

Generation of EUV attosecond structured pulses

Carlos Hernández-García

VNiVERSIDAD D SALAMANCA Unidad de Excelencia en Luz y Materia Estructuradas (LUMES)

Challenge: bring structured light into the EUV/soft x-rays

Our approach: highly nonlinear optics

Structured IR femtosecond pulses

Structured EUV/x-ray attosecond pulses

Attosecond pulses and high harmonic generation (HHG)

Extreme-ultraviolet high-order harmonics

Ferencz

Krausz

)

25	

25	

25	

25	

25	

25	

More than a decade of angular momentum transfer in HHG

Circularly polarized high harmonics

First experiments:

Fleischer, et al. Nat. Photon. 8, 543–549 (2014). O. Kfir, et al. Nat. Photonics 9, 99–105 (2015).

Previous theory works:

- H. Eichmann, et al. Phys. Rev. A, 51, R3414 (1995).
- S. Long, et al. Phys. Rev. A 52 2262 (1995).
- D. Milosevic, et al. Phys. Rev. A 61 063403 (2000).

High harmonic vortices

First experiment:

M. Zürch, C. Kern, P. Hansinger, A. Dreischuh, Ch. Spielmann, Nature Phys. 8, 743 (2012).

Understanding picture:

C. Hernández-García, A. Picón, J. San Román, L. Plaja, PRL 111, 083602 (2013).

More than a decade of angular momentum transfer in HHG

Orbital Angular Momentum transfer in HHG

First experiment:

M. Zürch, C. Kern, P. Hansinger, A. Dreischuh, and Ch. Spielmann, Nature Phys. 8, 743 (2012).

G. Gariepy, et al. Phys. Rev. Lett. 113, 153901 (2014). R. Géneaux, et al. Nature Commun. 7, 12583 (2016).

Experimental characterization of EUV harmonic vortices

G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, Phys. Rev. Lett. 113, 153901 (2014).

F. Sanson, et al.Optics Letters, 43(12), 2780 (2018).

R. Géneaux, A. Camper, T. Auguste, O. Gobert, J. Caillat, R. Taïeb, and T. Ruchon, Nature Commun. 7, 12583 (2016).

Attosecond light spring

Attosecond light spring

Orbital Angular Momentum transfer in HHG

$$\ell_{19} = 19$$

$$\ell_{21} = 21$$

L. Rego

Time-dependent orbital angular momentum - self-torque

Barati Sedeh, Hooman, et al. Nanophotonics 9, 9 (2020)

Time-varying OAM or self-torque

M. de Oliveira, A. Ambrosio, Science Advances 11 (2025)

L. Rego, J. San Román, A. Picón, L. Plaja, and C. Hernández-García, **Phys. Rev. Lett. 117**, 163202 (2016).

RCP $\sigma = 1$

LCP

 $\sigma = -1$

IR intensity

IR tilt-angle

gas jet

Attosecond vortex pulse train

A. de las Heras, D. Schmidt, J. San Román, J. Serrano, D. Adams, L. Plaja, C. G. Durfee, C. Hernández-García, **Optica 11,** 1085 (2024).

- G. Gariepy, et al. Phys. Rev. Lett. 113, 153901 (2014).
- R. Géneaux, et al. Nature Commun. 7, 12583 (2016).
- L. Rego et al. Phys. Rev. Lett. 117, 163202 (2016).

Harmonics with SAM and OAM

K. Dorney et al Nature Photonics 13, 123 (2019). E. Pisanty et al Phys. Rev. Lett. 122, 203201 (2019). L. Rego et al **Opt. Lett. 45**, 5636 (2020). A. de las Heras, et al, **Optica 9**, 71-79 (2022). M. Luttmann, et al., **Sci. Adv. 9**, eadf3486 (2023). N. Brooks, et al. **ACS Photonics**, 12,,495–504 (2025).

L. Rego et al Sci. Adv. 8, eabj7380 (2022).

Harmonics with self-torque or time-dependent OAM

L. Rego, et al. **Science 364**, eaaw9486 (2019) A. de las Heras et al. ACS Photonics 11, 4365 (2024).

Attosecond vortex pulse trains

A. de las Heras, D. Schmidt, et al. **Optica 11**, 1085 (2024)

nature photonics

Article

https://doi.org/10.1038/s41566-025-01699-w

Extreme-ultraviolet spatiotemporal vortices via high harmonic generation

Spatiotemporal optical vortices (STOVs)

Y. Chen, et al. Phys. Rev. A 107, 033112 (2023)

S. Huang et al..Sci. Adv.10, eadn6206 (2024)

STOV focusing dynamics

Numerical simulation results

Experimental generation of EUV harmonic STOVs

R. Martín-Hernández, G. Gui, L. Plaja, H. K. Kapteyn, M. Murnane, C.-T. Liao, M. A. Porras, C. Hernández-García, Nature Photonics, in press (2025)

Inhomogeneity of the driving field

Theory-experiment comparison

High-harmonic **STOVs**

focused STOV at gas jet

Attosecond STOV?

 $\ell_q = \ell_{IR}$

STOV at focusing lens

Attosecond STOVs

Attosecond STOV!

R. Martín-Hernández, L. Plaja, C. Hernández-García, M. A. Porras arXiv:2506.07465

R. Martín-Hernández, L. Plaja, C. Hernández-García, M. A. Porras arXiv:2506.07465

Isolated ultrafast and ultraintense magnetic fields

Rodrigo Sergio Luis Martín Domene Martín-Hernández Sánchez-Tejerina

Generation of intense, ultrafast magnetic fields

M. Blanco, F. Cambronero, M.T. Flores-Arias, E. Conejero Jarque, L. Plaja and C. Hernández-García, **ACS Photonics 6, 38-42 (2019).**

R. Martín-Hernández, L. Grünewald, L. Sánchez-Tejerina, E. Conejero - Jarque, L. Plaja, C. Hernández-García, S. Mai. **Photonics Research 12(5), 1078 (2024).**

Nonlinear B-field driven magnetization dynamics

Circularly polarized B field $100THz, \lambda_B = 3\mu m$ 275T1 ps (FWHM)

Simulations: CoFeB, micromagnetic, MuMax³

$$\frac{i\gamma^{2}}{\omega}\vec{m}_{0}^{\parallel}\left(t\right)\times\left(\vec{b}\left(t\right)\times\vec{b}^{*}\left(t\right)\right)$$

L. Sánchez-Tejerina, R. Hernández-Martín, R. Yanes, L. Plaja, L. López-Díaz and C. Hernández-García, **High Power Laser Science and Engineering 11, e82** (2023).

Isolated circularly-polarized B fields

$$B_x(\mathbf{r}) \propto e^{-(x^2+z^2)/w_0^2}$$

 $B_z(\mathbf{r}) \propto e^{-(x^2+z^2)/w_0^2} e^{i\pi/2}$

Maxwell's equations: longitudinally polarized E-field vortex

Our first approach:

S. Martín-Domene, L. Sánchez-Tejerina, R. Martín-Hernández, C. Hernández-García

We can generate many kinds of structured light beams at the attosecond timescale

Exciting future prospects in HHG interacting with solids & generation of isolated B-fields

Collaborators

University of Colorado (USA)

Nathan Brooks Quynh L. Nguyen Iona Binnie Kevin Dorney Guan Gui Chen-Ting Liao Henry Kapteyn M. Murnane

Politecnico di Milano (Italy)

Federico Vismarra Rocío Borrego-Varillas Matteo Lucchini

Lund University (Sweden)

Melvin Redon Anne L'Huillier Cord Arnold

TU Wien (Austria)

A. Baltuska

Charles Durfee

U. Politecnica Madrid (Spain)

M. A. Porras

U. Paris-Saclay (France)

Alok K Pandey Olivier Guibaud Sophie Kazamias

Martin Luttman Matthieu Guer Thierry Ruchon

Univ. Aut. Madrid (Spain) Antonio Picón

Univ. Southampton (UK) Peter Kazansky

Univ. Santiago de Compostela (Spain)

> M. Blanco F. Cambronero M. Flores-Arias

UC San Diego

U. California San Diego (USA) Tenio Popmintchev

Unidad de Excelencia en Luz y Materia Estructuradas (LUMES)

Laser Applications and Photonics Group

Benjamín Alonso

Enrique Conejero

Aurora Crego

Carlos Hernández-García

Irene Huerta

Luis Plaja

Javier Rguez. Vázquez de Aldana

Carolina Romero

Andrés Sanz

Julio San Román

Javier

Serrano

Marta Gómez

Victor W. Segundo

Víctor Arroyo

Irene Hernández

Cristian Barbero

Sergio Rodrigo Martín Domene Martín-Hernández

Marina Fernández Galán

José Miguel Pablos

Enrique García

VNiVERSiDAD DSALAMANCA

Ignacio López Quintás

Rosa Merchán

Óscar Zurrón

Former PhD Students

Mario Guerras

Íñigo

Sola

Rego

Alba de las Heras

Roberto Boyero

Ana García Cabrera

Theory of high harmonic generation and structured attosecond pulses

Nonlinear propagation of ultrafast laser beams

Diagnostic tools to characterize ultrashort laser pulses

Micro- and nano-structuring of materials with ultrashort pulses

HHG Studio

The most complete application to run High Harmonic Generation simulations

Download HHG Studio

Learn More →

ile Help . 8

🖷 Bad

laser.usal.es/hhgstudio Linux, Windows and MacOS

laser.usal.es/attostructura

Home

Features

About Us

HHG Studio 0.9.6 BETA

Download HHG Studio

7.69 fs FWHM time offse 0 15 hase offset t rad Polarization typ Polarization angle 0 rad

Revert Apply

References to our work in attosecond structured light

SAM-HHG

PNAS 112, 14206 (2015). Nature Photonics 9, 743 (2015). Sci. Adv. 2, e1501333 (2016). Phys. Rev. A 93, 043855 (2016). Optica 4, 520 (2017). Phys. Rev. Lett. 119, 063201 (2017). Opt. Exp. 25, 10126 (2017). Optica 5, 479 (2018). Nature Photonics 12, 349-354 (2018). Opt. Exp. 27, 7776–7786 (2019). Optica 8, 484 (2021). Opt. Exp. 29, 38119-38128 (2021).

STOV-HHG

Nature Photonics (2025) in press. arXiv:2506.07465

OAM-HHG

Phys. Rev. Lett. 111, 083602 (2013). New J. Phys. 17, 093029 (2015). Phys. Rev. Lett. 117, 163202 (2016). Sci. Rep. 7, 43888 (2017). Photonics 4, 28 (2017). Nature Phys. N&V 13, 327 (2017). Science 364, eaaw9486 (2019). ACS Photonics 9, 3, 944–951 (2022). Sci. Adv. 8, eabj7380 (2022) Optica 11, 1085 (2024). ACS Photonics 11, 4365–4373 (2024).

Intense fs magnetic fields ACS Photonics 6, 38–42 (2019). HPLSE 11, e82 (2023). Photonics Research 12, 1078 (2024). Appl. Phys. Lett. 124, 211101 (2024).

VNiVERSiDAD Ð SALAMANCA

Unidad de Excelencia en Luz y Materia Estructuradas (LUMES)

European Research Council Established by the European Commission

SAM-OAM-HHG

Phys. Rev. Lett. 122, 203201 (2019). Nature Photonics 13, 123 (2019). Opt. Lett. 45, 5636 (2020). Optica 9, 71-79 (2022). Sci. Adv. 9, eadf3486 (2023). Comm. Physics 7, 28 (2024). ACS Photonics 12, 495–504 (2025).

Isolated attosecond pulse generation

Ultrafast Science 3, 0036 (2023) ACS Photonics 11, 1673–1683 (2024) Light: Science & Applications 13, 197 (2024) arXiv:2412.06339, in review.

Hermite-Gauss HHG

APL Photonics 10, 060801 (2025)

laser.usal.es/hhgstudio

carloshergar@usal.es

MINISTERIO DE CIENCIA

E INNOVACIÓN

🚨 😽 Junta de

GOBIERNO DE ESPAÑA

🔁 Castilla y León

Fundación **BBVA**

Barcelona **Supercomputing** Center Centro Nacional de Supercomputación

