A NO-CARRIER-ADDED 72Se/72As ISOTOPE GENERATOR

A. F. Novgorodov2, A. Schmidt1, J. Brockmann1, S. M. Qaim3, F. Rösch1

1Institute for Nuclear Chemistry, Johannes Gutenberg-University, D-55128 Mainz, Germany; Joint Institute for Nuclear Research, Laboratory of Nuclear Problems, RUS-141980 Dubna, Russian Federation; 3Institute for Nuclear Chemistry, FZ Jülich GmbH, D-52425 Jülich, Germany

Key Words: As-72, Se-72, isotope generator

Summary

A no-carrier-added 72Se/72As generator has been developed for the isolation of 72As, relevant for eventual application in the syntheses of 72As-labelled radiopharmaceuticals. Avoiding the addition of Se carrier and using a thermochromatographic distillation process, no-carrier-added 72As is nearly quantitatively released within 10 min. 72Se remains almost quantitatively (> 99.7%) in solution when a temperature of the separation process of 100°C is applied.

Introduction

Arsenic-72 is a positron emitting isotope with properties which are promising for eventual application in 72As-labelled radiopharmaceuticals. It has a positron emission rate of 88% and positron energies of $E_{\beta^{+max}} = 2.5$ MeV; $E_{\beta^{+mean}} = 1.0$ MeV [1]. Although the positron emission decay is accompanied by photons of 834 keV (79.5%), 630 keV (7.9%), 1464.1 keV (1.1%), and others (< 0.5%), the long physical half-life of 26 hours might turn 72As into the PET isotope of choice for biochemical / physiological processes with longer biological half-lives. It can be directly produced at medium-energy cyclotrons via the 72Ge(p,n)- or 72Ge(d,2n)-, 69Ga(α,n)-, 71Ga(α,3n)-, 71Ga(3He,2n)-reactions. More interestingly, however, is its availability as the daughter isotope of 72Se ($T_{1/2} = 8.5$ d). 72Se itself can be produced via direct processes such as 70Ge(α,2n)- and 72Ge(3He,3n)- or via proton induced spallation reactions on RbBr [2]. It was the aim of this work to develop a 72Se/72As generator relevant for the routine separation of 72As.

Chemical approaches applied until now were based on chromatographic columns, with 72Se as Se6 adsorbed, while 72As was eluted in rather large volumes of 15 ml [3]. Due to the amount of Se carrier, the separation yields are less than 70%. Another 72Se/72As generator was described in [4]. The separation of 72As is achieved under addition of selenic acid carrier in each cycle, followed by reduction to metallic Se using hydrazinium hydrochlorid and its filtration with 72As remaining in solution. Prior to the subsequent separation cycle, Se must be oxidised using H_2O_2.

J. Labelled Cpd. Radiopharm. 44, Suppl. 1 (2001)
Production and isolation of ^{72}Se

^{72}Se was produced via the $^{70}\text{Ge}(^{3}\text{He},3\text{n})^{72}\text{Se}$-reaction (FZ Juelich, Germany). To isolate ^{72}Se the irradiated Germanium targets are dissolved in HCl/HNO$_3$ (2:1). After dissolution and distillation of HNO$_3$, HCl is added. GeCl$_4$ is removed from the solution via distillation while no-carrier-added ^{72}Se (and generated ^{72}As) is quantitatively remaining.

Cyclic separation of no-carrier-added ^{72}As from no-carrier-added ^{72}Se

The HCl solution containing ^{72}Se is transferred to a quartz or glass tube system as shown in Fig. 1, which is inserted vertically into an electric resistance oven (10). 1 g of KCl and 1 ml of conc. HCl are added under formation of non-volatile ^{72}Se compounds and $^{72}\text{As}[\text{AsCl}_3]$ [5]. Hydrochloric acid (3) is passed through the inlet (2) into the apparatus with a stream of 20 ml/min. The temperature at position (7) of the ^{72}Se fraction inside the tube (1) is raised from 50 to 140°C. The ^{72}As is immediately volatilised as AsCl$_3$ and transported with the stream of hydrochloric acid through tube (4). It is not adsorbed on the inner tube even at its outlet (8), but on a cartridge (9) containing an adequate material (such as charcoal for example). The whole process takes about 10 min. No-carrier-added ^{72}As is nearly quantitatively desorbed from the cartridge in > 90% yields using < 5 ml of H$_2$O or NaOH and it can be used immediately for labelling reactions.

The no-carrier-added ^{72}Se almost quantitatively remains in solution. Depending on the temperature of the separation process applied (100 – 140°C), > 99.7% of ^{72}Se are still present at position (7) and are ready for the next separation cycle without further treatment.

References

5. Gmelin, Handbuch der anorganischen Chemie 8 Auflage, System-Nummer 17, Arsen, Verlag Chemie Weinheim, 383, (1952)

Acknowledgement

Support by the Deutsche Forschungsgemeinschaft (DFG-Grant Ro 985/9) and co-operation with the Institute for Nuclear Chemistry, FZ Jülich, is grateful acknowledged.
Fig. 1

Scetch of the $^{72}\text{Se}/^{72}\text{As}$ generator apparatus
1-outer quartz or glas tube;
2-inlet of HCl;
3-HCl vessel;
4-inner quartz or glass tube;
5-ground joint;
6-open lower end of the inner tube;
7-^{72}Se fraction;
8-upper end of the inner tube;
9-adsorber;
10-electric resistance oven

Fig. 2

Release of ^{72}Se depending on the temperature (separation parameters: 1 g KCl, 1 ml conc. HCl, HCl stream of 20 ml/min, $t = 10$ min)