A ⁴⁴Ti/⁴⁴Sc radionuclide generator for potential application of ⁴⁴Sc-based PET-radiopharmaceuticals

By D. V. Filosofov¹, N. S. Loktionova² and F. Rösch^{2,*}

¹ Joint Institute of Nuclear Research, DLNP, 141980 Dubna, Russian Federation
 ² Institute of Nuclear Chemistry, University of Mainz, 55128 Mainz, Germany

(Received April 27, 2009; accepted in revised form October 21, 2009)

Titanium-44 / Scandium-44 / Radionuclide generator / Positron emission / PET

Summary. ⁴⁴Ti/⁴⁴Sc radionuclide generators are of interest for molecular imaging. The 3.97 h half-life of ⁴⁴Sc and its high positron branching of 94% may stimulate the application of ⁴⁴Sc labelled PET radiopharmaceuticals. However, both ⁴⁴Ti production and ⁴⁴Ti/⁴⁴Sc generator design represent challenges for basic radiochemistry.

About 5 mCi (185 MBq) of ⁴⁴Ti were obtained *via* the Sc(p, 2n) nuclear reaction. ⁴⁴Ti was separated from 1.5 g of massive scandium targets in multi-step procedures, including exchange chromatography on cation exchange resin (AG 50W-X8, 200–400 mesh, H⁺-form). In order to design a robust ⁴⁴Ti/⁴⁴Sc generator concept, distribution coefficients of Ti(IV) and Sc(III) on both AG 1-X8 (200–400 mesh, Cl⁻-form) and AG 50W-X8 (200–400 mesh, H⁺-form) resins eluted with HCl and HCl/H₂C₂O₄ solution of various concentrations were investigated systematically. Optimal conditions for efficient separations of both radionuclides have been determined for AG 1-X8 resin and mixtures of 0.07 M HCl and 0.005 M H₂C₂O₄.

A 5 mCi generator was prepared on an AG 1-X8 column (H = 150 mm, D = 3 mm, $V_0 = 0.55$ mL). The system achieved elution of 180 MBq ⁴⁴Sc in 20 mL of eluate solution. The breakthrough of ⁴⁴Ti is 90 Bq. This corresponds to an excellent separation factor of 2×10^6 .

In the context of long-term stability of $^{44}\text{Ti}/^{44}\text{Sc}$ generators, a "reverse" type of washing steps after each elution using 0.07 M HCl/0.005 M $H_2C_2O_4$ mixtures appeared to be essential.

1. Introduction

Radionuclide generator systems as means of separating a desired radioisotope from its parent and other contaminants have proved to be extremely useful. The radiochemical separation concept, however, should meet certain requirements in order to be of real value: (1) it must rapidly yield the generator daughter in high purity in a chemical form suitable for further application; (2) the parent material must remain, or be reconverted readily to a form with which the process can be repeated and (3) it should be simple to handle, operate and shield. Potential radionuclide generators have been considered since decades, *e.g.* [1].

For PET imaging, the ⁸²Sr/⁸²Rb generator with its relatively long-lived mother radionuclide has already shown significant clinical value. Recently, the ⁶⁸Ge/⁶⁸Ga radionuclide generator has shown significant potential for molecular imaging [2-4]. The high positron branching of 89% and the kit-type of radiopharmaceutical syntheses offer excellent parameters for the routine use of ⁶⁸Ga labelled tracers in nuclear medicine using state-of-the-art positron emission tomography (PET) and PET/CT. A clinical breakthrough was achieved demonstrating the superior possibilities of ⁶⁸Ga-DOTA-octreotide derivatives for localising neuroendocrine tumours, in particular if PET/CT is used. However, the physical half-life of ⁶⁸Ga ($T_{1/2} = 67.71$ min) might limit the spectrum of clinical applications of 68Ga labelled radiodiagnostics. Furthermore, 68Ga labelled analogues of endoradiotherapeuticals of longer biological half-live such as 90Y- or ¹⁷⁷Lu-labelled peptides and proteins cannot be used to determine individual radiation dosimetry.

Thus, radionuclide generator systems providing positron emitting daughters of extended physical half-life are of renewed interest [4].

An important characteristic of positron-emitting ⁴⁴Sc is its cyclotron-independent availability *via* the ⁴⁴Ti/⁴⁴Sc radionuclide generator system. The long-lived ⁴⁴Ti produces a short-lived ⁴⁴Sc, which subsequently decays to stable ⁴⁴Ca. The physical half-life of ⁴⁴Sc is $T_{1/2} = 3.97$ h, its positron branching is 94.27% [5]. The ⁴⁴Ti half-life varies in different studies from 39 to 66.6 years [8–12]. Most recent studies revealed a half-life of 60.6 ± 1.3 years [10–12].

A crucial issue in the development of ⁴⁴Ti/⁴⁴Sc radionuclide generator systems consists of the production of ⁴⁴Ti. The ⁴⁵Sc(p, 2n)⁴⁴Ti process seems to be an effective nuclear reaction, however, due to the long physical half-life, cyclotrons of high proton flux are mandatory.

For preparation of ⁴⁴Ti/⁴⁴Sc radionuclide generators, several radiochemical criteria are relevant, such as effective separation strategies providing high ⁴⁴Sc elution yields and low ⁴⁴Ti breakthrough, high long-term stability, and type of Sc eluates useful for subsequent labelling reactions (*i.e.* low volume, low pH, high purity *etc.*), *cf.* [4].

Sc(III) is strongly adsorbed from oxalic acid solution, and its oxalate complex is selectively destroyed by the

^{*}Author for correspondence (E-mail: frank.roesch@uni-mainz.de).

addition of hydrochloric acid. These data can be used as the basis of a method for the anion exchange separation of Sc(III) and Ti(IV) in oxalic acid/hydrochloric mixtures [13]. In fact, there are only a few reports on studies to develop ⁴⁴Ti/⁴⁴Sc radionuclide generators. Using 0.2 M HCl/0.1 M H₂C₂O₄ mixture on Dowex-1 resin, 60–70% elution yield of ⁴⁴Sc in 30–50 mL was reported [14]. A solvent extraction technique with an organic phase of 1% 1-phenyl-3-methyl-4-capryl-pyrazolone-5 in methyl isobutyl led to > 90% recovery of Sc in less than 10 mL with a Ti contamination of < 10⁻⁶ [15]. Elution yields of 42–46% and decontamination factor of 5×10⁴ were reported in studies with 0.01 M HCl as an eluent and ⁴⁴Ti being adsorbed on inorganic ZrO₂ as an analogue of Ti(IV) [16].

2. Materials and methods

2.1 Chemicals and reagents

Oxalic acid of analytical reagent grade was obtained from Merck (Darmstadt, Germany). All other chemicals were pure reagent grade and used as received unless otherwise specified. The ion exchange resins AG 1-X8 (200–400 mesh, Cl⁻-form) and AG 50W-X8 (200–400 mesh, H⁺-form) were purchased at Bio-Rad Laboratories (Richmond, CA, USA). Deionized Milli-Q water (18.2 M Ω cm; Millipore) was used in all reactions.

2.2 Production of ⁴⁴Ti

Five mCi of ⁴⁴Ti were produced utilizing the ⁴⁵Sc(p, 2n)⁴⁴Ti process at an internal proton beam of $E_p \approx 25$ MeV. The 1.5 g Sc targets were covered by intermediate layers of Ag in order to reduce ⁶⁵Zn contaminations. The target system was capable to withstand long-term irradiations at up to 200 μ A as described in [17].

⁴⁶Sc ($T_{1/2} = 83.79$ d) was produced *via* neutron capture on ⁴⁵Sc at the TRIGA research reactor Mainz as a tracer both for the determination of Sc(III) distribution coefficients and to follow the separation of ⁴⁴Ti from the irradiated scandium target.

2.3 Measurement of radioactivities

The absolute radioactivity of 44 Sc, 46 Sc and 44 Ti was measured by γ -spectrometry using a high-purity germanium (HPGe) detector. For detection of 44 Ti(44 Sc), the 1157 and 1499 keV γ -emissions were used for decay equilibrium. The 44 Ti radioactivity was measured also at 67.9 (88%) and 78.4 (94.5%) keV. Measurements of 44 Ti radioactivity were performed 120 h after 44 Sc measurements (more than 30 half-lives of 44 Sc).

All radioactive materials were handled according to approved protocols at the Institute of Nuclear Chemistry at Johannes Gutenberg University.

Measurement of ⁴⁴Sc high radioactivities was accomplished in a dose calibrator M2316 (Messelektronik, Dresden GmbH). The Curie-meter ¹⁸F setting was used with a multiplication factor of 0.7, to account for absolute ⁴⁴Sc activity. A small animal PET scanner (Siemens MicroPET Focus 120) was used to analyse the local distribution of ⁴⁴Ti(⁴⁴Sc) on the generator columns.

2.4 Separation of ⁴⁴Ti and ⁴⁴Sc

The 1.5 g irradiated scandium target was dissolved in 18 mL of 2 M HCl and basic separations of silver as well as coproduced ⁶⁵Zn and ¹⁰⁹Cd have been performed as described earlier [17].

For further separations of macroscopic scandium two aliquots A) ⁴⁴Ti in 9 mL 2 M HCl (96.6 MBq) and B) ⁴⁴Ti in 9 mL 2 M HCl (103.5 MBq) were spiked with ⁴⁶Sc. For cation exchange chromatography, a large column (H = 350 mm, S = 2 cm², $V_0 = 35$ mL) of AG 50W-X8, 200–400 mesh (H⁺-form) was washed with 1500 mL of 4 M HCl and 50 mL H₂O. Aliquot A was brought in the column followed by 7.5 mL H₂O and 8 mL 1 M HCl consecutively. After that, aliquot B was brought in the column, then 9 mL H₂O and 17.5 mL 1 M HCl. The column was washed with 45 mL 1 M HCl, 30 mL 2 M HCl, 160 mL 3 M HCl, 200 mL 0.5 M H₂C₂O₄ consecutively, *cf*. Table 1.

The second separation was performed using a similar column (H = 360 mm, S = 2 cm², $V_0 = 36$ mL) with AG 50W-X8, 200–400 mesh (H⁺-form). The column was washed with 1000 mL of 4 M HCl and 50 mL H₂O. The fraction N 5 from the first separation was brought in the column, then 170 mL H₂O, 45 mL 1 M HCl, 180 mL 2 M HCl and 190 mL 4 M HCl, consecutively. Measurements have been performed similar to the protocol used for the first separation, *cf*. Table 2.

2.5 Final purification of ⁴⁴Ti

The first purification was performed on a medium-scale column (H = 170 mm, D = 3 mm, $V_0 = 0.6$ mL) with AG 1-X8 resin, 200–400 mesh (Cl⁻-form). The column was washed with 10 mL 12 M HCl, 10 mL 1 M HCl, 10 mL H₂O and 10 mL 12 M HCl, consecutively. The fractions N 23–24 (from second separation) were brought in the column, then 8.6 mL 12 M HCl, 4.5 mL 8 M HCl, 8 mL 1 M HCl, consecutively, *cf*. Table 2, Fig. 1.

The second purification was made on a smaller column $(H = 150 \text{ mm}, D = 3 \text{ mm}, V_0 = 0.55 \text{ mL})$ using cation exchange chromatography with the resin AG 50-X8, 200–400 mesh (H⁺-form). The column was washed with 40 mL 4 M HCl and 5 mL H₂O. The ⁴⁴Ti fraction N 4 (from first separation) as isolated in the anion exchange chromatography in 2 M HCl, as well as the fractions N 22, 25 (from second separation), and N 13–18 (from first purification) as obtained in the initial separations in 2 M HCl, were brought in the column, then 10 mL 1 M HCl and 20 mL 0.3 M HCl were applied. The ⁴⁴Ti was eluted with 1 M HCl and ⁵⁶Co with 4 M HCl beginning with fraction N 122, *cf*. Fig. 2.

2.6 Determination of K_d values of Ti and Sc in HCl/H₂C₂O₄ solution of various concentrations

 $K_{\rm d}$ values for both Sc(III) and Ti(IV) were determined in batch experiments using different concentrations of HCl/H₂C₂O₄ mixtures. ⁴⁴Ti(⁴⁴Sc) and ⁴⁶Sc were used as isotopic tracers for Ti(IV) and Sc(III) distributions. A stock solution of ⁴⁴Ti (30 kBq) and ⁴⁶Sc (1 mg, 20 mCi) was dried and dissolved in 100 μ L 0.1 M C₂H₂O₄ (solution *X*). Aliquots were prepared in Eppendorf 1.5 mL vials with 100 mg of AG 1-X8 (200–400 mesh, Cl⁻-form) or AG 50-X8 (200–400 mesh, H⁺-form). To all solutions 1 mL of a HCl/H₂C₂O₄ mixture was added, than 5 μ L of solution *X* was added to the solutions 001–009.

A solution Y – an aliquot with ⁴⁴Ti (117 kBq) with the remaining solution of X and with ⁴⁶Sc – was dried and dissolved in 0.025 M H₂C₂O₄. 5 µL of solution Y was added to vials 010–016.

Another solution Z was prepared from a fraction of ⁴⁴Ti (27 kBq) with the remaining solution Y and with ⁴⁶Sc dried and dissolved in 0.005 M H₂C₂O₄. 5 μ L of solution Z was added to vials 017–026. Each of the vials was shaken for 2 d. Then 400 μ L of the liquid phase was taken from every vial, and radioactivity A was measured on the Curie-meter.

 $K_{\rm d}$ was calculated by the following equation:

 $K_{\rm d} = (4A - 10A')/A'$

A – activity of a whole vial with resin, A' – activity of a 400 µL sample of the solution after ion-exchange reaction.

2.7 Preparation and evaluation of pilot ⁴⁴Ti/⁴⁴Sc radionuclide generators

Two columns made of PEEK (diameter 3 mm, length 40 mm) were prepared in the institute's workshop. Both columns were filled with AG 1-X8, 200–400 mesh, in Br^{-} form. The columns were washed with 5 mL 12 M HCl and 5 mL H₂O two times. Finally, they were washed with 5 mL 0.1 M H₂C₂O₄.

A sample of ⁴⁴Ti was evaporated to dryness and taken up with 420 μ L of 0.1 M H₂C₂O₄. The solution obtained was divided into two parts. To each sample 2 mL 0.1 M H₂C₂O₄ were added. The two ⁴⁴Ti fractions of 300 kBq activity were transferred to the generators.

Both generators were eluted using 10 mL of 0.2 M HCl/0.1 M H₂C₂O₄ solutions. While generator G1 was eluted in a standard procedure, *i.e.* in a single direction ("direct"), the generator G2 was additionally regenerated after each elution using 0.2 M HCl/0.1 M H₂C₂O₄ in alternating direction ("reverse"). Elution of both generators was carried out 3 times a week.

2.8 Improvement of ⁴⁴Ti distribution profiles of a pilot ⁴⁴Ti/⁴⁴Sc radionuclide generator

Elution of the generator G2 was carried out 3 times a week as described earlier. After 50 elutions, the ⁴⁴Ti distribution profile was analysed using μ PET registration. Subsequently, the generator was washed using 4 mL of 0.1 M H₂C₂O₄ and 2 mL of 1 M HCl/0.1 M H₂C₂O₄ mixture and again 4 mL of 0.1 M H₂C₂O₄ consecutively in "reverse" direction. This operation was repeated 5 times. After the "regeneration" protocol, the generator G2 was scanned again.

⁴⁴Ti distribution profiles on the column of the pilot generator G2 after 50 elutions (a) and after regeneration with $0.1 \text{ M H}_2\text{C}_2\text{O}_4$ and $1 \text{ M HCl}/0.1 \text{ M H}_2\text{C}_2\text{O}_4$ solutions (b) are compared graphically in Fig. 5.

2.9 Preparation of a 5 mCi ⁴⁴Ti/⁴⁴Sc radionuclide generator

For the final generator, a larger column (H = 150 mm, D = 3 mm, $V_0 = 0.55$ mL) was made of PEEK and filled with resin AG 1-X8 (200–400 mesh, Br⁻-form). The column was washed with 20 mL 12 M HCl and 10 mL H₂O. Finally, it was washed with 10 mL 0.1 M H₂C₂O₄. The fractions with purified ⁴⁴Ti (185 MBq) were dried and dissolved in 20 mL 0.1 M H₂C₂O₄. This solution was brought into the generator which was then washed with 0.07 M HCl/0.005 M H₂C₂O₄ mixture in "reverse" direction. Two days later, the generator was eluted for the first time using 20 mL of 0.07 M HCl/0.005 M H₂C₂O₄. Eluate aliquots were collected for each 2 mL. One week later, the activity of ⁴⁴Ti in these samples was analysed by means of γ -spectrometry.

Within several months, the generator was eluted each week according to the same protocol.

3. Results and discussion

3.1 Separation of ⁴⁴Ti and macroscopic Sc

About 99.9% of the ⁴⁴Ti produced in the Sc(p, 2n) nuclear reaction have been isolated in a 48 mL fraction of 2 M HCl. As expected, the scandium separation was not complete with about 500 µg scandium still present in that ⁴⁴Ti fraction. A second chromatographic separation provided a more complete separation with a separation factor of about 10⁵, *i.e.* less than 10⁻³% (about 15 µg) of the initial scandium still remaining in the ⁴⁴Ti fraction. In total, about 99.6% of the ⁴⁴Ti activities have been recovered following cation exchange purification of the no-carrier-added radionuclide from about 1.5 g of a macroscopic scandium target.

Tables 1 and 2 show the results for the ion exchange chromatography for two basic separations, the activities of ⁴⁴Ti and ⁴⁴Sc measured in the different fractions using different detectors, *i.e.* Curie-meter and γ -ray spectroscopy. Further purification appeared to be useful. The fractions *N* 23 and *N* 24 (Table 2) thus were further purified using anion exchange chromatography, as described later.

3.2 Purification of ⁴⁴Ti

After the second purification 44 Ti still contained about 15 µg nat Sc and 56 Co (7 MBq), therefore further purification was performed.

Results for the ion exchange chromatographic purifications are shown in Figs. 1–2 for the two purification procedures. Activities have been analysed using a Curie-meter at two different time points. The ⁴⁴Ti fraction N 1–12, *cf*. Fig. 1, contains > 99% of the overall ⁴⁴Ti activity. The amount of ^{nat}Sc and the contamination of ⁵⁶Co are below the detection limit. This highly-pure ⁴⁴Ti was finally used to prepare the first ⁴⁴Ti/⁴⁴Sc generator. The fractions 13–18 (Fig. 1), as well as sample N 4 from the 1st (Table 1) separation and 22, 25 from 2nd (Table 2) were transferred to another purification process, *cf*. Fig. 2.

Fractions N 108–119 were very pure, with ^{nat}Sc and ⁵⁶Co separated quantitatively. The highly-pure fractions N 110–111 were used for the preparation of two low-activity pilot-generators G1 and G2, in order to investigate the radiochem-

Table 1. Initial ⁴⁴Ti/Sc separation. AG 50W-X8, 200–400 mesh (H⁺-form), H = 350 mm, $S = 2 \text{ cm}^2$, $V_0 = 35$ mL. Sample *N* 5 is emphasized as this aliquot was used for subsequent separation.

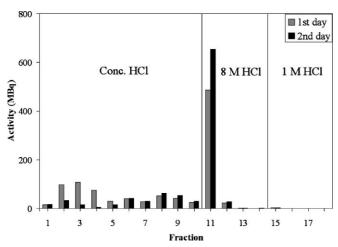
Ν	Solution	V (mL)	Activity (MBq)				
		. ,	Curie-meter		γ -spectroscopy		
			1st day	2 nd day	⁴⁴ Ti	⁴⁶ Sc	
1	1 M HCl	40	0.197	0.153	0	0	
2	1 M HCl	45	0.888	0.827	0	0	
3	1 M HCl	45	0.386	0.314	0	0	
4	2 M HCl	47	1.089	1.271	0.18	0	
5	3 M HCl	48	924.7	1040.0	204.35	2.56	
6	3 M HCl	49	56.96	14.91	0.100	2.36	
7	3 M HCl	41	23.84	7.231	0.410	1.14	
8	3 M HCl	18	8.260	2.752	0.007	0.280	
9	0.5 M H ₂ C ₂ O ₄	32	13.33	6.570	~ 0.020	~ 0.150	
10	$0.5 \text{ M H}_2\text{C}_2\text{O}_4$	47	2.367	0.667	0.025	0.109	
11	$0.5 \text{ M H}_2\text{C}_2\text{O}_4$	37	1.661	0.398	0.008	0.077	
12	0.5 M H ₂ C ₂ O ₄	39	_	0.420	0.008	0.850	

Table 2. Second ⁴⁴Ti/^{nat}Sc separation. AG 50W-X8, 200–400 mesh (H⁺-form), H = 360 mm, $S = 2 \text{ cm}^2$, $V_0 = 36$ mL. Samples N 23 and 24 are emphasized as these aliquots were used for subsequent purification.

Ν	Solution	V	Activity (MBq)				
		(mL)	Curie-meter		γ -spectroscopy		
			1 st day	2 nd day	⁴⁴ Ti	⁴⁶ Sc	
13	1 M HCl	30	0.036	0.002			
14	1 M HCl	30	0.055	0.008			
15	1 M HCl	30	0.062	0.014			
16	1 M HCl	30	0.082	0.018			
17	1 M HCl	30	0.082	0.020			
18	1 M HCl	30	0.088	0.020			
19	1 M HCl	30	0.088	0.019			
20	1 M HCl	30	0.082	0.014			
21	2 M HCl	30	0.077	0.011			
22	2 M HCl	30	1.692	2.206	0.54		
23	2 M HCl	30	561.4	771.4	188.42		
24	2 M HCl	30	154.8	209.0	51.04		
25	2 M HCl	30	13.80	12.99	0.06		
26	2 M HCl	30	0.844	0.295	0.004		
27	4 M HCl	30	1.546	0.064	0.003	0.0004	
28	4 M HCl	30	95.90	5.139		1.017	
29	4 M HCl	30	46.52	3.105		0.614	
30	4 M HCl	30	24.16	1.631		0.323	
31	4 M HCl	30	12.85	0.704		0.140	
32	4 M HCl	30	8.974	0.358		0.071	
33	4 M HCl	30	5.440	0.181		0.036	

ical design of ${}^{44}\text{Ti}/{}^{44}\text{Sc}$ generators in terms of high ${}^{44}\text{Sc}$ elution yields and low ${}^{44}\text{Ti}$ breakthrough, but also long-term stability.

3.3 Determination of distribution coefficients of Ti(IV) and Sc(III) on ion exchange resins


Results of the K_d values obtained for the two different ion exchange resins and the various mixtures are shown in Table 3.

Accordingly, the optimum conditions for efficient separations and for the design of generators could be to elute AG 1-X8 resins with 0.2 M HCl/0.1 M $H_2C_2O_4$, 0.125 M $HCl/0.025 M H_2C_2O_4$ or 0.06–0.08 M $HCl/0.005 M H_2C_2O_4$ mixtures.

In the context of further use of ⁴⁴Sc, *e.g.* for radiopharmaceutical syntheses, it appeares favourable to use eluate mixtures of lower salt concentration, such as 0.06-0.08 M HCl/0.005 M H₂C₂O₄. For other studies, such as, *e.g.*, to investigate the breakthrough of ⁴⁴Ti even at increasing numbers of elutions, 0.2 M HCl/0.1 M H₂C₂O₄ mixtures can be used as well (*cf.* "Evaluation of ⁴⁴Ti/⁴⁴Sc radionuclide generators"). In this case, the somewhat lower K_d values for Ti(IV) compared to the more diluted eluate mixtures, may allow following the eventual breakthrough of ⁴⁴Ti at a limited number of elutions already.

Table 3. Distribution coefficients of Ti(IV) and Sc(III) in various $HCl/H_2C_2O_4$ mixtures for cation and anion exchange resins. $HCl/H_2C_2O_4$ mixtures providing the most useful K_d values are indicated in italic numbers.

	Ν	N Concentration of solution, mol/L		$K_{ m d}$				
				AG 50-X8		AG 1-X8		
		$H_2C_2O_4$	HCl	Ti(IV)	Sc(III)	Ti(IV)	Sc(III)	
Х	001	0.1	0	_	_	> 1000	184	
	002	0.1	0.05	_	_	> 1000	41	
	003	0.1	0.1	_	_	> 1000	14	
	004	0.1	0.15	$\ll 1$	12.0	> 1000	5.1	
	005	0.1	0.20	$\ll 1$	10.7	> 1000	1.7	
	006	0.1	0.30	$\ll 1$	7.0	370	0.2	
	007	0.1	0.50	$\ll 1$	11.2	105	$\ll 1$	
	008	0.1	0.75	~ 0.5	14.0	_	_	
	009	0.1	1.0	$\ll 1$	8.1	17	$\ll 1$	
Y	010	0.025	0	1.0	201	> 1000	954	
	011	0.025	0.025	1.0	148	> 1000	168	
	012	0.025	0.050	0.6	129	> 1000	40.9	
	013	0.025	0.075	1.8	128	> 1000	14.2	
	014	0.025	0.125	3.3	124	1050	2.68	
	015	0.025	0.175	3.1	120	410	0.3	
	016	0.025	0.250	2.9	119	290	$\ll 1$	
Z	017	0.005	0	32	7619	> 1000	2340	
	018	0.005	0.025	30.4	2378	> 1000	67.2	
	019	0.005	0.0375	34.2	2242	> 1000	24.0	
	020	0.005	0.05	33.6	2665	> 1000	10.9	
	021	0.005	0.065	28.2	1872	> 1000	4.0	
	022	0.005	0.08	33	1715	844	1.27	
	023	0.005	0.10	33	1646	688	0.71	
	024	0.005	0.125	25.6	1398	457	$\ll 1$	
	025	0.005	0.25	_	_	46	$\ll 1$	
	026	0.005	0.5	-	-	3.8	$\ll 1$	

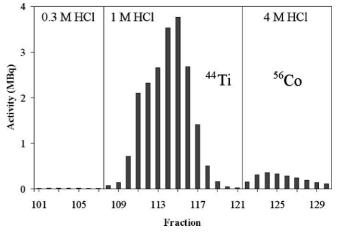
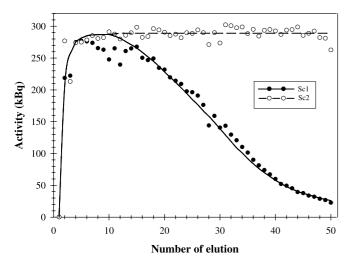
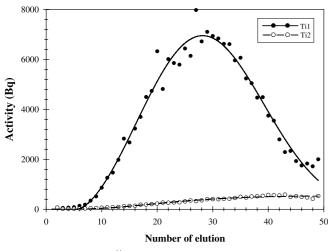


Fig. 1. The distribution of 44 Ti after the 1st purification. AG 1-X8 (200–400 mesh Cl⁻-form). Each fraction volume is 1.2 mL. Activity measured on Curie-meter.

3.4 Evaluation of pilot ⁴⁴Ti/⁴⁴Sc radionuclide generators

Fig. 3 illustrates the yield of ⁴⁴Sc obtained for the increasing number of elutions for both generator types G1 and G2. After about 15 elutions for G1, the eluted activity of ⁴⁴Sc started to drop, which is due to the increasing breakthrough of ⁴⁴Ti.


In contrast to G1, the "reverse" elution protocol applied to generator G2, showed a constant yield of ⁴⁴Sc elutions for the complete 50 elution runs applied. This ⁴⁴Sc elution


Fig. 2. Distribution of ⁴⁴Sc and ⁴⁴Ti after the 2nd purification. AG 50-X8 (200–400 mesh, H⁺-form). Each fraction volume is 2 mL. Activity measured on Curie-meter.

profile corresponds to the breakthrough of ⁴⁴Ti as shown in Fig. 4.

The "direct" elution strategy of pilot generator G1 results in an increasing breakthrough of ⁴⁴Ti, which results in a 50% desorption of ⁴⁴Ti after about 30 elutions, and an almost complete release of ⁴⁴Ti after 50 elutions. In contrast, the breakthrough of ⁴⁴Ti in the case of the "reverse" type elution scheme is negligible for the first 10 elutions, and increases only slightly in the following 40 elutions. The maximum breakthrough of ⁴⁴Ti is about 0.2%.

Fig. 3. Yield of ⁴⁴Sc for increasing number of elutions for "direct" (Sc1) and "reverse" (Sc2) elution modes after 50 elutions.

Fig. 4. Breakthrough of ⁴⁴Ti for increasing number of elutions for "direct" (Ti1) and "reverse" (Ti2) elution modes after 50 elutions.

3.5 Regeneration of ⁴⁴Ti distribution profiles on the column

"Reverse" elution modes obviously provide high retention of 44 Ti on the column. However, the distribution of 44 Ti is still changing with increasing elutions. We tested the possibility to improve the distribution profile by "reverse" elution with different composition of H₂C₂O₄/HCl solutions.

The coronary distribution of ${}^{44}\text{Ti}({}^{44}\text{Sc})$ on the pilot generator G2 after 50 elutions was analysed by μ PET imaging. Quantitative data on the distribution of ${}^{44}\text{Ti}/{}^{44}\text{Sc}$ of the generator column are illustrated in Fig. 5. Each slice unit is about 0.5 mm. Obviously, the zone of ${}^{44}\text{Ti}$ became narrower after a "regeneration" procedure.

3.6 Preparation of 5 mCi ⁴⁴Ti/⁴⁴Sc radionuclide generator

Typical ⁴⁴Ti/⁴⁴Sc radionuclide generator elution profiles of ⁴⁴Sc are shown in Fig. 6 for the initial experiments (mean data for the elutions 4–7) as well as a typical result for an elution done after one year (elution number 54). The corresponding activities of ⁴⁴Ti in the individual fractions are given in Fig. 7.

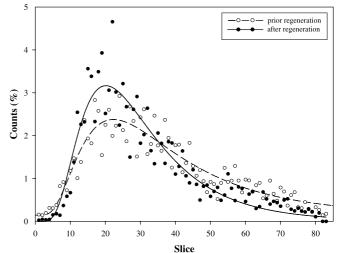
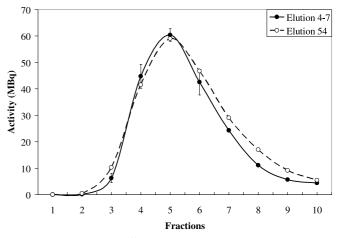
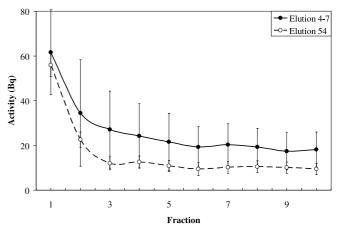




Fig. 5. Distribution profile in percent for ⁴⁴Ti prior and after "regeneration" as measured by PET.

Fig. 6. Elution profile of ⁴⁴Sc (mean of elutions 4–7) and 54 (after 1 year). Curie-meter measurements. Each fraction contains 2 mL.

Fig. 7. Breakthrough of ⁴⁴Ti (mean for the elutions 4–7) and 54 (after 1 year). γ -spectroscopy. Each fraction contains 2 mL.

After the first seven elutions of the ⁴⁴Ti/⁴⁴Sc radionuclide generator, the profile of ⁴⁴Sc elutions indicates that the aliquots 4–7 contain $85 \pm 2\%$ of the total ⁴⁴Sc activity. The breakthrough of ⁴⁴Ti (γ -spectroscopy) in all 10 aliquots (20 mL) is less than $10^{-4}\%$ (150 Bq).

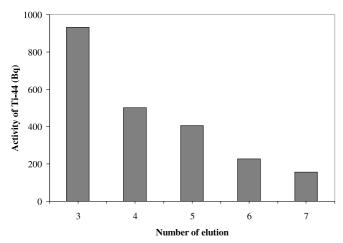


Fig.8. Total breakthrough of 44 Ti for the elutions 3–7. Each fraction contains 20 mL.

Fig. 8 illustrates the overall breakthrough of ⁴⁴Ti in the total 20 mL eluate volume for the elutions 3 to 7. It indicates an improvement of the breakthrough with increasing number of elutions. While about 1 kBq of ⁴⁴Ti was found for the third elution, this value is 0.1 kBq only for the 7th elution.

3.7 Final apparative scheme of the "reverse" ⁴⁴Ti/⁴⁴Sc-generator

A modular system of the 5 mCi generator was constructed. It presents the central generator column in a horizontal position (II). Two reservoirs for the eluate solutions are connected to the inlet (I) and the outlet (III) position of the generator column. The reservoirs I and III are connected to an air pressure *via* filter F to avoid contaminations of eluate composition with metals from the air. Transfer of eluates from the reservoirs through the generator is achieved by air pressure (elution of ⁴⁴Sc) or vacuum ("reverse" elution) using empty syringe S.

All parts of the 5 mCi ⁴⁴Ti/⁴⁴Sc-generator are connected *via* tubing and 3-way valves. The generator works in a "reverse" scheme of elutions. The initial elution is organized by transferring 20 mL of the eluate solution of reservoir (I) through the generator into the ⁴⁴Sc vial (IV). After each elution the generator is eluted with the same eluate composition in a reverse way using reservoir (III). While the eluate in

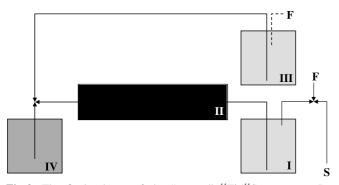


Fig.9. The final scheme of the "reverse" $^{44}\text{Ti}/^{44}\text{Sc-generator}$. I – 20 mL reservoir, II – generator, III – 500 mL reservoir with 0.005 M $H_2C_2O_4/0.07$ M HCl mixture, IV – collecting vial, F – filter, S – syringe.

Table 4. Comparison of different ⁴⁴Ti/Sc radionuclide generators.

Year of study	Activity of ⁴⁴ Ti (MBq)	Yield of ⁴⁴ Sc (%)	Eluate volume (mL)	Separation factor
1967 [14]	not given not given	60–70 60–70	30–50 50	2×10^4 10 ³ (after 40 elution)
1973 [<mark>16</mark>]	0.037	42-46	30	5×10^4
This work	185	97	20	2×10^{6}

reservoir (III) is refreshed routinely, the eluate in bottle (I) can be used for next elution of the generator. Eluted ⁴⁴Sc in collecting vial (IV) can be used for further experiments.

The scheme guarantees for safe handing, as it represents an inherently closed system with respect to 44 Ti.

4. Conclusions

Using optimum K_d values of Ti(IV) and Sc(III) for HCl/ H₂C₂O₄ mixtures, *i.e.* 0.2 M HCl/0.1 M H₂C₂O₄ and 0.07 M HCl/0.005 M H₂C₂O₄, two low-activity pilot generator and a 5 mCi ⁴⁴Ti/⁴⁴Sc generator, respectively, were constructed and evaluated.

After one year of regular elution of the 5 mCi ⁴⁴Ti/⁴⁴Sc radionuclide generator, the yield of ⁴⁴Sc and ⁴⁴Ti is stable and the breakthrough of ⁴⁴Ti is very low. The system achieves elution of 97% (180 MBq) ⁴⁴Sc in 20 mL of eluate solution. The breakthrough of ⁴⁴Ti is 5×10^{-5} % (90 Bq). This corresponds to an excellent separation factor of 2×10^{6} . Compared to other ⁴⁴Ti/⁴⁴Sc radionuclide generators, higher elution yields of ⁴⁴Sc in less volume and a higher separation factor were achieved, at higher ⁴⁴Ti activity compared to only kBq in other studies (Table 4).

Regarding long-term stability of ⁴⁴Ti/⁴⁴Sc generators, "direct" generator elutions may not be adequate. In comparison, a "reverse" elution strategy definitely guarantees a very low breakthrough of ⁴⁴Ti. This does not affect the elution yield of ⁴⁴Sc.

There is a possibility to even improve the distribution profile, to further reduce the ⁴⁴Ti breakthrough and to extend the generators shelf-life by "reverse" elution with different composition of $HCl/H_2C_2O_4$ solutions.

Finally, the new radionuclide generator design provides stable high-purity elution of significant activities of ⁴⁴Sc of 180 MBq per elution. In the context of medical applications of ⁴⁴Sc eluted from the present generator system, its absolute activities are sufficient for initial studies. However, the ⁴⁴Sc solution that is obtained from generator appears to be too diluted and too acidic for use in direct labelling procedures. Nevertheless, concentrating the ⁴⁴Sc solution and reducing the acidity in that ⁴⁴Sc solution may be added on line to the generator performance described.

Acknowledgment. Financial support by the DFG is acknowledged (DFG RO 985/18). The authors whish to thank Yu. G. Alenitzky, A. F. Novgorodov, A. V. Skripnik and A. V. Skripnik from the Joint Institute of Nuclear Research, DLNP, Dubna, Russian Federation, for helpful discussions. Special acknowledgement goes to V. G. Kaplun, A. G. Suzikov and IA Eliseev from the Second Central Scientific Research Institute, SPA "V. G. Khlopin Radium Institute", SPA "D. V. Efremov Scientific Research Institute of Electrophysical Equipment", Russian Federation, for providing the irradiated Sc target. Finally, assistance of H.-G. Buchholz is acknowledged for the μ PET measurements.

References

- 1. Greene, M. W., Doering, R. F., Hillman, M.: Milking systems: status of the art. Isot. Radiat. Tech. 1, 152–154 (1964).
- Rösch, F.: Radionuklid-Generatorsysteme für die PET. Nuklearmediziner 27, 226–235 (2004).
- Rösch, F., Knapp, F. F. (Russ): Radionuclide generators. In: *Handbook of Nuclear Chemistry*. (Vértes, A., Nagy, S., Klencsár, Z., Rösch, F., eds.) Kluwer Academic Publishers, The Netherlands (2003), Vol. 4, pp. 81–118.
- Zhernosekov, K. P., Filosofov, D. V., Baum, R. P., Aschoff, P., Bihl, H., Razbash, A. A., Jahn, M., Jennewein, M., Rösch, F.: Processing of Generator-produced ⁶⁸Ga for medical application. J. Nucl. Med. **48**(10), 1741–1748 (2007).
- 5. Cameron, J. A., Singh, B.: Nucl. Data Sheets 88, 299 (1999).
- Sajjad, M., Lambercht, L. M.: Separation of tracer titanium-44 from vanadium. Anal. Chem. 58, 667–668 (1986).
- Zaitseva, N. G., Rurarz, E., Tchikalov, M. B., Vobecky, M., Khalkin, V. A., Popinenkova, L. M.: Production cross section and yield of long lived ⁴⁴Ti from 100 MeV proton bombardment of vanadium. Radiochim. Acta **65**, 157–160 (1994).
- Moreland, P. E., Heymann, D.: The ⁴⁴Ti half-life. J. Inorg. Nucl. Chem. 27, 493–496 (1965).

- Alburger, D. E., Harbottle, G.: Half-lives of ⁴⁴Ti and ²⁰⁷Bi. Phys. Rev. C 41, 2320–2324 (1990).
- Norman, E. B., Browne, E., Chan, Y. D., Larimer, R., Lesko, K. T., Nelson, M., Wietfeldt, F. E., Zlimen, I.: Half-life of ⁴⁴Ti. Phys. Rev. C 57, 2010–2016 (1998).
- Ahmad, I., Greene, J. P., Kutschera, W., Paul, M.: Measurement of the ⁴⁴Ti Half-life and its Significance for Supernova. In: Symposium on Origin of Elements in the Solar System: Implication of Post-1957 Observations, 218th ACS National Meeting, New Orleans, LA, August 22–26 (1999).
- Hashimoto, T., Nakai, K., Wakasaya, Y., Tanihata, I., Fulop, Z., Kumagai, H., Ozawa, A., Yoshida, K., Goswarmi, R.: Half-life of ⁴⁴Ti. Nucl. Phys. A 686, 591–599 (2001).
- Walter, R. I.: Anion exchange studies of Sc(III) and V(IV). Separation of scandium, titanium and vanadium. J. Inorg. Nucl. Chem. 6, 58–62 (1958).
- Greene, M. W., Hillman, M.: A scandium generator. Int. J. Appl. Radiat. Isot. 18, 540–541 (1967).
- Mirza, M. Y., Aziz, A.: A scandium generator. Radiochim. Acta 11, 43–44 (1969).
- Seidl, E., Lieser, K. H.: Die Radionuklidgeneratoren ¹¹³Sn/^{113m}In, ⁶⁸Ge/⁶⁸Ga und ⁴⁴Ti/⁴⁴Sc. Radiochim. Acta **19**, 196–198 (1973).
- 17. Alenitzky, Yu. G., Novgorodov, A. F., Skripnik, A. V., Filosofov, D. V., Skripnik, A. V., Kaplun, V. G., Suzikov, A. G., Eliseev, I. A., Rösch, F.: ⁴⁴Ti: Investigation of target preparation, irradiation and yields in the ⁴⁵Sc(*p*, 2*n*) process. In: Annual Report. Institute of Nuclear Chemistry, University of Mainz (2005), http://kernchemie.uni-mainz.de/Dateien/b3_05.pdf.