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 light propagation in free space

from Maxwell’s equations: wave equation for electric (and magnetic) field

with

 for harmonic (single frequency) beam with                   : Helmholtz equation

 assumption: propagation-invariant (“non-diffracting”) beam propagating in z-direction

 leads to 

 factorization in cartesian coordinates (→ plane waves), polar coordinates (→ Bessel beams), …

 from Maxwell’s equation                     : 

transverse components                  can be independently chosen among solutions of Helmholtz equation

longitudinal component determined by

Propagation-invariant and paraxial beams
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 except for special cases: beam with radial structure (e.g., finite beam waist      ) experiences diffraction

 Fraunhofer diffraction on a slit with width        :       

 width of central maximum grows according to

 characteristic length scale for widening of beam: diffraction length        

 divergence of beam described by paraxial parameter

 ansatz for paraxial beam propagating in z-direction

 leads to paraxial Helmholtz equation

r.h.s is of order 

 longitudinal component from Maxwell’s equation                     : 

of order

Propagation-invariant and paraxial beams
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 solution of paraxial Helmholtz equation: Laguerre-Gauss beams

with                                                  ,                                ,                       ,

and        : generalized Laguerre polynomial

 solution of full Helmholtz equation (transverse components also of paraxial equation): Bessel beams

with               : Bessel function of first kind and order 

Laguerre-Gauss and Bessel beams
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Potentials and gauges

 derivation of electric and magnetic fields from potentials

 equations of motion for      and       decouple in

• Coulomb gauge

• Lorenz gauge

 in Coulomb gauge far from sources:                  → special case of Lorenz gauge

 discussion of propagation-invariant and paraxial beams holds also for

 in strictly paraxial limit:       is transverse, satisfies

• Helmholtz equation (propagation-invariant beam)

• paraxial Helmholtz equation                                                              (paraxial beam)

 construction of        and         from Lorenz gauge condition
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 choice:                        (2 component A, 2CA)

Potentials and gauges

 choice:                        (3 component A, 3CA)

 generalization, weighting with parameter 

 all potentials satisfy Lorenz gauge condition and wave equation  electromag. fields satisfy Maxwell’s equations

 and         of first order in paraxial parameter                            or

 potentials for different      are not related by a gauge transformation: lead to different electromagnetic fields
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Application to Bessel beams

 ansatz: transverse vector potential for vortex beam

with in-plane polarization vector    ,

• vector potential with well-defined orbital (OAM) and spin (SAM) angular momentum       and      , respectively

• radial shape: Bessel function of first kind and order   , satisfies

• characterizes radial length scale (beam waist), close to beam center

• structure of beam unchanged for               , in the following 

 construction of missing components: divergence of the transverse potential

 potentials satisfying Lorenz gauge (with                    )



SPICE Workshop, Ingelheim, June 10th – 12th, 2025    Tilmann Kuhn 11

Bessel beams: electromagnetic fields

 field components from                                                                ,

 with                                                and                                                , ,

 for              (3CA)

with

 properties

• longitudinal components of first order in paraxial parameter

• transverse component of       circularly polarized

• transverse component of       elliptically polarized, correction of order

• all non-paraxial corrections exhibit mixing of orbital and spin angular momentum 

longitudinal fields              , transverse fields
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Bessel beams: electromagnetic fields

 for              (2CA)

 properties  

• longitudinal components and OAM – SAM mixing as before

• transverse component of       circularly polarized

• transverse component of       elliptically polarized
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Bessel beams: electromagnetic fields

 for other values of     : both and  elliptically polarized

 special case for

 properties  

• and      fields completely symmetric

• as for plane waves

• fields in agreement with superposition of plane waves with given circular polarization
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Bessel beams: parallel and antiparallel class
 3CA fields:

 beams can be separated into two classes:  

• parallel class:                                              

• antiparallel class:                                       

 in parallel class non-paraxial corrections in higher order than        close to beam center less important

 in antiparallel class non-paraxial corrections in lower order than        close to beam center more important

 particularly interesting cases:

• ,                 :  non-vanishing longitudinal electric and magnetic field at the beam center 

• ,                 :  non-vanishing transverse magnetic field at beam center
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Electric field profiles for

 in-plane component dominates

in region around beam center

 z-component vanishes at beam center

 behaves similar to plane wave
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Electric field profiles for

 beam from parallel class

 in-plane component dominates

around beam center

 singularity has saddle-point like 

structure at any time

 z-component vanishes at beam center
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 beam from antiparallel class

 in-plane component alternately 

azimuthally and radially polarized

 singularity cycles through center, 

source, center, sink, …

 z-component dominates close to 

beam center

Electric field profiles for
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Quantum dots: confinement and envelope level structure 

 self-assembled quantum dots, grown by Stranski-Krastanov growth

 material with smaller band gap embedded in material with larger gap

e.g., InAs in GaAs,  GaAs in AlGaAs

 thickness variation leads to approximately harmonic lateral

confinement potential for envelope functions of electrons and holes

 two-dimensional harmonic oscillator, for cylindrical symmetry:

 factorization in cartesian coordinates: Hermite-Gauss wave functions

 factorization in polar coordinates: Laguerre-Gauss wave functions

: envelope angular momentum

P.W. Fry et al., 

Phys. Rev. B 62, 16784 (2000)
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Quantum dots: spin and intrinsic angular momentum
 full wave functions: product of envelope, Bloch and spin functions

 typical band structure of bulk III-V semiconductors

 conduction band: originates from s-orbitals

 valence bands: originate from p-orbitals

 with spin-orbit interaction: 

heavy hole (hh), light hole (lh) and split-off (so) band; so band typically negligible

 excitation of electron-hole pairs: excitons; characterization by valence band (H,L)

and angular momentum of electron+hole

 optical excitation:                :        circularly pol. light; :        linearly pol. light
so

lh

hh
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Quantum dots: complete level structure (idealized)

characterization of optical transitions (excitons) by:

 intrinsic (band+spin) angular momentum

in valence and conduction bands

 orbital angular momentum      of

envelope function

 radial quantum number      of envelope function

(typically conserved, since light beam

diameter much larger than QD size)

 here: intrinsic angular momentum in

electron picture; for holes in valence band

opposite signs
QD envelope angular momentum
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Optical transitions in a cylindrically symmetric QD

QD envelope angular momentum
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 proposal by E. Pazy et al. (2003) for spin-based  quantum computation (without structured light)

 goal: flip of the spin of an additional electron in the QD

 initial state: electron with

 creation of lh exciton with                  by beam with

 removal of lh exciton with                  by beam with  

 final state: electron with 

 without structured light: excitation from the side necessary

 requires cleaving of sample, 

difficult in particular for arrays of QDs

Control of the spin of an electron in a negatively charged QD
E. Pazy et al., Europhys. 

Lett. 62, 175 (2003)

G.F. Quinteiro, T. Kuhn,  

Phys. Rev. B 90, 115401 (2014)
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 extension to initial superposition states:

three-pulse excitation

 inversion of initial state

G.F. Quinteiro, T. Kuhn,  

Phys. Rev. B 90, 115401 (2014)

Control of the spin of an electron in a negatively charged QD
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 reconstruction based on selection rules for envelope functions

 here: real wave functions, more realistic in case of small deviations from circular symmetry

 relevant property of light beam: nodal structure near beam center

 linearly polarized Bessel beam, approximation                                 (since                       )

 model: slightly asymmetric QD, 

 conduction band, hh and lh bands, Coulomb interactions

 full configuration interaction (CI) calculation

M. Holtkemper, G.F. Quinteiro, D.E. Reiter, T. Kuhn, 

Phys. Rev. B 102, 165315 (2020)

Reconstruction of exciton wave functions by structured light
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M. Holtkemper, G.F. Quinteiro, D.E. Reiter, T. Kuhn, 

Phys. Rev. B 102, 165315 (2020)

Reconstruction of exciton wave functions by structured light

 simplified model, without Coulomb inter-

action and valence band mixing

 all possible excitonic states

 measurement of absorption e.g. by PLE

 absorption spectrum for           (plane wave)

 absorption spectra for

 absorption spectra for

 absorption spectra for
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M. Holtkemper, G.F. Quinteiro, D.E. Reiter, T. Kuhn, 

Phys. Rev. B 102, 165315 (2020)

Reconstruction of exciton wave functions by structured light

 complete model, including Coulomb inter-

action and valence band mixing

 all possible excitonic states

 additional splittings due to exchange

interaction  bright-dark splittings

 systematic study for field profiles

 absorption spectra for

 absorption spectra for

 absorption spectra for

 absorption spectra for



SPICE Workshop, Ingelheim, June 10th – 12th, 2025    Tilmann Kuhn 28

 energetically lowest to excitons: HH±2, intrinsic angular momentum (spin)  ±2

 cannot emit a photon, cannot relax to lower energy state: optically dark, long lifetime

 interesting for quantum applications: quantum memory

 due to missing light coupling difficult to excite

 possible schemes: 

• use in-plane magnetic field
(S. Lüker, T. Kuhn, D.E. Reiter, Phys. Rev. B 92, 201305(R) (2015))

disadvantage: magnetic field induced coupling also reduces lifetime

• use excitation to higher states and subsequent relaxation

take advantage of spin selection rules during relaxation

 here: excitation into states with strong band mixing

 making use of properties of vortex light

Dark exciton preparation by excitation with a longitudinal light field
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M. Holtkemper, G.F. Quinteiro, D.E. Reiter, T. Kuhn, 

Phys. Rev. Res. 3, 013024 (2021)

Dark exciton preparation by excitation with a longitudinal light field

 absorption spectrum of reduced model, no

Coulomb interaction and valence band mixing

 transverse field: excitation of excitons with  

spin ±1

 longitudinal field: excitation of excitons with  

spin 0

 absorption spectrum of complete model, with 

Coulomb interaction and valence band mixing

 additional lines due to band and spin mixing 

 particularly pronounced mixing between

HH±2 and LH±0
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 idea: excitation with longitudinal light field

creates LH±0 excitons

 due to mixing contribution of higher HH±2

excitons

 spin-conserving relaxation into lowest HH±2 

exciton

 spin mixing of different exciton states:

 lowest two excitons (dark and bright) 

very pure spin states

 higher excitons typically strongly mixed

 dominant mixing either HH±1 - LH±1

or HH±2 - LH±0
M. Holtkemper, G.F. Quinteiro, D.E. Reiter, T. Kuhn, 

Phys. Rev. Res. 3, 013024 (2021)

Dark exciton preparation by excitation with a longitudinal light field
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 simulation of exciton relaxation due to coupling to 

acoustic and optical phonons

 results for two different initial states

 efficient population of dark exciton ground state

 classification of exciton states according to 

their spin 1 contribution

 most states fall into one of the two classes

 a few states outside of this classification
M. Holtkemper, G.F. Quinteiro, D.E. Reiter, T. Kuhn, 

Phys. Rev. Res. 3, 013024 (2021)

Dark exciton preparation by excitation with a longitudinal light field
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 vortex beams

• paraxial and propagation-invariant beams: Laguerre-Gauss and Bessel beams

• construction of vortex beams: different assumptions on gauge leads to different beams

• properties of vortex beams: parallel and antiparallel class

 excitation of quantum dots by vortex beams

• basic properties of quantum dots: spin, band and envelope angular momentum

• selection rules for excitation by vortex beams: specific transitions addressed by specific beams

• reconstruction of exciton states: absorption spectra for different beams reflect structure of wave function

• dark exciton preparation using structured light: use spin mixing of higher states and phonon relaxation

Thank you for your attention!

Conclusions


