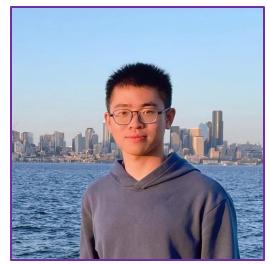


Theory of giant phonon magnetic moment in Dirac semimetals

Shizeng Lin

Theoretical Division and Center for Integrated Nanotechnologies,
Los Alamos National Laboratory

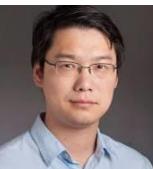

7/29/2025 - 7/31/2025 @ Chiral Phonons Workshop

Outline

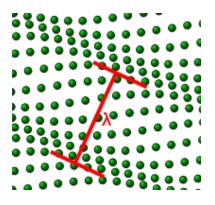
- Introduction to phonon magnetic moment
- Gauge theory of Giant phonon magnetic moment in Dirac semimetal
- Giant phonon magnetic moment due to curved space in Dirac semimetal
- Summary

Wenqin Chen (LANL student intern, U. Washington)

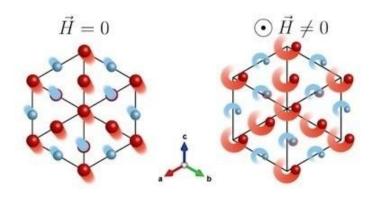
W. Q. Chen, X. W. Zhang, Y. Su, T. Cao, D. Xiao* and SZL*, PRB 111, 035126 (2025)
W. Q. Chen, X. W. Zhang, T. Cao, SZL* and D. Xiao*, arXiv:2505.09732 (2025)


Xiaowei Zhang (U. Washington)

Ying Su (LANL→
UESTC)



Ting Cao (U. Washington)


Di Xiao (U. Washington)

What about phonon magnetic moment?

Phonon: collective motion of ions

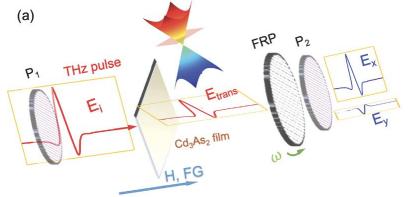
But ions are way heavier

Expectation:

$$\mu_{ph} = \frac{e\hbar}{2M} \sim \frac{1}{2000} \mu_B$$

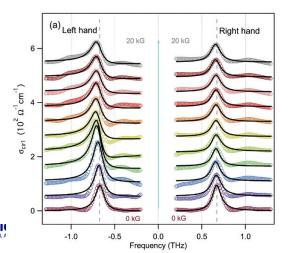
Phonon magnetic moment in ionic crystals

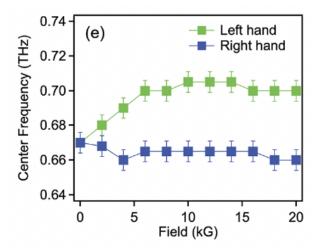
Juraschek and Spaldin, Phys. Rev. Materials 3, 064405 (2019)


DFT results

In unit of nuclear magneton, $\mu_N \approx \frac{1}{2000} \mu_B$

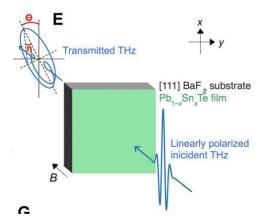
Compound	ν_0	Z	d/d_0	N	$\mu_{ ext{ph}}$	M	$\Delta\Omega/\Omega_0$	Compound	ν_0	Z	d/d_0	N	$\mu_{ m ph}$	М	$\Delta\Omega/\Omega_0$
Rocksalt structure ^a				Wurtzite structure ^c											
BaO	3.0	0.7	9	6	0.15	1.0	0.0002	BN	31.8	1.1	4	13	0.05	0.7	6×10^{-6}
CsF	3.6	0.3	3	1	0.06	0.1	0.00008	AlN	20.0	1.2	5	16	0.11	1.7	0.00002
CsH	11.9	1.1	25	15	1.12	16.8	0.0005	GaN	17.1	1.1	6	15	0.17	2.5	0.00005
LiI	4.8	0.5	7	3	0.18	0.5	0.0002	InN	14.7	1.2	6	16	0.2	3.2	0.00006
MgO	11.7	0.6	4	5	0.04	0.2	0.00002	BeO	21.9	1.1	7	13	0.1	1.3	0.00002
PbO ^b	7.7	1.2	7	16	0.13	2.1	0.00008	CuH	31.0	0.7	12	6	0.49	2.7	0.00008
PbS	2.2	0.8	8	8	0.12	1.0	0.0003	SiC	23.7	1.3	6	20	0.15	2.9	0.00003
PbSe	1.6	0.6	4	5	0.04	0.2	0.0001	Zinc-blende	structur	e ^d					
PbTe	1.4	0.7	3	5	0.02		0.00006	BeS	17.3	0.6	5	4	0.13	0.5	0.00004
SnTe	1.0	1.0	5	13	0.004	0.1	0.00002	BeSe	15.3	0.5	5	3	0.15	0.5	0.00005
								ВеТе	14.1	0.4	4	2	0.14	0.3	0.00005
								GaAs	7.9	0.4	1	2	0.002	0.004	1×10 ⁻⁶
Compound	\mathbf{i} v_0	Z	d/d_0	N	$\mu_{ ext{ph}}$	М	$\Delta\Omega/\Omega_0$	Compound	ν_0	Z	d/d_0	N	$\mu_{ m ph}$	M	$\Delta\Omega/\Omega_0$
BaHfO ₃ a	15.7	0.8	5	8	0.04	0.3	0.00001	LiTaO ₃ b	17.4	1.5	5	25	0.04	1.0	0.00001
	5.9	1.1	7	14	0.12	1.7	0.0001		10.9	0.9	8	10	0.13	1.3	0.00006
BaZrO ₃ ^a	15.0	0.9	6	10	0.04	0.4	0.00001		4.2	1.0	4	11	0.07	0.8	0.00008
	5.8		5	12	0.04	0.4	0.00003	BaTiO ₃ c	14.1	0.8	3	8	0.03	0.3	0.00001
	3.1	0.7	5	6	0.07	0.4	0.0001		8.9	0.01	-	-	0.14	-	0.00007
KTaO ₃ ^a	15.8		6	12	0.003	0.04	9×10^{-7}		6.5	2.2	9	58	0.02	1.0	0.00001
	2.3		14	24	0.12	3.0	0.0003	KNbO ₃ °	15.2	1.7	7	35	0.01	0.5	5×10^{-6}
BiAlO ₃ ^b	18.5	0.6	2	4	0.08	0.3	0.00002		8.1	0.02	-	-	0.18	-	0.0001
	12.8		-	-	0.14	-	0.00005		6.0	2.2	10	55	0.13	7.0	0.0001
	11.5		6	22	0.05	1.1	0.00002	PbTiO ₃ d	14.9	0.8	6	8	0.09	0.7	0.00003
	3.9		6	14	0.05	0.7	0.00006		8.1	0.1	1	0.2	0.19	0.05	0.0001
CsPbF ₃ ^b	9.1	0.04		_	0.001		3×10 ⁻⁷		2.6	0.8	7	7	0.08	0.6	0.0001
	4.9		3	4	0.04	0.2	0.00004	SrTiO ₃ e	15.7	1.1	4	15	0.03	0.4	9×10 ⁻⁶
b	1.5	0.02		-	0.04		0.0001		7.3	0.04	_		0.18	_	0.0001
LiNbO ₃ b	17.0		6	32	0.04	1.4	0.00001		1.7	2.5	21	74	0.1	7.2	0.0003
	10.6		7	7	0.13	0.9	0.00006								
	4.3	1.0	6	12	0.1	1.2	0.0001								


However, giant phonon magnetic observed by experiment

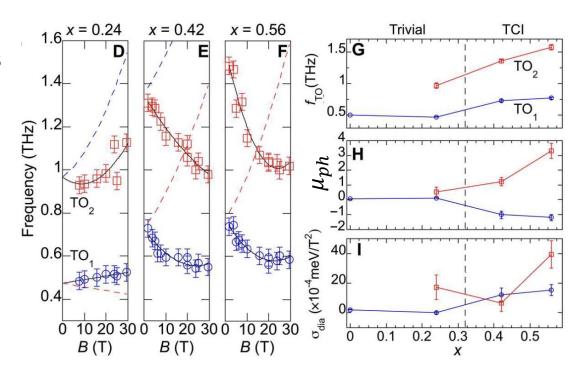

time-domain magnetoterahertz spectrometer.

Cheng et al., Nano Lett. 20, 5991 (2020)

Cd₃As₂ Dirac semimetal


Phonon moment

 $\mu_{ph} \approx 2.7 \mu_B$


However, giant phonon magnetic observed by experiment

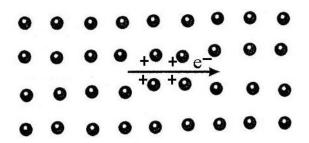
Polarization-dependent terahertz magnetospectroscopy measurements

Pb_{1-x}Sn_xTe: Topological crystalline insulator when x>0.32

Hernandez et al., Science Advances (2023)

Phonon moment:
$$\mu_{ph} \approx 1$$

Phonon moment:
$$\mu_{ph} \approx -1.2 \pm 0.2 \mu_B$$
 for TO₁ $\mu_{ph} \approx 3.3 \pm 0.5 \mu_B$ for TO₂

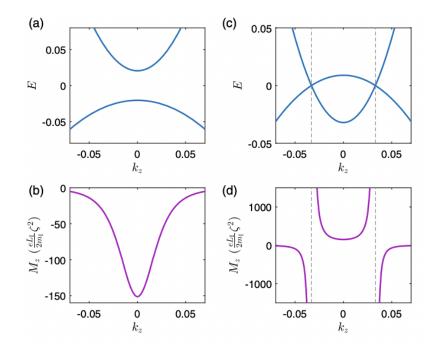

- Phonon magnetic moment $\sim \mu_R$
- Must be due to electrons
- Question: how does the electron-phonon coupling give rise to the large phonon magnetic moment?

Adiabatic theory

Y. F. Ren, Q. Niu et al., Phys. Rev. Lett. 127, 186403 (2021)

Slow ions and fast electrons

- In insulators, electrons follow the motion of ions adiabatically
- Same idea as Thouless pump
- Extend the dimensionality of the system by treating ion coordinate as synthetic dimensions


Electron wave function $\psi(k_x, k_y, u_x, u_y)$

$$M_z = \frac{e}{2m_{
m I}} L_{
m I} \int \frac{d\mathbf{k}}{(2\pi)^2} \Omega_{k_{\alpha}k_{\beta}u_xu_y} \qquad L_{
m I} = (m_{
m I}/T) \int_0^T (\mathbf{u} \times \dot{\mathbf{u}})_z dt$$

However

An effective model for Cd₃As₂

- (a), (b) before band inversion→ semiconductor and the adiabatic theory works. Estimated $\mu_{ph}{\sim}1~-10~\mu_B$
- (c) and (d) after band inversion → Dirac semimetal and adiabatic theory breaks.

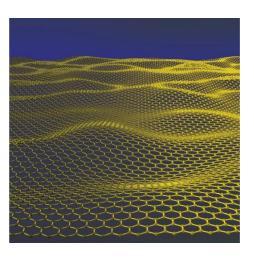
Doomed to fail for Dirac semimetal because of the breakdown of adiabaticity

Need a new theory framework for Dirac semimetals!

Our theories

In Dirac semimetal, depending on symmetries

- Phonon is an emergent gauge field for electrons (gauge theory perspective)
- Phonon creates curved space for electrons (general relativity) perspective)


Multiscale approach:

DFT (materials) → tight binding (model validation) → QFT + symmetry (physical picture)

Response of Dirac node to phonon

With strain



Shift node position

Strain as a gauge field $k \rightarrow k - a$

Renormalize Dirac velocity

Strain as a curved space $v_{\rm i} \rightarrow g^{ij} v_{j}$

When phonon is a gauge field

The minimal coupling between momentum and phonon field as a gauge field should be compatible with the little group at the Dirac node.

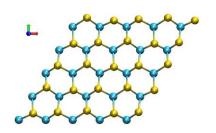
The little group at +K for graphene: $C_{37} \otimes IT$

$$\mathcal{H}_{+} = v((k_{x} - a_{x})\sigma_{x} + (k_{y} - a_{y})\sigma_{y})$$

Emergent gauge field due to strain (acoustic phonon):

$$a_x \propto u_{11} - u_{22}$$
 and $a_y \propto -2u_{12}$

Vozmediano et al, Physics Reports 496, 109 (2010)


k and **a** transform in the same way under C_{37} and IT

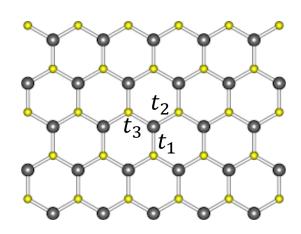
Under C_{37} , **k** has angular momentum 1 and **a** has momentum -2. but 1=-2 for C_{37} symmetry.

Optical phonon

Emergent gauge field due to strain (optical phonon):

$$a_x \propto u_y$$
 and $a_y \propto -u_x$

 $\mathbf{u} = \mathbf{R}_{R} - \mathbf{R}_{A}$ is even under inversion, because the inversion swaps B and A sublattice


k and **a** transform in the same way under C_{3z} and IT

The result at -K valley is obtained by I or T of the K valley

$$\mathcal{H}_{-} = v(-(k_x + a_x)\sigma_x + (k_y + a_y)\sigma_y)$$

The emergent gauge field is opposite for the opposite valley, because phonon does not break TRS.

Tight binding model

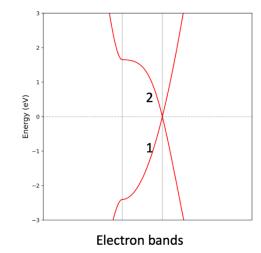
Hamiltonian for distorted lattice

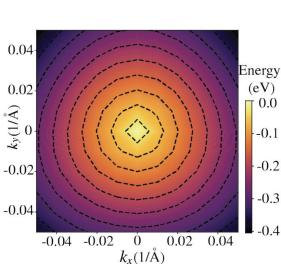
$$\mathcal{H}_{+} = v((k_x - a_x)\sigma_x + (k_y - a_y)\sigma_y)$$

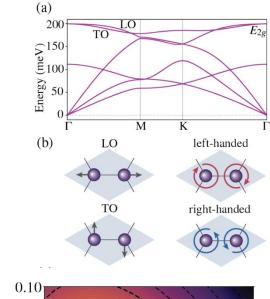
$$v_F e a_x = -\frac{1}{2}\delta t_1 + \delta t_2 - \frac{1}{2}\delta t_3,$$

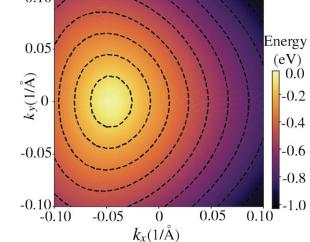
$$v_F e a_y = \frac{\sqrt{3}}{2}(\delta t_1 - \delta t_3)$$

Koster-Slater hopping integral


$$\delta t_1 = \beta t \left(\kappa_{ac} \partial_y u_y + \kappa_{op} \partial_y v_y - 2\kappa_{op} \frac{v_y}{a}\right)$$


$$\delta t_2 = \beta t \left[\kappa_{ac} \left(\frac{3}{4} \partial_x u_x - \frac{\sqrt{3}}{4} \partial_y u_x - \frac{\sqrt{3}}{4} \partial_x u_y + \frac{1}{4} \partial_y u_y\right) + \kappa_{op} \left(\frac{3}{4} \partial_x v_x - \frac{\sqrt{3}}{4} \partial_y v_x - \frac{\sqrt{3}}{4} \partial_x v_y + \frac{1}{4} \partial_y v_y\right) + \kappa_{op} \left(-\sqrt{3} \frac{v_x}{a} + \frac{v_y}{a}\right)\right]$$


$$\begin{split} \delta t_3 &= \beta t \left[\kappa_{\rm ac} (\frac{3}{4} \partial_x u_x + \frac{\sqrt{3}}{4} \partial_y u_x + \frac{\sqrt{3}}{4} \partial_x u_y + \frac{1}{4} \partial_y u_y) \right. \\ &+ \kappa_{\rm op} (\frac{3}{4} \partial_x v_x + \frac{\sqrt{3}}{4} \partial_y v_x + \frac{\sqrt{3}}{4} \partial_x v_y + \frac{1}{4} \partial_y v_y) \\ &+ \kappa_{\rm op} (\sqrt{3} \frac{v_x}{a} + \frac{v_y}{a}) \right] \end{split}$$


DFT for graphene

- Zone-center phonon modes
 - A_{2u} : ZA, E_{1u} : LA, TA
 - B_{2g} : ZO, E_{2g} : LO, TO (48.19 THz)
- Electron band structure (energy contours) after displacing the atoms according to E_{2g} optical modes
- Shift of Dirac node → emergent gauge field due to optical phonon
- Estimate the e-ph coupling
- Also deformation of the Dirac cone

Hall conductivity

A: physical EM gauge a: emergent gauge due to strain

$$\mathcal{H}_{\tau}(\mathbf{k}, \mathbf{A}, \boldsymbol{a}) = \sum_{j} v \left(k_{j} - A_{j} - \tau a_{j} \right) \sigma_{j} - \mu_{F}$$

Hall conductivity σ_{xy} when apply a magnetic field to doped Dirac system

Chern-Simons action
$$S_{\text{CS}}[A] = \frac{\sigma_{xy}}{2} \int d^3x \ \epsilon^{\mu\nu\rho} A_{\mu} \partial_{\nu} A_{\rho}$$

Because the action is second order in A, the opposite sign of a for the opposite valley cancels out

Chern-Simons action
$$S_{\text{CS}}[a] = \frac{\sigma_{xy}}{2} \int d^3x \, \epsilon^{\mu\nu\rho} a_\mu \partial_\nu a_\rho$$

Phonon Hall viscosity

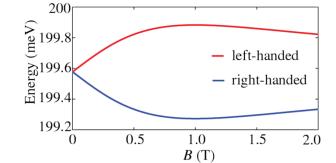
$$a_x \propto u_y$$
 and $a_y \propto -u_x$

Q=0 Phonon Hall viscosity (non-dissipative)

$$\mathcal{L}_{\eta} = \eta (u_{y}\dot{u}_{x} - u_{x}\dot{u}_{y}) \qquad \qquad \eta \propto \sigma_{xy}$$

Total phonon Lagrangian

$$\mathcal{L}_{ph} = \eta \left(u_y \dot{u}_x - u_x \dot{u}_y \right) + \frac{\rho}{2} \left[\dot{u}_x^2 + \dot{u}_y^2 - \omega_0^2 (u_x^2 + u_y^2) \right]$$

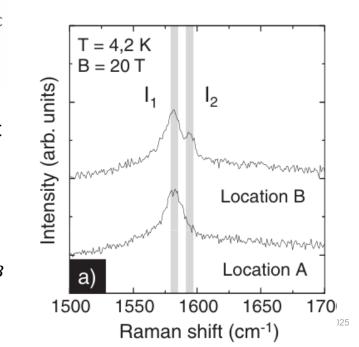

Splitting of the left-hand and right-hand phonon

$$egin{align} \omega_- &= rac{\sqrt{\eta^2 +
ho^2 \omega_0^2} - \eta}{
ho} \ \omega_+ &= rac{\sqrt{\eta^2 +
ho^2 \omega_0^2} + \eta}{
ho} \ \end{align*}$$

Existing experiment

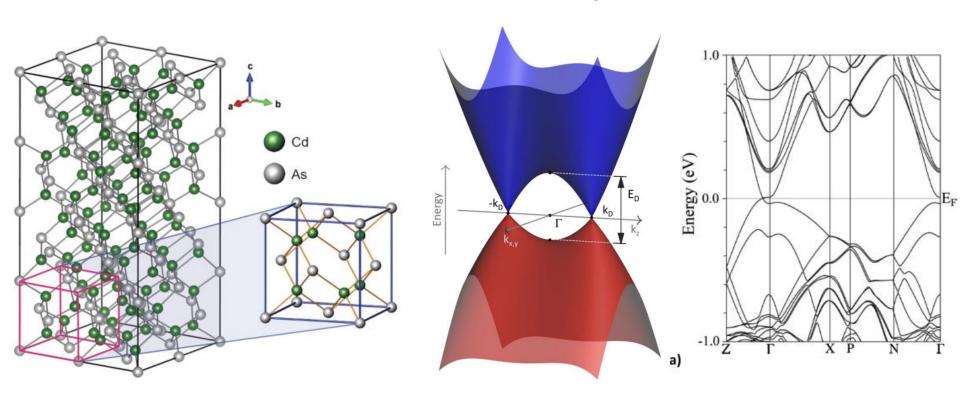
Drude formula
$$\sigma_{xy} = -\sigma_0 \frac{\omega_c \tau}{1 + \omega_c^2 \tau^2}$$

At doping level $n=3.5\times 10^{11} {\rm cm}^{-2}$, phonon magnetic moment is about $1{\sim}10~\mu_B$


Magneto-Raman Scattering of Graphene on Graphite: Electronic and Phonon Excitations

C. Faugeras, M. Amado, P. Kossacki, M. Orlita, M. Kühne, A. A. L. Nicolet, Yu. I. Latyshev, and M. Potemski Phys. Rev. Lett. **107**, 036807 – Published 14 July 2011

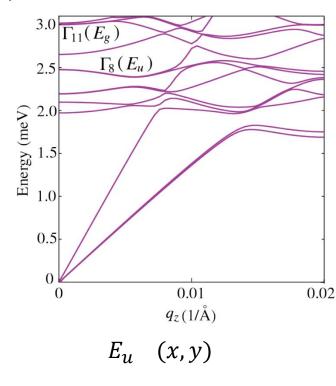
Not designed to measure phonon magnetic moment


• Splitting of E_{2g} optical modes under magnetic field.

Assume a linear splitting, an estimate of $m_{ph} pprox 2~\mu_B$

3D Dirac Semimetal Cd₃As₂

Crassee et al., Phys. Rev. Materials 2, 120302 (2018)


Phonon mode is Cd₃As₂

DFT results of doubly degenerate zone-center optical phonon

modes in THz frequency regime:

- 1. mode-[6,7] 0.53 THz E_g
- 2. mode-[8,9] 0.59 THz E_u IR-active
- 3. mode-[11, 12] 0.73 THz E_g
- 4. mode-[15, 16] 0.80 THz E_g
- 5. mode-[18, 19] 0.91 THz E_{g}
- 6. mode-[20, 21] 0.96 THz E_u IR-active

 E_u is odd under spatial inversion E_g is even under spatial inversion

$$E_g$$
 (zx, zy)

Compatibility check for gauge field description

The minimal coupling between momentum and strain field as a gauge field should be compatible with the little group at the Dirac node.

The little group at $\tau = \pm$ valley: $C_{4z} \otimes IT$

$$\mathcal{H}_{\tau}(\mathbf{k}, \mathbf{A}, \boldsymbol{a}) = \sum_{j} v_{\tau, j} \Gamma_{j} \left(k_{j} - A_{j} - \tau a_{j} \right) - \mu_{F}$$

• E_g phonon mode: (zx, zy), $a_x \propto u_{zx}$, $a_y \propto u_{zy}$, $a_z \propto u_{zz}$

Tight-binding model: Cortijo e al., PRL 115, 177202 (2015)
Pikulin et al., PRX 6, 041021 (2016)

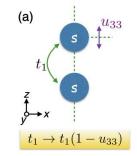
• E_u phonon mode: (x,y), incompatible with IT because E_u is odd under spatial inversion

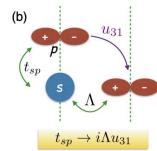
Tight binding model for Cd₃As₂

Pikulin et al., PRX 6, 041021 (2016)

Relevant spin-orbit coupled states $|P_{\frac{3}{2}}, \frac{3}{2}\rangle$, $|S_{\frac{1}{2}}, \frac{1}{2}\rangle$, $|S_{\frac{1}{2}}, -\frac{1}{2}\rangle$, and $|P_{\frac{3}{2}}, -\frac{3}{2}\rangle$

$$H^{
m latt} = \epsilon_{\pmb k} + egin{pmatrix} h^{
m latt} & 0 \ 0 & -h^{
m latt} \end{pmatrix},$$


$$h^{\text{latt}}(\mathbf{k}) = m_{\mathbf{k}} \tau^z + \Lambda(\tau^x \sin a k_x + \tau^y \sin a k_y).$$

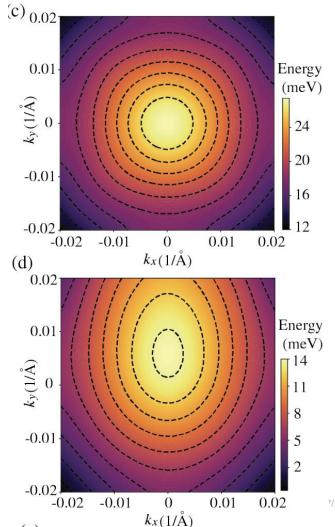

$$m_k = t_0 + t_1 \cos ak_z + t_2(\cos ak_x + \cos ak_y)$$

Modified hopping due to strain

$$t_1 \tau^z \to t_1 (1 - u_{33}) \tau^z + i \Lambda \sum_{i \neq 3} u_{3i} \tau^j,$$

Additional term in the Hamiltonian due to strain

$$\delta h^{\text{latt}}(\mathbf{k}) = -t_1 u_{33} \tau^z \cos a k_z + \Lambda (u_{13} \tau^x - u_{23} \tau^y) \sin a k_z.$$

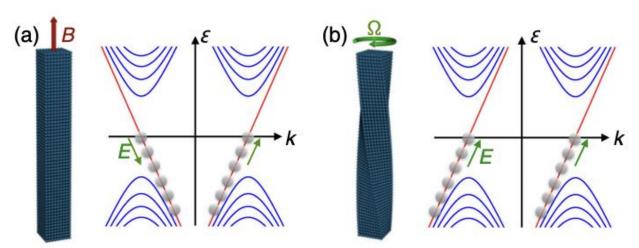


DFT results for Cd₃As₂

- E_g phonon mode: (zx, zy)
- Significant displacement of Dirac point in k-space

Gauge field description

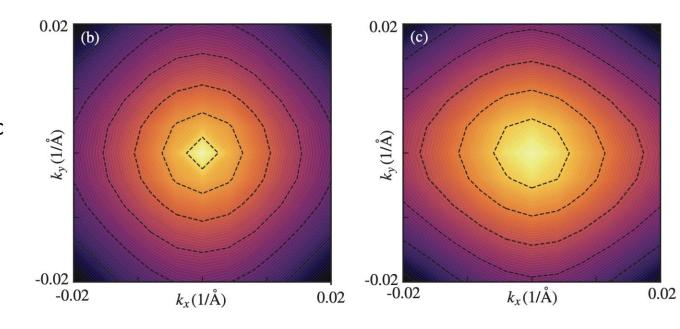
- Change of shape is also significant
- Expected large phonon magnetic moment. Theory estimate $m_{ph} \approx 1~\mu_B$.



E_a phonon mode: (zx,zy)

$$\mathcal{H}_{\tau}(\mathbf{k}, \mathbf{A}, \mathbf{a}) = \sum_{j} v_{\tau, j} \Gamma_{j} \left(k_{j} - A_{j} - \tau a_{j} \right) - \mu_{F}$$

- Same as graphene, phonon Hall viscosity term is induced in the presence of magnetic field \rightarrow large phonon magnetic moment
- Other consequences, e.g. chiral anomaly due to strain (acoustic phonon)


Pikulin et al., PRX 6, 041021 (2016)

DFT results for Cd₃As₂

- E_u phonon mode: (x, y)
- No displacement of Dirac point in k-space

Not a gauge field

Change of shape

No gauge description when the Dirac node is at the time reversal invariant point

eg. HfTe_{5.} ZrTe_{5.} Pb_{1-x}Sn_xTe

$$k \rightarrow k - a$$

Need a new theory framework: curved space due to phonon

Observation: Distance between ions after strain deformation, $x_i' \rightarrow x_i + u_i(x)$

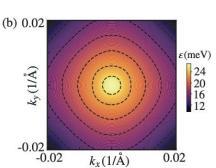
$$dl^{2} = \frac{\partial x'_{k}}{\partial x_{i}} \frac{\partial x'_{k}}{\partial x_{j}} dx_{i} dx_{j} = (\delta_{ij} + \partial_{i}u_{j} + \partial_{j}u_{i} + \partial_{i}u_{k}\partial_{j}u_{k}) dx_{i} dx_{j} = g_{ij} dx_{i} dx_{j}.$$

Dirac fermions coupling to geometric perturbations

• Phonon induces curved space for the Dirac fermion, which can be described by the frame fields $m{e}^a$ (Emergent gravity)

2D massive Dirac fermions

$$S = \int d^3x \det(\mathbf{e}) \bar{\psi} (p_{\mu} e_a^{\mu} \gamma^a - m) \psi$$


$$a = 0,1,2, \quad \gamma^a = (\sigma^z, i\sigma^y, -i\sigma^x)$$

The energy dispersion

$$E_{\pm} = \pm \sqrt{p_1^2 + p_2^2 + m^2}$$

with $p_a = e_a^{\mu} p_{\mu}$. Anisotropic dispersion can be described by a nontrivial

Quantum Hall viscosity

Hughes, Leigh, and Fradkin, Phys. Rev. Lett. 107, 075502 (2011)

Integrate out Dirac fermions to get an effective Chern-Simons action for e_u^a

$$S_{\text{eff}}[e_{\mu}^{a}] = \frac{\eta_{H}}{2} \int d^{3}x \, \epsilon^{\mu\nu\rho} e_{\mu}^{a} \partial_{\nu} e_{\rho}^{b} \eta_{ab} \qquad \eta_{ab} = \text{diag}[1, -1, -1]$$

For the state in which the lowest ν Landau levels are filled under magnetic field

$$\eta_H = \frac{\hbar}{8\pi l_B^2} \nu$$

Hall conductivity

$$\sigma_{xy} = \frac{e^2}{h} \nu$$

• Again η_H is proportional to $\sigma_{\chi V}$

$$\eta_H = \frac{\hbar^2}{4e^2l_P^2} \sigma_{xy}$$

 l_R is the magnetic length

Modeling phonons as vierbein fields

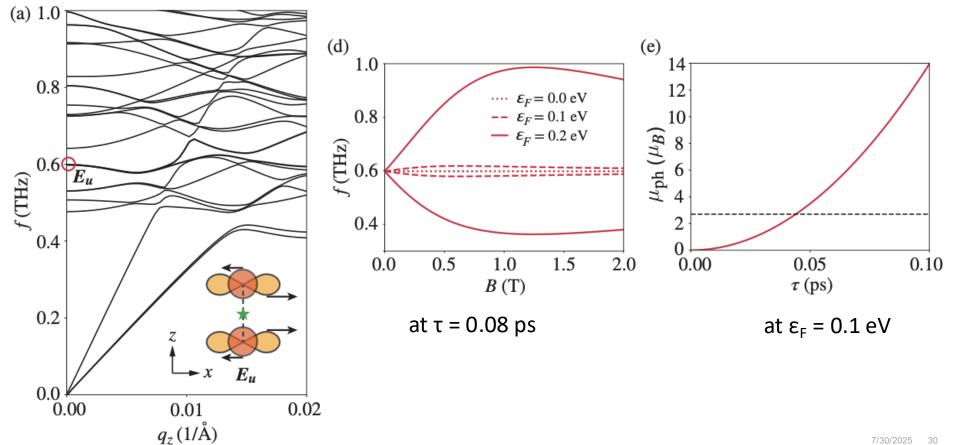
Anisotropic dispersion of Dirac fermion due to the E_{ν} circularly polarized phonons

$$E_{\pm} = \pm \sqrt{(e_1^x p_x)^2 + (e_2^y p_y)^2 + m^2}$$

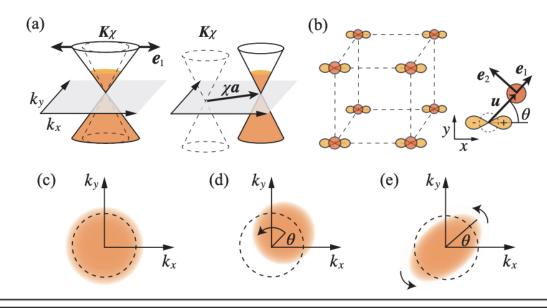
We know

$$e_1^{x} = \lambda u_x, \qquad e_2^{y} = \lambda u_y$$

Phonon Hall viscosity term


$$\mathcal{L}_{\eta} = \frac{\eta_H}{2} \lambda^2 (u_x \dot{u}_y - u_y \dot{u}_x)$$

Orbital phonon magnetic moment


$$m_{\rm ph} \equiv \frac{\hbar(\omega_+ - \omega_-)}{2B} = \frac{\hbar}{B \rho_I} \eta_H \lambda^2$$

First-principle results of the E₁₁ phonon mode in Cd₃As₂

Gauge vs gravitational fields

Phonon	Dirac deformation	l = 0 (Frame)	l = 1 (Gauge)	l=2 (Frame)
	Inversion-even	✓	✓	√
	Inversion-odd	✓	×	✓
LOS NATIC	$\mu_{ m ph}$	0	σ_{xy}	η_H

Summary

- Giant phonon orbital magnetic moment in doped Dirac semimetal
 - E_q phonon acts as an emergent gauge field, $\mu_{ph} \propto \sigma_{xy}$ (electrical Hall conductivity)
 - E_u phonon acts as a frame field, $\mu_{ph} \propto \eta_H$ (electrical Hall viscosity)
- Probe electrical Hall viscosity by phonon
- Expect large phonon thermal Hall conductivity

Chen et al., PRB 111, 035126 (2025) Chen et al., arXiv:2505.09732 (2025)

Baby Standard Model in Dirac semimetals with phonon fields

