

GEETHA BALAKRISHNAN

Department of Physics

Magnetic Skyrmion Materials

SPICE Quantum Functionalities of Nanomagnets
June 2025

WARWICK

Dr. Daniel Mayoh

m

Dr. Oleg Petrenko

Prof. Martin Lees

EPSRC

Engineering and Physical Sciences Research Council

THE SKYRMION PROJECT ::

https://go.warwick.ac.uk/supermag

SPICE 2025

Skyrmionic materials

Material	Symmetry	Type	Tc (K)	
MnSi	B20- <i>P</i> 213	Chiral	30	Metal
FeGe	B20- <i>P</i> 213	Chiral	278	Metal
Cu ₂ OSeO ₃	B20- <i>P</i> 213	Chiral	58	Insulator
Co-Zn-Mn	P4132	Chiral	280-400	Metal
GaV ₄ S ₈	C3v	Polar	13	Insulator

-The interplay between the *Dzyaloshinskii-Moriya interaction* (DMI) and the short range exchange interaction cants the spins on an intermediate length scale -Produces an extraordinary spin texture comprising a chiral, topologically stable magnetic whirl.

Skyrmions in Chiral Cubic lattices

Materials of Interest

Frustrated/intermetallic magnets

RE₂PdSi₃ (RE=Gd,Tb...) GdRu₂Si₂ GdRu₄AI₁₂

Layered/2D magnets

Fe₃GeTe₂, Fe₅GeTe₂, Fe₃GaTe₂

Cu₂OSeO₃ Nanoparticles

George Wood

RE₂PdSi₃ (RE=Gd,Tb...) GdRu₂Si₂

GdRu₄Al₁₂

Frustrated/intermetallic magnets

Sam Holt

Ales Stefancic

Daniel Mayoh

Skyrmions: Intermetallic Magnetic materials

Possible Mechanism:

- 1.FM and AFM interactions in geometrical frustration.
 - A. Leonov and M. Mostovoy, Nat. Commun. 6, 8275 (2015).
- 2.RKKY and four spin interaction mediated by itinerant electrons.
 - R. Ozawa, S. Hayami, Y. Motome, PRL 118, 147205 (2017).
- 3.Inter-orbital frustration between Gd 5d and Gd 4f.
 - T. Nomoto, T. Koretsune, R. Arita, PRL 125, 117204 (2020).

Crystal Growth using Optical Furnaces

Floating Zone Technique

- 2 Mirror Halogen Lamp Furnace
- 4 Mirror Halogen Lamp Furnace
- 4 Mirror Xenon Lamp Furnace

Temperature ranges covered:

Maximum of 2150°C to 2800°C

Gd₂PdSi₃

Crystal Growth, Frustration and Skyrmions

Gd Pd Si

Centrosymmetric materials

- Triangular ordering of the magnetic rare earth atoms leads to strong magnetic frustration.
 - First known material where skyrmions are stabilised by magnetic frustration
 - Skyrmion sizes are very small in frustrated magnets (~2-3 nm)
 - Skyrmions stabilised over a large H-T region (< 20 K and 0.5

to 1.5 T)

Kurumaji et al Science 365 914-918 (2019)

RE₂PdSi₃ (RE= Tb)

[100]

Tb₂PdSi₃

A. Szytula *et al.* J. Magn. Magn. Mater. **202** (1999)

Large high quality single crystals of Tb₂PdSi₃ grown using the optical floating zone technique

 $T_N = 24$ K with 8 distinct states reported to exist at varying temperatures and magnetic fields below T_N

R₂PdSi₃ (R= Gd, Tb, Nd, Ho, Ce and Er)

Gd₂PdSi₃

Ho₂PdSi₃

 Nd_2PdSi_3

Ce₂PdSi₃

Tb₂PdSi₃

Er₂PdSi₃

- Centrosymmetric, no magnetic frustration
- Alternating square lattice Gd layers and Ru₂Si₂ layers
- Skyrmions result due to the RKKY interaction
- Skyrmions stabilised for field along [001]
- H-T Phase diagrams (produced at Warwick) confirm that it is very different for field along [110]
- New Phase (4) identified for field along [001]

G.A. Wood PhD Thesis, Warwick 2024 Khanh et al Advanced Science, 2105452 (2022); Nat. Nano. **15**, 444 (2020)

¹⁶⁰GdRu₂Si₂ Crystal for neutron measurements

Double-Q ground state with topological charge stripes in the centrosymmetric skyrmion candidate GdRu₂Si₂

G. D. A. Wood , ^{1,*} D. D. Khalyavin , ² D. A. Mayoh , ¹ J. Bouaziz , ³ A. E. Hall, ¹ S. J. R. Holt, ^{4,5} F. Orlandi , ² P. Manuel, ² S. Blügel , ³ J. B. Staunton , ¹ O. A. Petrenko , ¹ M. R. Lees , ¹ and G. Balakrishnan , ^{1,†}

- Determination of the double-Q magnetic ground state (Phase 1) of the centrosymmetric skyrmion candidate GdRu2Si2 via neutron diffraction.
- Ground state has a 1D topological charge density.
- Establishes GdRu₂Si₂ as a magnetically diverse system in which phase transitions between distinct topological spin textures can be probed.

A Magnon Band Analysis of GdRu₂Si₂ in the Field-Polarized State

G A. Wood et al npj Quantum Materials 10, 39 (2025)

Spin excitations of GdRu₂Si₂ are measured and modelled in the field polarized phase using inelastic neutron scattering on the LET spectrometer. A magnetic Hamiltonian for the system is derived.

M. Gomilšek et al *Anisotropic Skyrmion and Multi-q Spin Dynamics in Centrosymmetric Gd₂PdSi₃*, Physical Review Letters 134, 046702 (2025).

L. Gries et al, *Uniaxial pressure effects, phase diagram, and tricritical point in the centrosymmetric skyrmion lattice magnet GdRu₂Si₂, Physical Review B 111, 064419 (2025)*

B. M. Huddart et al, *Field-orientation-dependent magnetic phases in GdRu₂Si₂ probed with muon-spin spectroscopy*, Physical Review B 111, 054440 (2025)

$RE_3Ru_4Al_{12}$ (RE= Gd)

Large high quality single crystals of Gd₃Ru₄Al₁₂ grown using the optical floating zone technique

Gd₃Ru₄Al₁₂

Breathing Kagome lattice
Highly frustrated system

Gd₃Ru₄Al₁₂: *P*6₃/*mmc*

M. Hirschberger et al. arXiv:1812.02553

Daniel Mayoh

Layered Materials: FGT

Fe3GeTe2, Fe3GaTe2, Fe5GeTe2

Fe₃GeTe₂

Ding et al Nano Lett. 20(2), 868-873 (2020)

- Fe₃GeTe₂ is a 2D van der Waals magnet.
- centrosymmetric hexagonal, P63/mmc
- It is a ferromagnetic metal with Tc ~ 220K.
- Evidence of observation of Skyrmion bubbles.
- Tc dependent on the actual Fe content.

LTEM image of a skyrmion 'bubble' lattice observed at ~93K, in 600 Oe.

Spin textures: Competition between the uniaxial magnetic anisotropy and magnetic dipole–dipole interaction

Fe₃GeTe₂

Magnetism

T_C variation with Fe content in the single crystals

The kink in the magnetisation curves at ~160K is the region where the skyrmions are observed.

D. A. Mayoh et al ACS Crystal Growth & Design 21, 6786-6792 (2021)

Skyrmions, Skyrmionium, Skyrmion bag and skyrmion sacks

Scanning transmission x-ray microscopy on Fe_{0.27}GeTe₂.

a) Skyrmion b) Skyrmionium c) Skyrmion bag d) Skyrmion sack

L. Powalla et al., Advance Materials 35, 2208930 (2023).

D Backes *et al Valence-state mixing and reduced magnetic moment in* FeGe₂Te₃ single crystals with varying Fe content probed by x-ray spectroscopy Nanotechnology **35** 395709 (2024)

D Backes et al *Strain-Modulated Ferromagnetism at an Intrinsic van der Waals Heterojunction*, Advanced Functional Materials 2400552 (2024)

S Vaidya et al *Direct evidence from high-field magnetotransport for a dramatic change of quasiparticle character in van der Waals ferromagnet* Phys. Rev. Research **6** L032008 (2024)

Fe₃GaTe₂

Large, very shiny hexagonal crystals

T_c range ~350-380 K

Fe₅GeTe₂

- Bulk single crystals exhibit a Tc of 310 K
- Nanoflakes exfoliated from single crystals exhibit
 Tc ranging from 270 to 300 K

A. F. May 2D Mater. 9 (2022) 015013

A. F. May, ACS nano 13 (2019) 4436

A.F. May Phys. Rev. Materials 2 (2019) 10440

G. Zhang Nat Comms. 13 (2022) 5067

G. Hu, Adv. Mater 2024 (2024) 2403154

Fe₃GaTe₂ and Fe₅GeTe₂

Cu₂OSeO₃ Nanoparticles

Size effects

- In B20 materials the SkX is stable over a wide T and H rang (Thin films)
- The Skyrmion pocket is smaller in 3D (crystal)
- Different results for different geometries for MnSi
- Motivation to investigate nanoparticles of Cu₂OSeO₃

Das, Bhaskar, et al. "Effect of size confinement on skyrmionic properties of MnSi nanomagnets." Nanoscale 10.20 (2018): 9504-9508.

Material	$T_{\rm c}$ (K)	$\lambda_{\rm m}$ (nm)
MnSi	30	18
$Fe_{1-x}Co_xSi$	<36	40 ~ 230
MnGe	170	3
FeGe	278	70
Cu ₂ OSeO ₃	59	62

Nanoparticles synthesis route

The CuCl₂ solution was slowly added to the Na₂SeO₃ solution producing a precipitate which gradually changed from milky green to blue upon adding additional CuCl₂. This precipitate, which forms via the reaction

$$Na_{2}SeO_{3(aq)} + CuCl_{2(aq)} \longrightarrow$$

$$2NaCl_{(aq)} + CuSeO_{3}.2H_{2}O_{(s)}$$
(1)

 Cu_2OSeO_3 nanoparticles were synthesised by heating $CuSeO_3.2H_2O$ in an alumina crucible under a flow of O_2 in a tube furnace. At the initial heating stage, a dehydration process takes place in multiple steps leading to the overall reaction [42]

$$CuSeO_3.2H_2O \xrightarrow{\Delta T} CuSeO_3 + 2H_2O \uparrow.$$
 (2)

A thermal decomposition then takes place to convert the CuSeO₃ into Cu₂OSeO₃ nanoparticles via the following reactions:

$$4\text{CuSeO}_3 \xrightarrow{\Delta \text{T}} \text{Cu}_4\text{O}(\text{SeO}_3)3 + \text{SeO}_2\uparrow, \tag{3}$$

$$Cu_4O(SeO_3)_3 \xrightarrow{\Delta T} 2Cu_2OSeO_3 + SeO_2 \uparrow.$$
 (4)

Nanoparticles synthesis

Table 1. Synthesis conditions of samples and sizes of Cu₂OSeO₃ particles. Samples A—D were prepared by precipitation and thermal treatment. Sample SS was prepared via a solid state reaction.

Sample	Temperature (°C)	Dwell time (h)	Particle diameter	
			PXRD	SEM/TEM
A	400 then 420	288	~3.5 µm	1–8 μm
		then 48		
В	420	72	\sim 3.2 μ m	$0.8-2~\mu m$
C	450	24	~112 nm	15-250 nm
D	470	24	~126 nm	
SS	650	96		10-100 μm

SEM images of Cu2OSeO3 nanoparticles from (a) Sample B and (b) Sample C. The sizes of the individual particles and aggregates can be clearly seen.

TEM of the nanoparticles

~53 nm diameter

~19 nm diameter

~250 nm diameter

- Inconclusive results, no skyrmions observed
- Search in small nanoparticles by holography
- Larger nanoparticles prove too thick for clear signal
- Roughness of the nanoparticles poses problems for resolving magnetic phase

Tuning topological spin textures in size-tailored chiral magnet insulator particles PR Baral et al The Journal of Physical Chemistry C,126 (28), 11855-11866 (2022)

Summary and Conclusions

 Crystals exhibit skyrmion lattices, and other spin structures. (Chiral Soliton lattices)

- Skyrmions in centrosymmetric materials.
- Possibilities of observing skyrmion phases in several layered/2D materials.
- Skyrmions in nanoparticles?
- Skyrmions close to RT? Search for new materials goes on....

Acknowledgements

Theory support

Stefan Bluegel and

Juba Bouaziz- Julich

Joe Paddison, Oak Ridge

Julie Staunton

Electron Microscopy RTP X-ray Diffraction Group RTP

Clemens Ritter

WISH

Pascal Manuel **Dmitry Khalyavin** Fabio Orlandi

SXD

Matthias Gutmann

LET

Ross Stewart

THE SKYRMION PROJECT ::

UNIVERSITY OF CAMBRIDGE

THANKYOU