Designing Light in an Artificial Universe

Han Yan Institute for Solid State Physics, The University of Tokyo

Nat. Phys. 14, 711–715 (2018) R Sibille, N Gauthier, <u>HY</u> et al npj Quantum Materials 7 (1), 51 A Bhardwaj, S Zhang, <u>HY</u> et al PRB 106 (9), 094425, B Gao, T Chen, <u>HY</u> et al Nat. Phys. 21, 83-88 (2025) V Porée, <u>HY</u> et al
arXiv:2312.11641 A Sanders, <u>HY</u>, C Castelnovo, AH Nevidomskyy arXiv:2402.08723, arXiv:2305.08261

Quantum Geometry and Transport of Collective Excitations in (Non-)Magnetic Insulators Ingelheim, May 7 2025

Romain Sibille Nicolas Gauthier Paul Scherrer Institute

Victor Porée Paul Scherrer Institute

Bin Gao Rice

Pengcheng Dai Rice

Andriy Nevidomskyy Rice

Alaric Sanders Cambridge

Claudio Castelnovo Cambridge

What if we can change the law of nature?

The laws of science, as we know them at present, contain <u>many</u> <u>fundamental numbers</u>, like the size of the electric charge of the electron and the ratio of the masses of the proton and the electron. ... The remarkable fact is that <u>the values of these</u> <u>numbers seem to have been very finely adjusted</u> to make possible the development of life.

A Brief History of Time, Stephen Hawking

Quantum Spin Ice: A universe in a grain of sand

- 1.
- 2. Gapless excitations: **photons**
- 3.

Effective theory: **3D** U(1) Quantum Electrodynamics (QED)

Ground state: gapless topological quantum liquid state

Gapped excitations: electric **charges** and magnetic **monopoles**

figure credit: Nature 451, 42-45 (2008)

Quantum Spin Ice: A universe in a grain of sand

- 2. Gapless excitations: photons

Our result: proposal to **experimentally tune the quantum dynamics** of lattice QED of dipolar-octupolar quantum spin ice

- 1. New lattice QED **phases** and **phase transitions**.
- linear photon coupling.

Effective theory: 3D U(1) Quantum Electrodynamics (QED)

1. Ground state: gapless topological quantum liquid state

3. Gapped excitations: electric **charges** and magnetic **monopoles**

2. Photon dynamics: tune the emergent speed of light, birefringence, non-

figure credit: Nature 451, 42-45 (2008)

1. Classical spin ice as electrostatics

2. Quantum spin ice as emergent Quantum Electrodynamics (eQED)

3. Controlling eQED dynamics in dipolar-octupolar quantum spin ice 2^{15}

Outline

Classical Spin Ice on the pyrochlore lattice

$$\mathcal{H} = \sum_{ij} S_i^z S_j^z$$

 \boldsymbol{z} is local basis of in/out tetrahedron

M. Hermele, M. P. A. Fisher, and L. Balents, Phys. Rev. B 69, 064404 (2004)

Classical Spin Ice on the pyrochlore lattice

$$\mathcal{H} = \sum_{ij} S_i^z S_j^z$$

 \boldsymbol{z} is local basis of in/out tetrahedron

single tetrahedron ground state: 2-in-2-out (ice-rule)

similar hydrogen arrangement in ice $\nabla \cdot \boldsymbol{E} = 0$

Classical Spin Ice on the pyrochlore lattice

$$\mathcal{H} = \sum_{ij} S_i^z S_j^z$$

 \boldsymbol{z} is local basis of in/out tetrahedron

single tetrahedron
excited state:
3-in-1-out / 3-out-1-in

2-charge states

Ground state: 2-in-2-out $\nabla \cdot \boldsymbol{E} = 0$

 $\mathcal{H} = \sum_{ij} S_i^z S_j^z$

Classical Spin Ice

Ground state: 2-in-2-out $\nabla \cdot \boldsymbol{E} = 0$

Magnetic Coulomb Phase in the Spin Ice Ho₂Ti₂O₇

T. Fennell,¹* P. P. Deen,¹ A. R. Wildes,¹ K. Schmalzl,² D. Prabhakaran,³ A. T. Boothroyd,³ R. J. Aldus,⁴ D. F. McMorrow,⁴ S. T. Bramwell⁴

Holmium Titanium

Science **326**, 415 (2009)

neutron scattering measures spin-spin correlation in momentum space

 $\nabla \cdot \boldsymbol{E} = 0 \rightarrow \boldsymbol{q} \cdot \boldsymbol{E} = 0$

 $\langle E_i(\boldsymbol{q})E_j(-\boldsymbol{q})\rangle \propto \delta_{ij} - q_i q_j/q^2$

 $\langle E_x(\boldsymbol{q}) E_x(-\boldsymbol{q}) \rangle \sim q_y^2/q^2$

"pinch point"

Classical Spin Ice

$$\mathcal{H} = \sum_{ij} S_i^z S_j^z$$

Ground state: 2-in-2-out $\nabla \cdot \boldsymbol{E} = 0$

Magnetic Coulomb Phase in the Spin Ice Ho₂Ti₂O₇

T. Fennell,¹* P. P. Deen,¹ A. R. Wildes,¹ K. Schmalzl,² D. Prabhakaran,³ A. T. Boothroyd,³ R. J. Aldus,⁴ D. F. McMorrow,⁴ S. T. Bramwell⁴

Holmium Titanium

Science **326**, 415 (2009)

"artificial magnetic monopoles"

1. Classical spin ice as electrostatics

2. Quantum spin ice as emergent Quantum Electrodynamics (eQED)

3. Controlling eQED dynamics in dipolar-octupolar quantum spin ice $\frac{1}{3}$

Outline

Classical Spin Ice

Ground state: 2-in-2-out $\nabla \cdot \boldsymbol{E} = 0$ $H = (\nabla \cdot \boldsymbol{E})^2 \text{ or } |\phi|^2$

2 charge states ----1 charge states -----ground states ------

Quantum Spin Ice

quantum dynamics

Effective model (roughly speaking) $H = J_{zz} |\phi|^2 + J_{\pm} \phi_i e^{iA_{ij}} \phi_j^{\dagger} + \text{h.c.}$

Classical Spin Ice

Ground state: 2-in-2-out $\nabla \cdot \boldsymbol{E} = 0$ $H = (\nabla \cdot \boldsymbol{E})^2 \text{ or } |\phi|^2$

2 charge states ----1 charge states -----ground states ------

Quantum Spin Ice

quantum dynamics

$$H = \sum_{\langle ij \rangle} \left\{ J_{zz} \mathbf{S}_i^z \mathbf{S}_j^z - J_{\pm} (\mathbf{S}_i^+ \mathbf{S}_j^- + \mathbf{S}_i^- \mathbf{S}_j^+) \right\}$$

Effective model (roughly speaking)

$$H = J_{zz} |\phi|^2 + J_{\pm} \phi_i e^{iA_{ij}} \phi_j^{\dagger} + \text{h.c.}$$

SungBin Lee, Shigeki Onoda, and Leon Balents Phys. Rev. B 86, 104412

 $J_{ring} \sum_{O} (S_1^+ S_2^- S_3^+ S_4^- S_5^+ S_6^- + \text{H.c.}) \sim J_{ring} \cos(b)$

 $J_{\rm ring} \cos(b) \qquad J_{\rm ring} = 3J_{\pm}^3 / (2J_{zz}^2)$

 $H = (\nabla \cdot \boldsymbol{E})^2$ or $|\phi|^2$

hopping of charges on a gauge field background

 $H = (\nabla \cdot \boldsymbol{E})^2$ or $|\phi|^2$

2 charge states 1 charge states ground states

overall picture: QSI is a lattice emergent QED (eQED) with photons, electric charges, and magnetic monopoles. All these components have their dynamics and interactions.

Effective model (roughly speaking)

$$H = J_{zz} |\phi|^2 + J_{\pm} \phi_i e^{iA_{ij}} \phi_j^{\dagger} + \text{h.c.}$$

It is generally impossible to solve this model exactly. So mean-field theory and numerics are used to identify the spectrum.

Effective model (roughly speaking)

$$H = J_{zz} |\phi|^2 + J_{\pm} \phi_i e^{iA_{ij}} \phi_j^{\dagger} + \text{h.c.}$$

It is generally impossible to solve this model exactly. So mean-field theory and numerics are used to identify the spectrum.

 $H \sim -\cos(b)$ $H \sim +\cos(b)$ background b = 0 background $b = \pi$

2 different phases of lattice eQED

SungBin Lee, Shigeki Onoda, and Leon Balents Phys. Rev. B 86, 104412

Effective model (roughly speaking)

$$H = J_{zz} |\phi|^2 + J_{\pm} \phi_i e^{iA_{ij}} \phi_j^{\dagger} + \text{h.c.}$$

Gang Chen & collaborators: PRR 5, 033169 PRR 2, 013066 PRB 96, 195127 PRB 96, 085136 PRB 95, 041106 PRL 112, 167203 It is generally impossible to solve this model exactly. So mean-field theory and numerics are used to identify the spectrum.

Félix Desrochers^{1,*} and Yong Baek Kim^{1,†}

¹Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada (Dated: January 16, 2023)

Effective model (roughly speaking)

$$H = J_{zz} |\phi|^2 + J_{\pm} \phi_i e^{iA_{ij}} \phi_j^{\dagger} + \text{h.c.}$$

The spectrum can be measured by neutron scattering expriments.

Praseodymium-Hafnium

Experimental signatures of emergent quantum electrodynamics in Pr₂Hf₂O₇

Romain Sibille [™], Nicolas Gauthier, Han Yan, Monica Ciomaga Hatnean, Jacques Ollivier, Barry Winn, Uwe Filges, Geetha Balakrishnan, Michel Kenzelmann, Nic Shannon & Tom Fennell

Nature Physics 14, 711–715

Effective model (roughly speaking)

The spectrum can be measured by neutron scattering experiments. $Ce_2Sn_2O_7$ Cerium Stannum

As a lattice QED, it is interesting for probing QED physics not accessible from fundamental particles

superluminal Cherenkov radiation effect: charges propagating faster than light!

Spectroscopy of Spinons in Coulomb Quantum Spin Liquids

Siddhardh C. Morampudi¹, Frank Wilczek,^{2,3,4,5,6} and Chris R. Laumann¹ ¹Department of Physics, Boston University, Boston, Massachusetts 02215, USA ²Center for Theoretical Physics, MIT, Cambridge Massachusetts 02139, USA ³T. D. Lee Institute, Shanghai 200240, China ⁴Wilczek Quantum Center, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China ⁵Department of Physics, Stockholm University, Stockholm 114 19, Sweden ⁶Department of Physics and Origins Project, Arizona State University, Tempe Arizona 25287, USA

large fine-structure constant

Emergent Fine Structure Constant of Quantum Spin Ice Is Large

Salvatore D. Pace⁽⁰⁾,^{1,2} Siddhardh C. Morampudi⁽⁰⁾,³ Roderich Moessner,⁴ and Chris R. Laumann⁽⁰⁾ ¹TCM Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom ²Department of Physics, Boston University, Boston, Massachusetts 02215, USA ³Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA ⁴Max-Planck-Institut für Physik komplexer Systeme, 01187 Dresden, Germany

	Candidate QSI material	Vacuum QE
α	1/10	1/137
С	$1 m s^{-1}$	3.0×10^{8} m
е	$10^{-4} \sqrt{\text{eV nm}}$	$1.2 \sqrt{\text{eV} \text{m}}$
т	$10^{-3} \sqrt{\text{eV nm}}$	$82.2 \sqrt{\text{eV} \text{n}}$

1. Classical spin ice as electrostatics

2. Quantum spin ice as emergent Quantum Electrodynamics (eQED)

3. Controlling eQED dynamics in dipolar-octupolar quantum spin ice

Outline

energy

J_{zz} $J_{\rm ring}$ visons photons 25206 ¹⁵ 3 10 0

Alaric Sanders Cambridge

Claudio Castelnovo Cambridge

Andriy H. Nevidomskyy Rice

arXiv:2312.11641, Experimentally tunable QED in dipolar-octupolar quantum spin ice

Effective model (roughly speaking)

$$H = J_{zz} |\phi|^2 + J_{\pm} \phi_i e^{iA_{ij}} \phi_j^{\dagger} + \text{h.c.}$$

One material, one version of eQED

Generally very difficult to have accurate control of its dynamics!

Conventional spin 1/2s on pyrochlore lattice:

$$H = \sum_{\langle ij \rangle} \{J_{zz} \mathbf{S}_{i}^{z} \mathbf{S}_{j}^{z} - J_{\pm} (\mathbf{S}_{i}^{+} \mathbf{S}_{j}^{-} + \mathbf{S}_{i}^{-} \mathbf{S}_{j}^{+}) -g \sum_{i} \mathbf{B} \cdot \mathbf{S}_{i} + (\text{other spin-spin terms})$$

apply magnetic field

Conventional spin 1/2s on pyrochlore lattice:

$$H = \sum_{\langle ij \rangle} \{J_{zz} \mathbf{S}_{i}^{z} \mathbf{S}_{j}^{z} - J_{\pm} (\mathbf{S}_{i}^{+} \mathbf{S}_{j}^{-} + \mathbf{S}_{i}^{-} \mathbf{S}_{j}^{+}) -g \sum_{i} \mathbf{B} \cdot \mathbf{S}_{i} + (\text{other spin-spin terms})$$

Effective model (roughly speaking)

$$H = J_{zz} |\phi|^2 + J_{\pm} \phi_i e^{iA_{ij}} \phi_j^{\dagger} + \text{h.c.}$$

Given a material, the interactions are fixed: one material, one eQED

Our work: can we also control the dynamics of the eQED in QSI, so we can probe different regimes of QED in one compound?

It is possible in a class of materials called Dipolar-Octupolar QSI!

arXiv:2312.11641 A Sanders, <u>HY</u>, C Castelnovo, AH Nevidomskyy

Dipolar-Octuplar QSI

electron orbitals on each single site

sketch of the idea: spin comes from the d electron orbitals. lowest two states are two of the $j_z = 3/2$ states instead of 1/2the pseudo spin-1/2 operators act differently under symmetry

Quantum Spin Ices and Topological Phases from Dipolar-Octupolar Doublets on the Pyrochlore Lattice

Yi-Ping Huang, Gang Chen, and Michael Hermele Phys. Rev. Lett. 112, 167203 - Published 25 April 2014

Dipolar-Octuplar QSI

electron orbitals on each single site

sketch of the idea: spin comes from the d electron orbitals. lowest two states are two of the $j_z = 3/2$ states instead of 1/2the pseudo spin-1/2 operators act differently under symmetry

Quantum Spin Ices and Topological Phases from Dipolar-Octupolar Doublets on the Pyrochlore Lattice

Yi-Ping Huang, Gang Chen, and Michael Hermele Phys. Rev. Lett. 112, 167203 - Published 25 April 2014

> S^y has the symmetry of an octupole

 S^y does not couple to applied magnetic field

Dipolar-Octuplar QSI

 S^y has the symmetry of an octupole

 S^{y} does not couple to applied magnetic field

DO-pyrochlore lattice spin Hamiltonian

$$\mathcal{H} = \sum_{\langle ij \rangle} \left[\sum_{\alpha=x,y,z} J_{\alpha} S_{i}^{\alpha} S_{j}^{\alpha} + J_{xz} (S_{i}^{x} S_{j}^{z} + S_{i}^{y} S_{j}^{x}) \right]$$
$$-\sum_{i} (S_{i}^{z} g_{z} + S_{i}^{x} g_{x}) \hat{z}_{i} \cdot B$$
$$2 \text{ charge states } \cdots \cdots$$
$$1 \text{ charge states } \cdots \cdots$$
$$ground \text{ states } \cdots \cdots$$
$$classical limit \quad H \sim \sum J_{y} S_{i}^{y} S_{j}^{y}$$

conventional pyrochlore lattice spin Hamiltonian

$$\mathcal{H} = \sum_{\langle ij \rangle} \left[\sum_{\alpha=x,y,z} J_{\alpha} S_i^{\alpha} S_j^{\alpha} + J_{xz} (S_i^x S_j^z + S_i^y S_j^x) \right]$$

 $-g\sum_{i} \boldsymbol{B} \cdot \boldsymbol{S}_{i} + (\text{other spin-spin terms})$

DO-pyrochlore lattice spin Hamiltonian

$$\begin{aligned} \mathcal{H} = & \sum_{\langle ij \rangle} \left[\sum_{\alpha = x, y, z} J_{\alpha} S_i^{\alpha} S_j^{\alpha} + J_{xz} (S_i^x S_j^z + S_i^y S_j^x) \right] \\ & - \sum_i (S_i^z g_z + S_i^x g_x) \hat{\boldsymbol{z}}_i \cdot \boldsymbol{B} \end{aligned}$$

DO-pyrochlore lattice spin Hamiltonian

$$\begin{aligned} \mathcal{H} = & \sum_{\langle ij \rangle} \left[\sum_{\alpha = x, y, z} J_{\alpha} S_i^{\alpha} S_j^{\alpha} + J_{xz} (S_i^x S_j^z + S_i^y S_j^x) \right] \\ & - \sum_i (S_i^z g_z + S_i^x g_x) \hat{\boldsymbol{z}}_i \cdot \boldsymbol{B} \end{aligned}$$

$$\mathcal{H}_{I} = \sum_{\langle ij \rangle} J_{y} \sigma_{i}^{z} \sigma_{j}^{z}, \qquad (2)$$
$$\mathcal{H}' = \sum_{\langle ij \rangle} \frac{J_{\pm}}{2} (\sigma_{i}^{+} \sigma_{j}^{-} + \sigma_{i}^{-} \sigma_{j}^{+}) \left[-\sum_{i} \frac{\hat{z}_{i} \cdot B}{2} (\sigma_{i}^{+} + \sigma_{i}^{-}). \right]$$
(3)

$$\begin{aligned} \mathcal{H}_{\text{eff}} &= (1 - \mathcal{P}) \bigg[- \mathcal{H}' \frac{\mathcal{P}}{\mathcal{H}_I} \mathcal{H}' + \mathcal{H}' \frac{\mathcal{P}}{\mathcal{H}_I} \mathcal{H}' \frac{\mathcal{P}}{\mathcal{H}_I} \mathcal{H}' \\ &+ \dots \bigg] (1 - \mathcal{P}), \\ &= \sum_{\mathbf{R} \in \{\text{all } O\}} g(\mathbf{R}) \cos(b) \end{aligned}$$

DO-pyrochlore lattice spin Hamiltonian

$$\begin{aligned} \mathcal{H} = & \sum_{\langle ij \rangle} \left[\sum_{\alpha = x, y, z} J_{\alpha} S_i^{\alpha} S_j^{\alpha} + J_{xz} (S_i^x S_j^z + S_i^y S_j^x) \right] \\ & - \sum_i (S_i^z g_z + S_i^x g_x) \hat{\boldsymbol{z}}_i \cdot \boldsymbol{B} \end{aligned}$$

$$\mathcal{H}_{I} = \sum_{\langle ij \rangle} J_{y} \sigma_{i}^{z} \sigma_{j}^{z}, \qquad (2)$$
$$\mathcal{H}' = \sum_{\langle ij \rangle} \frac{J_{\pm}}{2} (\sigma_{i}^{+} \sigma_{j}^{-} + \sigma_{i}^{-} \sigma_{j}^{+}) - \sum_{i} \frac{\hat{z}_{i} \cdot B}{2} (\sigma_{i}^{+} + \sigma_{i}^{-}). \qquad (3)$$

$$\begin{aligned} \mathcal{H}_{\text{eff}} &= (1 - \mathcal{P}) \bigg[- \mathcal{H}' \frac{\mathcal{P}}{\mathcal{H}_I} \mathcal{H}' + \mathcal{H}' \frac{\mathcal{P}}{\mathcal{H}_I} \mathcal{H}' \frac{\mathcal{P}}{\mathcal{H}_I} \mathcal{H}' \\ &+ \dots \bigg] (1 - \mathcal{P}), \\ &= \sum_{\mathbf{R} \in \{\text{all } O\}} g(\mathbf{R}) \cos(b) \end{aligned}$$

$$g_p = rac{3J_{\pm}^3}{2J_y^2} + rac{5\sqrt{3}J_{\pm}^2}{12J_y^3} (\hat{m{z}}_p \cdot m{B})^2.$$

p=0,1,2,3 for 4 types of rings

 $g_p = rac{3J_{\pm}^3}{2J_y^2} + rac{5\sqrt{3}J_{\pm}^2}{12J_y^3} (\hat{m{z}}_p \cdot m{B})^2.$

also see: Zhou, Desrochers, Kim arXiv:2406.18650

 $\boldsymbol{B} \parallel [100]: \quad g_p = \frac{3J_{\pm}^3}{2J_y^2} + \frac{5B^2 J_{\pm}^2}{12J_y^3}.$

four rings have the same dynamics

$$g_p = rac{3J_{\pm}^3}{2J_y^2} + rac{5\sqrt{3}J_{\pm}^2}{12J_y^3} (\hat{\boldsymbol{z}}_p \cdot \boldsymbol{B})^2.$$

1. We can tune the speed of light!

 $\boldsymbol{B} \parallel [100]: \quad g_p = \frac{3J_{\pm}^3}{2J_y^2} + \frac{5B^2 J_{\pm}^2}{12J_y^3}.$

four rings have the same dynamics

$$g_p = rac{3J_{\pm}^3}{2J_y^2} + rac{5\sqrt{3}J_{\pm}^2}{12J_y^3} (\hat{\pmb{z}}_p \cdot \pmb{B})^2.$$

1. We can tune the speed of light.

2. We can also induce quantum phase transition.

 $\boldsymbol{B} \parallel [100]: \quad g_p = \frac{3J_{\pm}^3}{2J_y^2} + \frac{5B^2 J_{\pm}^2}{12J_y^3}.$

four rings have the same dynamics

also see: Zhou, Desrochers, Kim arXiv:2406.18650

$$\mathcal{H}_{\mathrm{eff}} = \sum_{\boldsymbol{R} \in \{\mathrm{all } \mathsf{O}\}} g(\boldsymbol{R}) \cos(b)$$

$$g_p = rac{3J_{\pm}^3}{2J_y^2} + rac{5\sqrt{3}J_{\pm}^2}{12J_y^3} (\hat{m{z}}_p \cdot m{B})^2.$$

3. We can realize new emergent birefringence.

 $\mathcal{H}_{\text{eff}} = \sum g(\mathbf{R}) \cos(b)$ $R \in \{ all \bigcirc \}$

$$g_p = rac{3J_{\pm}^3}{2J_y^2} + rac{5\sqrt{3}J_{\pm}^2}{12J_y^3} (\hat{m{z}}_p \cdot m{B})^2.$$

3. We can realize new emergent birefringence. 4. We have new quantum liquid phase(s) (x + y) = (x + y)

- 1. We can tune the speed of light.
- 2. We can also induce quantum phase transition.
- 3. We have new quantum liquid phase(s)
- 4. We can realize new emergent birefringence.
- 5. We can realize non-linear photon coupling of b^3 in frustrated flux phase.

Possible three-photon couplings

C. L. Basham and P. K. Kabir Phys. Rev. D 15, 3388 – Published 1 June 1977

magnetic fields.

Black dotted lines indicate the semiclassical phase boundaries

ED Expectation values of ring-flip operators on a 72-site cluster subject to (a-e) 111 and (f-j) 011

According to GMFT, such exotic phase transitions may not happen to current materials.

	J_y	J_X	J_z	J_{XZ}		
$Ce_2Sn_2O_7$	0.069	0.001	0.001	0		
$\mathrm{Ce}_{2}\mathrm{Hf}_{2}\mathrm{O}_{7}$	0.044	0.011	0.016	-0.002		
$\mathrm{Ce}_{2}\mathrm{Zr}_{2}\mathrm{O}_{7}$	0.062	0.063	0.011	0		
Cerium Tin	/Stannu	ım Hafn	ium Zir	conium		
Various works by Romain Sibille, Bruce Gaulin, Pengcheng Da						

arXiv: 2502.14067, Z Zhou, Y-B Kim

Quantum Spin Ice: A universe in a grain of sand

- 2. Gapless excitations: photons

Our result: proposal to **experimentally tune the quantum dynamics** of lattice QED of dipolar-octupolar quantum spin ice

- 1. New lattice QED **phases** and **phase transitions**.
- linear photon coupling.

Effective theory: **3D** U(1) Quantum Electrodynamics

1. Ground state: gapless topological quantum liquid state

3. Gapped excitations: electric **charges** and magnetic **monopoles**

2. Photon dynamics: tune the emergent speed of light, birefringence, non-

[OIST Symposium] Generalized Symmetries in Quantum Matter - Registration

Registration for the symposium (ONLY necessary if you have not previously been contacted by OIST/TSVP)

"Generalized Symmetries in Quantum Matter" organized by Daniel Bulmash, Abhinav Prem, Masahito Yamazaki, Han Yan. The symposium is scheduled to take place from June 16-21 at the Okinawa Institute of Science and Technology Graduate University (OIST). Symposium website: <u>https://www.oist.jp/events/tsvp-symposium-aspects-generalized-</u> <u>symmetries</u>

This symposium is part of the **TSVP Thematic Program** "Generalized Symmetries in Quantum Matter". The program will run from May 12 to July 5, 2025. Thematic Program website: <u>https://www.oist.jp/visiting-program/tp25qm</u>

https://groups.oist.jp/tsvp/tp25qm

Back-up slides

 $\mathcal{H}_{\text{eff}} = \sum g(\mathbf{R}) \cos(b)$ $R \in \{ all \bigcirc \}$

$$g_p = rac{3J_{\pm}^3}{2J_y^2} + rac{5\sqrt{3}J_{\pm}^2}{12J_y^3} (\hat{m{z}}_p \cdot m{B})^2.$$

3. We can realize new emergent birefringence. 4. We have new quantum liquid phase(s) (x + y) = (x + y)

Possible three-photon couplings

C. L. Basham and P. K. Kabir Phys. Rev. D **15**, 3388 – Published 1 June 1977

magnetic fields.

Black dotted lines indicate the semiclassical phase boundaries

ED Expectation values of ring-flip operators on a 72-site cluster subject to (a-e) 111 and (f-j) 011

Spinon Signatures

The spinon spectrum is much easier to be measured in current neutron scattering experiments.

Different phases have very different features.

F Desrochers, Y-B Kim PRL, 132(6), 066502 (2024) Also ref. Z Zhou, F Desrochers, Y-B Kim PhysRevB.110.174441