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2D magnetic heterostructures for exploring new interfacial phenomena and technologies

Charge to spin interconversion

2D-Ferromagnet
= 2D-Insulator

72 2D-Ferromagnet
S,

van der Waals
Heterostructures

Optospintronics

Voltage control of

magnetism Twistronics

Sierra, J.F., Fabian, J., Kawakami, R.K. et al. Van der Waals
heterostructures for spintronics and opto-spintronics. Nat.
Nanotechnol. 16, 856-868 (2021).
https://doi.org/10.1038/s41565-021-00936-x
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Ultrafast Quantum Opto-Spintronics Lab at the University of Southern California

Two Helium-free scanning optical microscope with superconducting vector magnets: P — — .
1) Attodry2100:9-1-1T —
2) Cryomagnetics Vari-6-1-1T

vumTechnology

Ultrafast lasers (visible to mid-IR): i G.lovebox to .be coqnected Wlt.h UHV
. . suitcase for air-free interface with
1) Ti:sapphire OPO

2) Crogenic Sagnac Kerr scanning interferometry beamline work.

- HQ graphene automatic transfer stage.

We are recruiting! https://sites.usc.edu/kellyluolab/
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Visit us at: Ultrafast Quantum Opto-
NSF National Extreme Ultrafast Science Facility (NeXUS) at Ohio State: Spintronics Group at USC
https://sites.usc.edu/kellyluolab/

What’s the dynamic processes of electron and spin correlations?

» Time-resolved angle-resolved photoelectron spectroscopy (tr-ARPES):

1 kW laser, attosecond and femtosecond pulse, up to 100 eV, spectral resolution < 30 meV H|[]5THT
'R
Bessy Il Synchrotron MAgnetic X-raY Microscope with UHV Spectroscopy (MAXYMUS):
What's the information processing speed in the atomically thin magnets? HZB Helmholt
elimnolitz

Zentrum Berlin

» Time-resolved scanning transmission X-ray microscope (tr-STXM):
captures element-specific magnetization dynamics with femtosecond time resolution.

~

- ,_ A
Molecular Foundry - Lawrence Berkeley National Lab: ,:}l ||||
What's the nanoscale surface spin texture? BERKELEY LAB

» Spin-Polarized Low-Energy Electron Microscope (qQSPLEEM):
spin-resolved magnetic imaging of the unoccupied state down to 20 nm.
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Manipulating magnetic materials using electron spins
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Torque
FM free )
layer
Tunneling ¢¢¢¢¢¢¢ electron
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Spin Transfer Torque

« Existing MRAM technology: Major silicon foundries
offer as a standard option for embedded applications in
2018-19.

* Fundamental maximum efficiency is 1 unit of 2/2 per
unit of charge in current

/Spin-orbit Torque:
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Use a non-magnetic material to generate spin current
Efficiency no longer limited to h/2e
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Magnet

Spin-source

> electron flow
“Spin-source” is typically a material with large spin-orbit coupling

Spin-momentum locking in

Bulk spin Hall effect
topological surface states Hik sp!
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Mellnik, Ralph et al. Nature (2014)
Fan, Tserkovnyak, Wang et al. Nature Mater. (2014)




Outline

ﬁlectrical detection of antiferromagneh

resonance with electrically-tunable damping
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Nano Letters, 22(16), 6716-6723 (2022);

Advanced Materials. 2305739 (2024)
arXiv: 2407.09462. Science (2025).
DOI: 10.1126/science.adq8590
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Sagnac Kerr interferometry
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First version: arXiv: 2109.13759 (2021)
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ﬁlectrical detection of antiferromagneh

resonance with electrically-tunable damping
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Nano Letters, 22(16), 6716-6723 (2022);
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arXiv: 2407.09462. Science (2025).
DOI: 10.1126/science.adq8590




Antiferromagnetic Spintronics: The Next Frontier

Antiferromagnets vs ferromagnets:

1) Zero net magnetization: Stable to perturbation from
external field.

2) Exchange coupling between sublattices:

* Richervariety of resonance modes and mode-

mode coupling.

H . Han, J., Cheng, R., Liu, L., Ohno, H., & Fukami, S. (2023). Coherent
* FaSter dynam|CS over a Wlde range (GHZ tO THZ) antiferromagnetic spintronics. Nature Materials, 22(6), 684-695.

Baltz, V., Manchon, A., Tsoi, M., Moriyama, T., Ono, T., & Tserkovnyak,
Y. (2018). Antiferromagnetic spintronics. Reviews of Modern Physics,
90(1), 015005.



Spin-Orbit Torque Control of Antiferromagnetic Resonance (AFMR)

Electrical detection of
1 AFMR using spin-filter
tunneling resistance

Cham, T. M. J,, Huang, X., Chica, D. G., Watanabe, K., Taniguchi, T., Roy, X., Luo, Y. K., & Ralph, D. C.
“Spin-filter tunneling detection of antiferromagnetic resonance with electrically-tunable damping”
arXiv:2407.09462. Science (2025). DOI: 10.1126/science.adq8590

10



CrSBr: vdW antiferromagnetic semiconductor

Triaxial anisotropy along a, b, c crystal axes.
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Telford, E.J. et al. 2020. Advanced Materials, 32(37), p.2003240.
Lee, K. et al. Nano Letters, 21(8), pp.3511-3517.
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Our work: Cham, T. M. J., Ralph, D. C., & Luo, Y. K. et al. Nano

Letters 22.16 (2022): 6716-6723.
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Is it possible to detect these modes
down to atomically thin layers?

Microwave Transmission (Bulk Crystal)
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Spin Torque Ferromagnetic Resonance (ST-FMR)

Kittel formula: Wresonance = ¥+/B (B + Meff)

Rectification Voltage Readout:

Anisotropic

GHz Current Magnetoresistance
|

|
I |1 1

VRectified (t) = Iy sin(wt) (Ry + AR sin(wt)) =

ARI,
2

+ O(wt)

Liu, L., Moriyama, T., Ralph, D. C., & Buhrman, R. A. (2011). Spin-
torque ferromagnetic resonance induced by the spin Hall effect.
Physical review letters, 106(3), 036601.
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Spin-filter tunneling magnetoresistance of CrSBr .07 etal Science 360, 12181222 (201

Pt

3-Terminal vdW Heterostructure Device:

Song, T. et al. Science, 360, 1214-1218 (2018)
Boix-Constant et al, Advanced Materials, 34(41), 2204940 (2022)

Spin-filter Tunneling Magnetoresistance
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arXiv:2407.09462. Science (2025). DOI: 10.1126/science.adq8590



Electrical Detection of Antiferromagnetic Resonance

Lock-In Amplifier

S

RF Source
PtTe2

RF Current Spin-filtering Magnetoresistance

A
I | 1

Vrectifiea(t) = Ig sin(wt) (Ry + AR sin(wt)) =

(wt)




Resonance Spectrum of Bilayer CrSBr
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Spin filtering tunneling junction: electrical detection of out-of-phase AFMR modes in Bilayer CrSBr

Nano Letters 22.16 (2022): 6716-6723.

arXiv:2407.09462. Science (2025). DOI: 10.1126/science.adq8590
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Spin-Orbit Torque Control of Antiferromagnetic Resonance
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Cham, T. M. J,, Huang, X., Chica, D. G., Watanabe, K., Taniguchi, T., Roy, X., Luo, Y. K., & Ralph, D. C.
“Spin-filter tunneling detection of antiferromagnetic resonance with electrically-tunable damping”
arXiv:2407.09462. Science (2025). DOI: 10.1126/science.adq8590.
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Spl n-torque modulation of Liu, L., Moriyama, T., Ralph, D. C., & Buhrman, R. A. (2011).

Spin-torque ferromagnetic resonance induced by the spin

ma gn eti C d am p| N g Hall effect. Physical review letters, 106(3), 036601.
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. Xue, L., Wang, C., Cui, Y. T., Liu, L., Swander, A., Sun, J.Z., ... &
3'Te rm | nal Geometry fOF AFM R Ralph, D. (2012). Resonance measurement of nonlocal spin

M easureme ntS i N a VdW H ete ro Stru CtU re z(;;?:;j:38t:11r2;a’-‘tlir7n;ion1a.l magnetic device. Physical Review
- Lock-In Amplifier
/@ ‘Q /
RF Source "
Bias-Tee - T3

| [a\)l \/ Graphite
- T

f ? Graphite
T— 1
Current’ Source .

DC current generates spin current through PtTe, into CrSBr
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AFMR linewidth modulation
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AFMR linewidth modulation
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arXiv:2407.09462. Science (2025),
DOI: 10.1126/science.adq859§)1.

Torque efficiency is comparable with SOT on ferromagnets



Summary and Outlook
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* Electrical detection of AFMR in bilayer CrSBr.

 SOT acts primarily on interfacial sublattice
layer of AFM.

 SOT efficiency on CrSBr is comparable with
effect on ferromagnets.

—0.10
—0.15
—0.20

\

Graphite

* Future opportunities for investigating AFM

dynamics in 2D heterostructures Aé*
e Nanoscale GHz-THz AFM oscillators =

/ ’vdW material /

Cham, T. M. J., Huang, X., Chica, D. G., Watanabe, K., Taniguchi, T., Roy, X., Luo, Y. K., & Ralph, D. C.
“Spin-filter tunneling detection of antiferromagnetic resonance with electrically-tunable damping”
arXiv:2407.09462. Science (2025), DOI: 10.1126/science.adq8590

See our related works at: Nano Letters, 22(16), 6716-6723 (2022); Advanced Materials. 2305739 (2024) 22



Outline

K—Iigh-sensitivity optical SOT metrology\

Sagnac Kerr interferometry
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Science Advances 9(36), eadi9039 (2023);
\ First version: arXiv: 2109.13759 (2021) /

23

0.0
HoHz (T)




High-sensitivity magneto-optic DC readout: Sagnac optical interferometry

At least 50-100x better signal-to-noise than
conventional DC MOKE magnetic imaging.

Conventional polar-MOKE signal
|

400 yRad/VHz noi

Kerr angle (a.u.)
o TS o S
1 1 1 L2

n
1

T T T T T T T
A50 <100 50 0 50 100 150

out of plane field (Oe)

Science Advances 9(36), eadi9039 (2023);
First version: arXiv: 2109.13759 (2021)
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The setup: @

Xia et al. APL (2006)

b EOM \ Fried et al. Rev. Sci. Instrum. (2014)
Fiber _
Phase Modulator > ™ "M fiber

. emem

Isolation Polarizer HWP

Slow axis 20X Objective
' Sagnac Qwp
S N
Fast axis Ligh Halfslvered b —
e
— Projected-Field

Electromagnet

Two spatially overlapped, orthogonally polarized beams travel inside a single-mode polarization-maintaining (PM) fiber along its
fast and slow axes.

Two beams experience different phase modulation depth (¢, = ¢rast- Ps10w) DY @n electro-optic phase modulator (EOM) at the
modulation frequency w: ¢4 Sin(wt), Pgiow sin(wt).

Upon sample reflection, both beams pass the quarter-wave plate (QWP) twice, and travel back along opposite fiber axes to acquire

same optical path with a phase difference: (¢fast — ¢Psiow ){sin[w(t + 7)] — sin(wt)}, hence forming a Sagnac loop. o5



Kerr signal detection:

«  We tune EOM frequency, w, such that T = n/w, and t is the time of flight for the 30-meter fiber loop. Sample Kerr

rotation can be quantified by 1st and 2nd harmonic interference intensity signals (I & I?%):

Kerr rotation

sin Qk Jl (2(}5m)

I“ =~
47’—7"4— Kerr ellipticity
Kerr rotation
P2 _ €08 OxJ2(20m)
4T_T+ Kerr ellipticity
1 _ J2(2¢m)1w
0p = - tan™!
k 9 an |:J]_(2§bm)I2w

J1,J»: Bessel-J functions



Ultrasensitive out-of-plane magnetization: absence of in-plane magnetization detection

Transport Hall voltage «——— simultaneously ——— Sagnac Kerr signal
Angle dependence due to a small field/sample tilt.
_ | @0.025T @ 0.075T PR
049 ®0.05T /\ ,_\_400' . SR
— e et e L AT N
—5.50- B ae| TEEERTESD LA
g>.?—5 51 N B e
~5.52] , | | RN | |
0 100 200 0 100 200
¢n (deg) ¢ (deg)
V;(dy :AIRAHETTLZ
HAIRpummxmy: O = Km. + By
7\ Estimated a factor of

L] L] = L] _4
Harmonic Hall commonly give inconsistent results due to 107 smaller than im,

artifacts associated with planar Hall effect Rpyx See details in the SI: Science Advances 9(36), eadi9039 (2023)
27

See details in our first version: arXiv: 2109.13759 (2021)



Using Sagnac interferometry to measure spin-orbit torques

Based on the steady-state Landau-Lifshitz-Gilbert-Slonczewski (LLGS) macrospin equation, we determine the current-
induced damping-like and field-like effective torques (per unit magnetization) 3, and 2, by balancing the following
equation:

VoA X Heg = TH110 X (6 X 1) + Top.0 X M

/ Samples with perpendicular magnetic anisotropy \ / Samples with in-plane magnetic anisotropy\

H2
ek = +K (]_—— 5 ) Aek :HJAHDLCOSQSH
2M H — Mg
Sagnac Kerr rotation 6, sensitively measures changes in the * The current-induced changes in m; are first order in
OOP magnetization m; that are second order in small-angle the OORP tilting angle.

\tilting from the OOP direction. / \ /

28
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______________________________________________________________________________

Samples with perpendicular
Tilting from applied external magnetic fields magnetic anisotropy
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| & oM+ o d oM+ | 25 Mg
i € 25 °© M- € ¢ o M- |
| = - ! K: a coupling constant between m,
- D o0 D 5ol . and 6y, analogous to Ryy.
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Current-induced Kerr signal:

Vertical offsets are artificial
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Slope measures the spin-torque effective magnetic field AHyy,

poAHy = poHoe + 21/
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/ Samples with in-plane magnetic anisotropy \
7'%AHDL COS QSH
Agk B H — Meff

» The current-induced changes in m, are first order in the OOP tilting angle.

- Damping-like torque (73;) corresponds to an OOP effective field, while the field-like

K torque (t2,) gives an in-plane effective field. /




Results for the damping-like (¢, ) and field-like (¢, ) spin-orbit-torque efficiencies for the
sample series substrate/Ta(1.5)/Pt(4)/Co0(0.85-2.1)/MgO(1.9)/Ta(2)

0.2 _ O [ ——
PMA series o I % i =
juil
. E E % HE X % ﬂi @ - _ il
Q0.1 il _0.1-
w3 E - mm s —0.1
0 M+ 0 M- IP series B T M
0.0 {;zmmmmmmmmmmmmmm oo ——— —0.2- -
0.8 1.1 1.4 1.7 2.0 0.8 1.0 1.2
tco (nm) tco (nm)

. Co thickness variation gives competition between in-plane shape anisotropy and interfacial perpendicular magnetic
anisotropy (PMA), resulting in different values of effective magnetization M.

. Sagnac results for damping-like torque efficiency ¢,;, on PMA and in-plane samples are consistent, which is often not
the case for electrically-based measurements.

Karimeddiny, Cham, Smedley, Ralph, Luo, Science See detailed discussions on harmonic Hall discrepancy in our
Advances 9(36), eadi9039 (2023); first version: arXiv: 2109.13759 (2021) 31
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Sagnac Kerr sensitivity for metallic v.s. insulating 3D magnets
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Cryo-Sagnac: towards high-efficiency SOT switching with 2D magnets

Sagnac beam

5
— 115K
2D magnets: potential for ultralow current 4
switching due to reduced net magnetization. -
©
T 2
Cryo-Sagnac: outstanding probe especially for = 1 _
insulating 2D magnets due to challenging ) Fe;GeTe, single crystal
electrical readout. 0 grown by Andrew May
1 | | . | . | | | (Oakridge)
—100-75-50-25 0 25 50 75 100
MoHz (mT)
Cryo-Sagnac N IS T 7 ) _
Setup at USC S\ 1S A % ;
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scanners inside
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- Variable sample temp: 1.7 — 320 K
- 9-1-1 T vector superconducting magnets

k

with in-plane anisotropy H — Mg
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Outstanding opportunities in multifunctional vdW heterostructures for spin-based
quantum information processing

Ultrafast spin, valley and magnon

Next-gen spin-orbit torque dynamics revealed by time-resolved
MRAM devices based on Sagnac Kerr interferometry, tr-XMCD,
altermagnetic and topological . _— "‘ A and tr-ARPES
: A 0 B WS &
materials . P k&bh\ _

Superconducting spin torque for

Air-free integration of vdW and non- .
cryogenic memory

vdW materials through collaborative
thin film and bulk crystal growths

Ultrafast Quantum Opto-Spintronics Lab:
https://sites.usc.edu/kellyluolab/ 34
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