 & a \end{pmatrix} \qquad B_{g} \doteq \begin{pmatrix} 0 & f & 0 \\ f & 0 & e \\ 0 & e & 0 \end{pmatrix}$$
$$I_{R} \propto |\varepsilon_{s} \cdot R \cdot \varepsilon_{i}|^{2}$$
$$\varepsilon_{i} \doteq \begin{pmatrix} \cos(\theta) \\ \sin(\theta) \\ 0 \end{pmatrix} \qquad \varepsilon_{s} \doteq \begin{pmatrix} \cos(\theta + \varphi) \\ \sin(\theta + \varphi) \\ 0 \end{pmatrix}$$

By controlling polarization of incoming and scattered photons we can figure out (in principle) the matrix representation of the Raman tensor.



| Chai                  | racte            | r T | able           | e of           | the            | gro | oup | D <sub>2h</sub> ( | mmi            | m)*                                            |
|-----------------------|------------------|-----|----------------|----------------|----------------|-----|-----|-------------------|----------------|------------------------------------------------|
| D <sub>2h</sub> (mmm) | #                | 1   | 2 <sub>z</sub> | 2 <sub>y</sub> | 2 <sub>x</sub> | -1  | mz  | my                | m <sub>x</sub> | functions                                      |
| Ag                    | Γ <sub>1</sub> + | 1   | 1              | 1              | 1              | 1   | 1   | 1                 | 1              | x <sup>2</sup> ,y <sup>2</sup> ,z <sup>2</sup> |
| B <sub>1g</sub>       | Γ <sub>3</sub> + | 1   | 1              | -1             | -1             | 1   | 1   | -1                | -1             | xy,J <sub>z</sub>                              |
| B <sub>2g</sub>       | Γ <sub>2</sub> + | 1   | -1             | 1              | -1             | 1   | -1  | 1                 | -1             | xz,J <sub>y</sub>                              |
| B <sub>3g</sub>       | Γ <sub>4</sub> + | 1   | -1             | -1             | 1              | 1   | -1  | -1                | 1              | yz,J <sub>x</sub>                              |
| A <sub>u</sub>        | Γ <sub>1</sub> - | 1   | 1              | 1              | 1              | -1  | -1  | -1                | -1             | •                                              |
| B <sub>1u</sub>       | Г <sub>3</sub> - | 1   | 1              | -1             | -1             | -1  | -1  | 1                 | 1              | z                                              |
| B <sub>2u</sub>       | Γ <sub>2</sub> - | 1   | -1             | 1              | -1             | -1  | 1   | -1                | 1              | у                                              |
| B <sub>3u</sub>       | Γ <sub>4</sub> - | 1   | -1             | -1             | 1              | -1  | 1   | 1                 | -1             | x                                              |
|                       |                  |     |                |                |                |     |     |                   |                |                                                |

More interesting case where irreps have complex characters.



w = exp $(2i\pi/3)$ 

These are treated as 'degenerate', i.e. 2 components of 2-dimensional irrep.

But this is incorrect.

Same issue with 
$${}^{1}E_{u}$$
 and  ${}^{2}E_{u}$ 

| C <sub>3i</sub> (-3)                                       | #                                                          | 1 | 3+      | 3-      | -1       | -3+                   | -3-                   | functions                                                                      |
|------------------------------------------------------------|------------------------------------------------------------|---|---------|---------|----------|-----------------------|-----------------------|--------------------------------------------------------------------------------|
| Ag                                                         | Γ <sub>1</sub> +                                           | 1 | 1       | 1       | 1        | 1                     | 1                     | $x^2+y^2,z^2,J_z$                                                              |
| <sup>1</sup> E <sub>g</sub><br><sup>2</sup> E <sub>g</sub> | Γ <sub>3</sub> +<br>Γ <sub>2</sub> +                       | 1 | w²<br>w | w<br>w² | 1        | w²<br>w               | w<br>w <sup>2</sup>   | (xz,yz),(x <sup>2</sup> -y <sup>2</sup> ,xy),(J <sub>x</sub> ,J <sub>y</sub> ) |
| A <sub>u</sub>                                             | Γ <sub>1</sub> -                                           | 1 | 1       | 1       | -1       | -1                    | -1                    | Z                                                                              |
| <sup>1</sup> E <sub>u</sub><br><sup>2</sup> E <sub>u</sub> | Γ <sub>3</sub> <sup>-</sup><br>Γ <sub>2</sub> <sup>-</sup> | 1 | w²<br>w | w<br>w² | -1<br>-1 | -w <sup>2</sup><br>-w | -w<br>-w <sup>2</sup> | (x,y)                                                                          |

Character Table of the group C<sub>3i</sub>(-3)\*

w = exp( $2i\pi/3$ )

We can tell because the 3-fold rotations (+ and -) do not have the same characters, i.e. they do not belong the same class.

Which means there must be a way to distinguish the representations that have w and  $w^2$  characters.

| Table | C.2:     | $\overline{3}$ . | G | = 6. |
|-------|----------|------------------|---|------|
|       | <u> </u> | •••              |   |      |

| $100000.223 \cdot 100 = 0.$   |   |                          |                          |    |                          |                          |                                                                       |
|-------------------------------|---|--------------------------|--------------------------|----|--------------------------|--------------------------|-----------------------------------------------------------------------|
| class                         | 1 | $3^{-}$                  | $3^+$                    | ī  | $\overline{3}^{-}$       | $\overline{3}^+$         |                                                                       |
| order                         | 1 | 3                        | 3                        | 2  | 6                        | 6                        |                                                                       |
| Ag                            | 1 | 1                        | 1                        | 1  | 1                        | 1                        | $J_z,z^2,x^2+y^2$                                                     |
| $^{1}\mathrm{E_{g}}$          | 1 | $\frac{-1+i\sqrt{3}}{2}$ | $\frac{-1-i\sqrt{3}}{2}$ | 1  | $\frac{-1+i\sqrt{3}}{2}$ | $\frac{-1-i\sqrt{3}}{2}$ | $J_x - \mathrm{i}J_y,  xz - \mathrm{i}yz,  x^2 - y^2 + 2\mathrm{i}xy$ |
| $^{2}\mathrm{E_{g}}$          | 1 | $\frac{-1-i\sqrt{3}}{2}$ | $\frac{-1+i\sqrt{3}}{2}$ | 1  | $\frac{-1-i\sqrt{3}}{2}$ | $\frac{-1+i\sqrt{3}}{2}$ | $J_x + iJ_y, xz + iyz, x^2 - y^2 - 2ixy$                              |
| A <sub>u</sub>                | 1 | 1                        | 1                        | -1 | -1                       | -1                       | z                                                                     |
| $^{1}\mathrm{E}_{\mathrm{u}}$ | 1 | $\frac{-1+i\sqrt{3}}{2}$ | $\frac{-1-i\sqrt{3}}{2}$ | -1 | $\frac{1-i\sqrt{3}}{2}$  | $\frac{1+i\sqrt{3}}{2}$  | $x - \mathrm{i}y$                                                     |
| $^{2}\mathrm{E_{u}}$          | 1 | $\frac{-1-i\sqrt{3}}{2}$ | $\frac{-1+i\sqrt{3}}{2}$ | -1 | $\frac{1+i\sqrt{3}}{2}$  | $\frac{1-i\sqrt{3}}{2}$  | $x + \mathrm{i}y$                                                     |

If we consider time-reversal symmetry, then

$$x + iy \mid x - iy$$

$$J_x + iJ_y \mid J_x - iJ_y$$

are distinguishable.

#### Then, the Raman matrices become:

$${}^{1}E_{g} \doteq \begin{pmatrix} c & 2ic & d \\ 2ic & -c & -id \\ d & -id & 0 \end{pmatrix} \qquad {}^{2}E_{g} \doteq \begin{pmatrix} c & -2ic & d \\ -2ic & -c & id \\ d & id & 0 \end{pmatrix}$$



Same as before, time reversal can distinguish both  $E_g$  representations, producing:

$${}^{1}E_{g} \doteq \begin{pmatrix} b & 0 & 0 \\ 0 & be^{i\frac{2\pi}{3}} & 0 \\ 0 & 0 & be^{-i\frac{2\pi}{3}} \end{pmatrix}$$

$${}^{2}E_{g} \doteq \begin{pmatrix} b & 0 & 0\\ 0 & be^{-i\frac{2\pi}{3}} & 0\\ 0 & 0 & be^{i\frac{2\pi}{3}} \end{pmatrix}$$

# MnTe<sub>2</sub>

Transition temperature ~ 87 K

Noncollinear magnetic structure

Space group  $Pa\overline{3}$ 

Point group  $m\overline{3}$ 

S = 5/2









| С      |      |     | 0<br>        | 5   | 10    | .15      |
|--------|------|-----|--------------|-----|-------|----------|
|        |      | 90° |              | 60° |       |          |
|        | 120° | - e | • •          | -   | × 3   | ٥°       |
|        |      |     |              |     | X     | <b>.</b> |
| 150°.  | 11   |     |              |     |       | Y        |
|        |      |     |              |     | 1     | +0°      |
| 1      |      |     | $\mathbb{X}$ |     |       | <b>†</b> |
| 180° - |      |     |              |     | 11    | 1330°    |
|        |      |     |              |     |       | [        |
| 2      | 210° |     |              | /   | 100   | ٥        |
|        |      |     | -            | -   | > 300 | )        |
|        |      | 240 | 2            | 70° |       |          |



| A | 98 cm <sup>-1</sup>  | Tg |
|---|----------------------|----|
| В | 107 cm <sup>-1</sup> | Eg |
| С | 179 cm <sup>-1</sup> | Ag |
| D | 183 cm <sup>-1</sup> | Tg |



Eg phonon splits. Loss of symmetry?

Yes! Time reversal, upon magnetic order.

33

# **CoTiO**<sub>3</sub>

# **Basic Properties of CoTiO**<sub>3</sub>



Phys. Rev. B 109, 184436 (2024)

# **Basic Properties of CoTiO**<sub>3</sub>



Dirac crossing of magnon bands.

Within LSWT, spectrum must be gapless at zone center.

*Nat Commun* **12**, 3936 (2021)

#### **THz transmission Results**



Phys. Rev. B 109, 184436 (2024)

#### **Raman Experiment**





#### **Raman magnetic field dependence**



#### **Raman Temperature Dependence**











# Hamiltonian

| Effective $\tilde{S} = 1/2$ Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Flavor Wave Model                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\tilde{H} = \tilde{H}_{\rm bl} + \tilde{H}_6 + \tilde{H}_Z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $H = H_0 + H_{\rm bl} + H_6 + H_{\rm bq} + H_{\rm Z}$                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $H_0 = \sum_{oldsymbol{r},i} (3\lambda/2) oldsymbol{S}_{oldsymbol{r},i} \cdot oldsymbol{l}_{oldsymbol{r},i} + \delta\left(\left(l^z_{oldsymbol{r},i} ight)^2 - 2/3 ight)$                                              |
| $	ilde{H}_{ m bl} = rac{1}{2} \sum_{m{r},egin{smallmatrix} m{	au}_{m{r}} & m{	au}_{m{	au},i}^{T} m{	au}_{m{	au}_{m{	au}}}^{ijj} m{	au}_{m{	au}_{m{	au}},j} & m{	au}_{m{	au}_{m{	au}},i}^{T} m{	au}_{m{	au}_{m{	au}}}^{ijj} m{	au}_{m{	au}_{m{	au}},j} & m{	au}_{m{	au}_{m{	au}},j} & m{	au}_{m{	au}_{m{	au}},i}^{ijj} m{	au}_{m{	au}_{m{	au}},i}^{ijj} m{	au}_{m{	au}_{m{	au}},j}^{ijj} & m{	au}_{m{	au}_{m{	au}},j}^{ijj} m{	au}_{m{	au}_{m{	au}},j}^{ij} m{	au}_{m{	au}},j}^{ij} m{	au}_{m{	au}_{m{	au}},j}^{ij} m{	$ | $H_{ m bl} = rac{1}{2} \sum_{m{r}, \deltam{r}} \sum_{i,j} m{S}_{m{r},i}^{T} m{J}_{\deltam{r}}^{ij} m{S}_{m{r}+\deltam{r},j}$                                                                                          |
| $	ilde{H}_6 = 	ilde{lpha}_6 ig( \mathrm{e}^{-\mathrm{i}	ilde{\phi}_6} \sum_{m{r}} \prod_{i=1}^6 	ilde{S}^+_{m{r}+m{\delta}^{\mathrm{ring}}_i} + \mathrm{h.c.} ig)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $H_{6} = lpha_{6} \left( \mathrm{e}^{-\mathrm{i}\phi_{6}} \sum_{m{r}} \prod_{i=1}^{6} S^{+}_{m{r}+m{\delta}^{\mathrm{ring}}_{i}} + \mathrm{h.c.}  ight)$                                                               |
| L L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ H_{\rm bq} = \frac{1}{2} \sum_{\langle \boldsymbol{r}i, \boldsymbol{r}'j \rangle} q \left( (S_{\boldsymbol{r}i}^+)^2 (S_{\boldsymbol{r}'j}^-)^2 + q^* (S_{\boldsymbol{r}i}^-)^2 (S_{\boldsymbol{r}'j}^+)^2 \right) $ |
| $	ilde{H}_{ m Z} = \mu_{ m B} \sum_{m{r},i} 	ilde{g}_{\parallel} \left( B^x 	ilde{S}^x_{m{r},i} + B^y 	ilde{S}^y_{m{r},i}  ight)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $H_{\mathrm{Z}} = \mu_{\mathrm{B}} \sum_{oldsymbol{r},i} oldsymbol{B} \cdot (2 oldsymbol{S}_{oldsymbol{r},i} - 3 oldsymbol{l}_{oldsymbol{r},i}/2)$                                                                     |
| $\tilde{J}_1^{xx} = \tilde{J}_1^{yy} = -6.36 \text{ meV} \tilde{J}_1^{zz} = 1.97 \text{ meV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $J_1 = -0.90(2) { m meV}$                                                                                                                                                                                              |
| $\left  \tilde{J}_{2}^{xx} = \tilde{J}_{2}^{yy} = - \ 0.33  	ext{meV}, \ \ \tilde{J}_{2}^{zz} = \ 0.30 \ 	ext{meV}  ight $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                        |
| $\left  \tilde{J}_{3}^{xx} = \tilde{J}_{3}^{yy} = 0.78  \text{meV}, \ \ \tilde{J}_{3}^{zz} = 0.15 \text{ meV} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                        |
| $\left  \tilde{J}_{4}^{xx} = \tilde{J}_{4}^{yy} = 0.11  \text{meV}, \ \tilde{J}_{4}^{zz} = 0.32  \text{meV} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $J_4 = 0.189(8)   { m meV}$                                                                                                                                                                                            |
| $\left  \tilde{J}_{5}^{xx} = \tilde{J}_{5}^{yy} = - 0.39  \text{meV},  \tilde{J}_{5}^{zz} = 0.20 \text{ meV} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                        |
| $\left  \tilde{J}_{6}^{xx} = \tilde{J}_{6}^{yy} = 0.79  \text{meV},  \tilde{J}_{6}^{zz} = 0.68 \text{ meV} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                        |
| ${	ilde g}_{\parallel} = 2.73(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\delta = 52(2) 	ext{ meV}$                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\lambda = 16.4(2) 	ext{ meV}$                                                                                                                                                                                         |
| $	ilde{lpha}_6 ~=~ 46(6) ~~ \mathrm{\mu eV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $lpha_6=-0.62(7)$ $ m \mu eV$                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | q = -0.15(1) meV                                                                                                                                                                                                       |

Phys. Rev. B 109, 184436 (2024)

# **SUMMARY**

- Introduced how THz and Raman can be used to study quantum magnets.
- Crucial to consider time-reversal to understand symmetry of excitations.
- CoTiO<sub>3</sub> can be topological, only if inversion symmetry is broken.
- We developed, through extensive THz and Raman measurements, a model Hamiltonian that explains a wide range of properties.
  - Phys. Rev. B 109, 184436 (2024)
  - Phys. Rev. B 111, 104419 (2025)
- A slew of excitations detected below 38 K.
  - Some of them are due to spin-orbit interactions