Contents lists available at ScienceDirect

Applied Radiation and Isotopes

journal homepage: www.elsevier.com/locate/apradiso

Post-elution processing of ⁴⁴Ti/⁴⁴Sc generator-derived ⁴⁴Sc for clinical application

M. Pruszyński^a, N.S. Loktionova^b, D.V. Filosofov^c, F. Rösch^{b,*}

^a Institute of Nuclear Chemistry and Technology, 03-195 Warszawa, Poland

^b Institute of Nuclear Chemistry, Johannes Gutenberg-University of Mainz, D-55128 Mainz, Germany

^c Joint Institute of Nuclear Research, DLNP, 141980 Dubna, Russian Federation

ARTICLE INFO

Article history: Received 23 September 2009 Received in revised form 3 March 2010 Accepted 5 April 2010

Keywords: ⁴⁴Ti ⁴⁴Sc Radionuclide generator Post-processing of eluates Cation exchange chromatography PET/CT

ABSTRACT

The ⁴⁴Ti/⁴⁴Sc ($T_{1/2}$ ⁴⁴Ti=60 a) generator provides cyclotron-independent access to positron-emitting ⁴⁴Sc ($T_{1/2}$ =3.97 d) for PET imaging. This work aims to post-elution processing of initial ⁴⁴Sc generator eluates in order to reduce its volume, HCl concentration and remove the oxalate anions. The on-line adsorption of ⁴⁴Sc on cationic resin AG 50W-X8 (200–400 mesh, H⁺-form) is achieved with >98% efficacy. Subsequently, the purified ⁴⁴Sc is desorbed by using 3 ml of 0.25 M ammonium acetate (pH=4.0).

The post-processing takes 10 min. The overall yield of the post-processing reached 90%, which is referred to the ⁴⁴Sc obtained from the ⁴⁴Ti/⁴⁴Sc generator. In addition to the chemical purification, the content of ⁴⁴Ti breakthrough was further reduced by one order of magnitude. The 185 MBq generator finally provides 150 MBq of ⁴⁴Sc containing < 10 Bq of ⁴⁴Ti ready for labeling.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Positron emission tomography (PET) is one of the rapidly developing molecular imaging technologies. The commonly used positron emitting radionuclide is ¹⁸F ($T_{1/2}$ =110 min), and ¹⁸F-labeled fluorodeoxyglucose is the dominating PET tracer.

Another option to support hospitals with relevant PET radionuclides is using radionuclide generators. The decay of a longlived parent nuclide to a short-lived PET daughter provides an inexpensive and convenient alternative (Rösch and Knapp, 2003). Recently, the ⁶⁸Ge/⁶⁸Ga generator is turning into an important source of new ⁶⁸Ga-labeled radiopharmaceuticals for routine clinical use. The generator provides ⁶⁸Ga ($T_{1/2}$ =67.7 min) from the long-lived ⁶⁸Ge ($T_{1/2}$ =270.8 d). While the short half-life of ⁶⁸Ga permits application of suitable ⁶⁸Ga activities maintaining an acceptable radiation dose to the patient, it limits application of ⁶⁸Ga-labeled tracers to the investigation of fast biological processes.

In this context, generator-derived positron emitters with longer physical half-life are needed—such as ⁷²As ($T_{1/2}$ =26 h) from the ⁷²Se/⁷²As generator, or ⁴⁴Sc ($T_{1/2}$ =3.97 h) from the ⁴⁴Ti/⁴⁴Sc generator (Rösch and Knapp, 2003). Hosain et al. (1977)

has already proposed ⁴⁴Sc as a PET radionuclide for studying bone disease. ⁴⁴Sc is a positron emitter with β^+ branching (94.3%), and 99.9% photon emission of 1157.0 keV, generated by ⁴⁴Ti. The halflife of ⁴⁴Ti was measured by several groups with results varying from 46.4 to 66.6 years. The most recent studies revealed a halflife of 59.2 \pm 0.6 years (Ahmad et al., 1998).

The trivalent metal Sc(III) is particularly relevant, as it may be used for labeling of radiopharmaceuticals based on bifunctional chelators, established for coordinating lanthanides such as stable Gd(III) or ¹⁷⁷Lu, as well as for radioactive rare earth metals such as ⁹⁰Y, or radionuclides like ¹¹¹In and ⁶⁸Ga. Due to the increasing medical applications of trivalent radiometals in diagnosis and therapy, the ⁴⁴Ti/⁴⁴Sc generator could possibly provide an interesting route for PET-imaging using ⁴⁴Sc labeled tracers. As a β^+ emitter, it could be applied for planning and dosimetric calculations in endoradiotherapy based on the therapeutic radionuclides previously mentioned, but also for matching β^- emitting ⁴⁷Sc radiopharmaceuticals (Mausner et al., 1995).

Several strategies were used to design a ${}^{44}\text{Ti}/{}^{44}\text{Sc}$ generator (Greene and Hillman, 1967; Mirza and Aziz, 1969; Seidl and Lieser, 1973; Schumann et al., 2007). The most recent studies on a ${}^{44}\text{Ti}/{}^{44}\text{Sc}$ generator described the concept and experimental parameters of a 185 MBq (5 mCi) generator system, utilizing the anion-exchange resin Bio-Rad AG 1-X8 (200–400 mesh, Cl⁻-form) (Filosofov et al., 2010). ${}^{44}\text{Sc}$ was eluted with 20 mL of a 0.005 M H₂C₂O₄/0.07 M HCl mixture and achieved > 97% elution efficacy

^{*} Corresponding author. Tel.: +49 6131 3925302; fax: +49 6131 3924692. *E-mail address*: frank.roesch@uni-mainz.de (F. Rösch).

^{0969-8043/} $\$ - see front matter @ 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.apradiso.2010.04.003

for ⁴⁴Sc. The breakthrough of ⁴⁴Ti, which is the ratio (percentage) of ⁴⁴Ti eluted referred to ⁴⁴Ti on the generator column, was as low as 5×10^{-5} %. Because of its large volume (20 mL) and relatively high concentration (0.07 M) of hydrochloric acid, the obtained ⁴⁴Sc fraction, however, appears not suitable for direct radio-pharmaceutical syntheses. In many cases, it may prevent a fast, reliable and quantitative labeling procedure.

Consequently, the aim of this work was to develop an efficient and simple method to concentrate and purify the ⁴⁴Sc generator eluates adequate for clinical application. Since reducing of volume of ⁴⁴Sc in the generator eluate by evaporation of the eluent was inadequate, more sophisticated concentration and purification steps were necessary. A strategy for such an approach relayed on the direct transfer of the initial generator eluate through a cationexchanger. A similar approach of on-line post-processing of generator eluates was introduced recently for ⁶⁸Ge/⁶⁸Ga radionuclide generators and proved to be relevant for a versatile labeling strategy (Zhernosekov et al., 2007).

2. Materials and methods

2.1. Chemicals and reagents

Oxalic acid and ammonium acetate of analytical reagent grade were obtained from Merck (Darmstadt, Germany). All other chemicals were pure reagent grade and used as received unless otherwise specified. The ion exchange resins AG 50W-X4 (200–400 mesh, H⁺-form), AG 50W-X8 (200–400 mesh, H⁺-form) and Chelex 100 (200–400 mesh, Na⁺-form) were purchased at Bio-Rad Laboratories (Richmond, CA, USA). 1,4,7,10-tetraazacyclodode-cane-1,4,7,10-tetraacetic acid (DOTA) conjugated with D-Phe¹-Tyr³-octreotide (DOTATOC), GMP-grade, was obtained from piChem R&D (Graz, Austria). Deionized Milli-Q water (18.2 M Ω cm; Millipore) was used in all experiments.

2.2. The ⁴⁴Ti/⁴⁴Sc radionuclide generator

The ⁴⁴Sc was available from a previously prepared 185 MBq (5 mCi) ⁴⁴Ti/⁴⁴Sc generator (Filosofov et al., 2010). The ⁴⁴Sc was eluted with a 20 mL mixture of 0.005 M H₂C₂O₄/0.07 M HCl with a flow rate of 1 mL/min. The elution profile was determined by fractionation and measuring of ⁴⁴Sc and ⁴⁴Ti activities in each successive fraction of the eluate.

Measurement of ⁴⁴Sc radioactivities was accomplished in a dose calibrator on the curiemeter M2316 (Messelektronik Dresden GmbH, Germany). The ¹⁸F setting was used with a calibration factor of 0.7 to quantify ⁴⁴Sc on that instrument. The absolute radioactivity of ⁴⁴Sc and ⁴⁴Ti was measured by γ -spectrometry using a high-purity germanium (HPGe) wellcounter detector using 1157.0 (99.9%) and 1499.5 (0.9%) keV γ -lines for both radionuclides being in decay equilibrium. Measurements of ⁴⁴Ti breakthrough radioactivity were performed at least 120 h more than 30 half-lives of ⁴⁴Sc after the elution and the ⁴⁴Sc measurements. ⁴⁴Ti radioactivity was measured also at specific photon emissions of 67.9 and 78.3 keV. All radioactive materials were handled according to approved protocols at the Institute of Nuclear Chemistry at Johannes Gutenberg University Mainz.

2.3. Concentration and purification of $^{44}\mathrm{Sc}$ eluate using cation-exchange resin

Post-elution processing studies on ⁴⁴Sc eluate obtained from the generator were arranged into three main steps. The first step was focused on adsorbing ⁴⁴Sc from a 0.005 M $H_2C_2O_4/0.07$ M HCl solution on different ion exchange resins, based on K_d values of ⁴⁴Sc and ⁴⁴Ti (Filosofov et al., 2010).

Several strong acidic cation-exchange resins were investigated: AG 50W-X4 (200–400 mesh, H⁺-form), AG 50W-X8 (200–400 mesh, H⁺-form) and Chelex 100 (200–400 mesh, Na⁺form). Resins were suspended in 1 M NaOH for 15 min, washed several times with Milli-Q water, and re-suspended in 1 M HCl and also washed with Milli-Q water. After this procedure, resins were centrifuged and kept under Milli-Q water for further use.

Small plastic syringes were used to prepare miniaturized chromatography columns, which were plugged with polyethylene filters and packed with different amounts of wet resins. Just before use, the packed columns were conditioned by washing with 1 mL of 4 M HCl and 1 mL Milli-Q water. The ⁴⁴Ti/⁴⁴Sc generator was eluted according to the previously described protocol with a 20 mL mixture of 0.005 M H₂C₂O₄/0.07 M HCl (Filosofov et al., 2010). Using aliquots of this eluate, the retention of the ⁴⁴Sc on different cation-exchangers was checked by passing 2.55–3.0 mL of the ⁴⁴Sc solution through pre-treated columns at a flow rate of approximately 1 mL/min at room temperature.

In the second step, different eluate systems were investigated to desorb ⁴⁴Sc from the optimum cation-exchange resin identified. Miniaturized chromatography columns were prepared by filling small syringes with 80 mg of wet resin AG 50W-X8 (200–400 mesh, H⁺-form). The ⁴⁴Ti/⁴⁴Sc generator was eluted and ⁴⁴Sc was adsorbed according to procedures described above. The columns were dried by passing air through them to remove the rest of the generator eluate. Then, columns were washed by 2–4 mL Milli-Q water and dried once again. Next, several solutions at various volumes and concentrations were used to elute ⁴⁴Sc from the columns.

In the third step, results obtained from the experiments described above were used to on-line adsorb ⁴⁴Sc from the generator eluate. A miniaturized chromatography column $(\sim 2 \text{ mm inner diameter, } \sim 5 \text{ mm length})$ was prepared using two 3-way valves (Cole-Palmer Instrument Co., Vernon Hills, IL, USA) filled with 53 mg of wet AG 50W-X8 (200-400 mesh, H⁺-form). The ⁴⁴Ti/⁴⁴Sc radionuclide generator was connected to the first valve via tubing. The second valve was connected with two capillary tubings directed to the reacting and waste vials, respectively. The ⁴⁴Sc as eluted with a 20 mL mixture of 0.005 M H₂C₂O₄/0.07 M HCl at a flow rate of 1 mL/min was transferred on-line through the miniaturized chromatography column. Subsequently, the column was washed by 2-4 mL Milli-Q water and dried by air. Then, 3 mL of 0.25 M ammonium acetate acidified to pH=4.0 by drop-wise addition of acetic acid were passed slowly (0.7 mL/min) through the column.

The ⁴⁴Sc eluate was collected in 11 mL glass vial (Mallinckrodt). Finally, the column was reconditioned with 1 mL of 4 M HCl and 1 mL of Milli-Q water. The aliquots of consecutive fractions were collected and measured according to the activity of ⁴⁴Sc and ⁴⁴Ti using the dose calibrator and γ -spectroscopy, respectively.

3. Results and discussion

3.1. Elution characteristics

The ⁴⁴Ti/⁴⁴Sc generator reliably provided 180 MBq of ⁴⁴Sc with ~90 Bq of ⁴⁴Ti breakthrough during a 1 year period. The ⁴⁴Ti breakthrough with respect to the eluted ⁴⁴Sc activity was found to be 5×10^{-5} %. The initial ⁴⁴Sc elution profile and the ⁴⁴Ti breakthrough are presented in Fig. 1. The highest percentage of ⁴⁴Sc was eluted in fractions no. 4–7 (8–14 mL), whereas the fractions no. 1–2 (2–4 mL) contained the highest amount of ⁴⁴Ti.

By fractionating the ${}^{44}Sc$ eluate, it is possible to obtain approximately 85% of the available activity in a volume of 8 mL (if only fractions nos. 4–7 are taken) of 0.005 M H₂C₂O₄/0.07 M HCl. This volume appears still too large and the content of hydrochloric acid too high for labeling of, e.g., nanomoles of peptides for application in nuclear medicine. Therefore, an efficient post-elution processing with concentration of ${}^{44}Sc$ eluate on the cation-exchange resin was developed in this study.

3.2. Concentration and purification of ⁴⁴Sc

The first step of pre-concentration studies utilized cationexchange resins to adsorb ^{44}Sc from the generator eluate of 0.005 M H₂C₂O₄/0.07 M HCl composition. The results of optimization studies concerning the capabilities of different

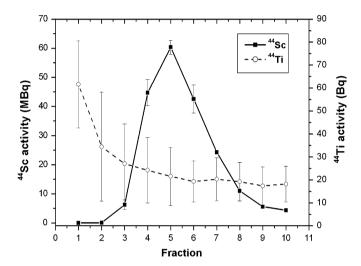


Fig. 1. Elution profile of the 44 Ti/ 44 Sc generator. One fraction is 2 mL, giving a total eluted volume 20 mL of 0.005 M H₂C₂O₄/0.07 M HCl solution.

Table 1

Retention of the 44 Sc on different cation-exchange resins used in the 44 Sc preconcentration and purification studies.

Resin	Amount (mg)	Retention of 44 Sc (%)
AG 50W-X4	50.0	50.5
AG 50W-X4	160.0	98.0
AG 50W-X8	50.0	88.7
AG 50W-X8	80.0	96.0
AG 50W-X8	200.0	99.9
Chelex 100	51.0	42.2

cation-exchange resins are presented in Table 1. The lowest retention of 44 Sc (42%) was observed when Chelex 100 (200–400 mesh, Na⁺-form) resin, containing iminodiacetate ions coupled to a styrene divinylbenzene support, was applied. Using the strong cation exchange resin AG 50W-X4 (200–400 mesh, H⁺-form) with sulfonate groups on the styrene divinylbenzene matrix increased the retention of ⁴⁴Sc on the columns up to 51%. Utilization of the AG 50W-X8 (200–400 mesh, H⁺-form) based on the same matrix with the same functional groups like AG 50W-X4 (200–400 mesh, H⁺-form), but differing in the cross-linkages value, resulted in 89% retention of ⁴⁴Sc on the resin. Therefore, this resin was chosen for the next studies.

In the second step, several miniaturized columns were prepared and filled with 80 mg of the AG 50W-X8 (200–400 mesh, H⁺-form) resin. Between 2.55 and 3.0 mL of the ⁴⁴Sc initial generator eluate was passed through the columns and > 98% (n=80) of ⁴⁴Sc was adsorbed. An additional purification with 2–4 mL Milli-Q water causes some loss of ⁴⁴Sc activity (< 0.2%).

Then, several solutions were tested for the elution of ⁴⁴Sc from the column, c.f. Table 2. Addition of a water-mixable organic solvent promotes chloride complex formation of metal cations in the "outer" coordination sphere. Following a procedure of postprocessing ⁶⁸Ge/⁶⁸Ga generator eluates (Zhernosekov et al., 2007) different mixtures of acetone (90–98%) and HCl (0.05–1.0 M) were tested initially to elute ⁴⁴Sc from the cation exchange columns. The obtained ⁴⁴Sc recovery was, however, very low (less than 1%), which is in good agreement with literature data on distribution coefficients of ⁴⁴Sc at these conditions (Strelow et al., 1971). It seems that only increasing the HCl concentration allows to desorb ⁴⁴Sc from the cation-exchange resin. Addition of acetone even at higher percentages did not change the general tendency that formation of Sc(III) complexes with chlorides appears at higher concentration of HCl (more than 1 M) (Hart, 1987).

Elution by 1 mL of 4 M HCl or 0.1 M NaOH resulted in higher recovery of ⁴⁴Sc, i.e. 38% and 55%, respectively. Increasing concentration of acid or base or extending the eluting volume further raised the recovery yield. On the other hand, the obtained final solution will be useless for medical application, because of very low or high pH.

Therefore, solutions containing organic complexing anions were used to remove ⁴⁴Sc from the cation-exchange resin. Application of 1 mL 0.1 M ethylenediaminetetraacetic acid (EDTA) resulted in 88% recovery of ⁴⁴Sc. EDTA forms strong complexes with Sc³⁺ ions (log K=21.84) (Perrin, 1979). It was used, e.g. for eluting ⁹⁰Y from the ⁹⁰Sr/⁹⁰Y generator or ⁶⁸Ga from the ⁶⁸Ge/⁶⁸Ga generator (Mikheev et al., 1975; Hnatowich, 1975). The Me(III)–EDTA complexes, however, had to be destroyed prior to labeling reactions, e.g. by heating in the presence of concentrated acids, because EDTA strongly competed with other ligands for labeling (Skraba et al., 1978; Chinol and Hnatowich, 1987).

Table 2

Recovery of ⁴⁴Sc from miniaturized chromatography columns (80 mg of Bio-Rad AG 50WX-8, 200-400 mesh, H⁺-form) washed by different solutions.

No.	Solution	Volume (mL)	Recovery of ⁴⁴ Sc (%)
1	Acetone (90–98%)/HCl (0.05–1.0 M)	1.0	< 1.0
2	4.0 M HCl	1.0	37.8
3	0.1 M NaOH	1.0	54.9
4	0.1 M Sodium tartrate	1.0	69.9
5	0.1 M EDTA	1.0	87.6
6	0.1 M Diammonium oxalate	1.0	94.7
7	1.0 M Ammonium acetate	2.0	51.7
8	0.5 M Ammonium acetate/20% EtOH	2.0	45.4
9	0.5 M Ammonium acetate, pH=4.0	2.0	90.4
10	0.25 M Ammonium acetate, pH=4.0	3.0	89.2

Table 3

Influence of the eluate solution composition on the labeling yield of DOTATOC with ⁴⁴Sc and ⁶⁸Ga. Labeling conditions: pH=4.0, 95 °C, 15–25 min, 15–40 µg DOTATOC.

Eluate composition	Eluate volume (mL)	Buffer	Nuclide	Yield (%)
0.09 M Diammonium oxalate	1.0	HEPES (4 mL)	⁴⁴ Sc	0.4
97.56% Acetone +0.05 M HCl	0.4	HEPES (4 mL)	⁶⁸ Ga	89.1
97.56% Acetone+0.05 M HCl+0.1 M diammonium oxalate	0.4+1.0	HEPES (4 mL)	⁶⁸ Ga	2.3
0.25 M Ammonium acetate, pH=4.0	3.0	-	⁴⁴ Sc	96.3

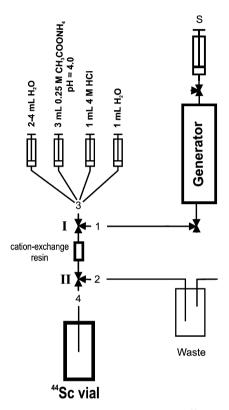


Fig. 2. Scheme of the post-elution processing of ⁴⁴Sc-eluates.

Application of only 1 mL of 0.1 M diammonium oxalate gave the best ⁴⁴Sc recovery (95%) compared to the other solutions used (Table 2). However, preliminary studies to label DOTATOC with ⁴⁴Sc as eluted by 1 mL of 0.09 M diammonium oxalate and added to 4 mL HEPES (4-(2-hydroxyethyl)piperazine-1-ethane-sulfonic acid) buffer (pH=4.0) containing the peptide, resulted in low synthesis yields of less than 1%. The stability constant of the Sc(III) complex with oxalate anions is quite high $(\log K_1 = 7.14)$ and comparable to Ga(III) (log K_1 =6.45) (Gårdhammar, 1971; Smith and Martell, 1976), and at this concentration of about 18 mM oxalates strongly may compete referred to the labeling of nanomoles of the DOTATOC. This hypothesis was later confirmed by labeling DOTATOC with ⁶⁸Ga in 4 mL HEPES buffer in the presence of 1 mL of 0.1 M diammonium oxalate at pH=4.0. The labeling reaction yield was around 90% without oxalate solution addition and decreased to $\sim 2\%$ in the presence of oxalate anions (Table 3).

Therefore, further studies were focused on ammonium acetate solutions, despite the fact that the recovery of ⁴⁴Sc by 2 mL of the utilized mixture was slightly lower (Table 2). The stability constant of acetate anions with Sc(III) is much lower (log K=3.48) (Itoh et al., 1984) than with oxalates, so acetates should not compete so strongly in the labeling reaction. Besides, literature

data indicate that acetate solutions are used as buffers in labeling reactions of radionuclides with biomolecules (Hofmann et al., 2001; Bodei et al., 2003; Buchmann et al., 2007). The ⁴⁴Sc elution from the miniaturized chromatography columns was optimized according to the composition of acetate solution, concentration and pH. High recovery (\sim 90%) was obtained, when 3 mL of a 0.25 M ammonium acetate buffer acidified to pH=4.0 by addition of acetic acid, was used.

3.3. Combined protocol: elution of the ⁴⁴Ti/⁴⁴Sc generator and postprocessing in an on-line module

The performed post-elution studies resulted in the building of an on-line module system of generator post-processing (Fig. 2). The key component of the concentration system is a miniaturized chromatography column that was prepared from two 3-way valves (I and II), filled with 53 mg of AG 50W-X8 (200–400 mesh, H⁺-form) resin and connected with the ⁴⁴Ti/⁴⁴Sc generator via tubing. The 20 mL of a 0.005 M H₂C₂O₄/0.07 M HCl solution passes the ⁴⁴Ti/⁴⁴Sc generator with a flow rate of 1 mL/min by using syringe (S) and the eluted ⁴⁴Sc adsorbs on-line on the small cationic cartridge (valve I in line 1).

The ⁴⁴Sc retains on the column, inbetween the two 3-way valves, whereas the generator eluate continuous to the waste vial (valve II in line 2). Next, valve I is changed to line 3. By using a standard single-use syringe the column with cation-exchange resin is washed by 2–4 mL of H_2O to remove the remaining traces of the initial eluate solution, which are collected in the waste vial as well. Finally, 5 mL air is blown through the column.

After switching the valve II to line 4, the 3 mL of 0.25 M ammonium acetate buffer, pH=4.0, are slowly (0.7 mL/min) pressed through the column with a 2 min break after every 1 mL. Finally, air is passed through the column to remove tracer of the ammonium acetate buffer solution remaining in the dead volume of the column. The ⁴⁴Sc is collected in a 11 mL glass reaction vial. Profiles of the ⁴⁴Sc and ⁴⁴Ti distribution in every step of the post-processing are presented in Table 4. Changing the valve II to line 2 enables reconditioning of the column by washing with 1 mL of 4 M HCl and finally by 1 mL H₂O.

In the first elution step, > 98% of cationic ⁴⁴Sc was retained on the column, whereas most of the ⁴⁴Ti content of the initial generator eluate (\sim 80%) passed the column and was transferred to waste. This is considered as an approach to further remove the amount of co-eluted ⁴⁴Ti breakthrough. When the H₂O fraction (2-4 mL) and air were used to remove the excess of the 0.005 M $H_2C_2O_4/0.07$ M HCl solution remaining on the cation exchanger, elution of both radionuclides was negligible, i.e. less than 0.1% and around 3% for ⁴⁴Sc and ⁴⁴Ti, respectively. Application of 3 mL 0.25 ammonium acetate (pH=4.0) recovered $\sim\!90\%$ of ^{44}Sc without changing the pH of the solution. The amount of ⁴⁴Ti in the final ⁴⁴Sc fraction was less than 7 Bq. The initial breakthrough of $5\times 10^{-5} \%$ was thus further reduced by a factor of 10 reaching a 5×10^{-6} % level. Reconditioning steps, i.e. washing the column with 1 mL of 4 M HCl and 1 mL Milli-Q water, consequently, removed the rest of ⁴⁴Sc and ⁴⁴Ti adsorbed on the column and

Profile of ⁴⁴Sc and ⁴⁴Ti in successive steps of post-elution processing on the miniaturized chromatography column (53 mg of Bio-Rad AG 50WX-8, 200–400 mesh, H⁺-form).

No.	Step	Eluent	Volume (mL)	Relative dist	Relative distribution (%)	
				⁴⁴ Sc	⁴⁴ Ti	
1	Generator elution into waste	0.005 M Oxalic acid/0.07 M HCl	20	1.0	80.2	
2	Resin purification	H ₂ O	2-4	0.1	2.5	
3	⁴⁴ Sc elution	0.25 M Ammonium acetate pH=4.0	3	88.0	7.6	
4	Washing	4 M HCl	1	9.9	8.2	
5	Washing	H ₂ O	1	0.7	1.5	

pre-conditioned the resin for another elution. The obtained ⁴⁴Sc solution in the acetate buffer was ready for labeling chemistry.

matching the rapeutic applications of analogue compounds labeled with e.g. ^{90}Y or ^{177}Lu , but also with the β^- emitter $^{47}\text{Sc}.$

4. Conclusions

The recently developed ⁴⁴Ti/⁴⁴Sc generator offers the fundamental requirements for radionuclide generators, namely significant differences in the distribution coefficients of mother and daughter radionuclide on the selected resin (Bio-Rad AG 1-X8, 200–400 mesh, Cl⁻-form) and eluent system (0.005 M H₂C₂O₄/ 0.07 M HCl), high yields of ⁴⁴Sc elution (>97%) and low ⁴⁴Ti breakthrough (5 × 10⁻⁵%). In addition, the radiochemical design and the new process of "reverse" elution strategies result in a significant long-term stability of the ⁴⁴Ti/⁴⁴Sc generator (Filosofov et al., 2010).

However, the large volume of ⁴⁴Sc initially eluted and the chemical composition of the initial generator eluate appeared inadequate in the context of radiopharmaceutical chemistry, such as the labeling of nanomoles of precursors.

Comparable situations have been recently addressed by our approach to on-line post-process 68 Ge/ 68 Ga generator eluates, which usually are being obtained in 5 ± 3 mL of 0.1–1.0 M HCl eluates (Zhernosekov et al., 2007).

The similar strategy applied to the ⁴⁴Ti/⁴⁴Sc generator also uses an on-line post-processing based on cation-exchanger purification. The Bio-Rad AG 50W-X8 (200–400 mesh, H⁺-form) resin showed the best parameters both in terms of on-line adsorbing ⁴⁴Sc (>98%) and its quantitative recovery is using of 3 mL of 0.25 M ammonium acetate pH=4.0 system (~90%). The content of ⁴⁴Ti co-eluted with ⁴⁴Sc from the ⁴⁴Ti/⁴⁴Sc generator of 5×10^{-5} % is further being reduced by a factor of 10. The final content of ⁴⁴Ti in the 140–160 MBq ⁴⁴Sc fraction ready for labeling is thus 7 Bq, representing a very low contamination of around $< 2 \times 10^{-7}$.

This chemically efficient post-elution processing of generatorproduced ⁴⁴Sc was adapted to a simple module, which allows a rapid and simultaneous concentration and purification of ⁴⁴Sc obtained from generator. The post-elution processing of volumes and impurities is easily compatible with the synthesis of ⁴⁴Sclabeled compounds. Thus, the chemically and radiochemically highly pure ⁴⁴Sc fraction of very high specific volume activity of around 50 MBq/mL representing 150 MBq overall activity for the first time may allow systematic research on the development and application of new ⁴⁴Sc-labeled compounds. Areas of interest are ⁴⁴Sc(III) on complex formation, labeling and radiopharmaceutical chemistry of the positron emitter ⁴⁴Sc, molecular imaging of ⁴⁴Sclabeled tracers using PET/CT, eventually investigating even new options of ⁴⁴Sc molecular imaging by using new PET/3G camera based on β^+/γ decay of radionuclide (Huclier-Markai et al., 2008), and finally potential application of diagnostic ⁴⁴Sc tracers

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG Ro. 985/18), the European Commission (FP 6, ToK, POL-RAD-PHARM, MTKD-CT-2004-509224), COST D38 and COST BM0607 and grant of Polish Ministry of Science and Higher Education, Poland, No 126/N-COST/2008/0.

References

- Ahmad, I., Bonino, G., Cini-Castagnoli, G., Fischer, S.M., Kutschera, W., Pau, M., 1998. Three-laboratory measurement of the ⁴⁴Ti half-life. Phys. Rev. Letters 80, 2550–2553.
- Bodei, L., Cremonesi, M., Zoboli, S., Grana, C., Bartolomei, M., Rocca, P., Caracciolo, M., Mäcke, H.R., Chinol, M., Paganelli, G., 2003. Receptor-mediated radionuclide therapy with ⁹⁰Y-DOTATOC in association with amino acid infusion: a phase I study. Eur. J. Nucl. Med. 30, 207–216.
- Buchmann, I., Henze, M., Engelbrecht, S., Eisenhut, M., Runz, A., Schäfer, M., Schilling, T., Haufe, S., Herrmann, T., Haberkorn, U., 2007. Comparison of ⁶⁸Ga-DOTATOC PET and ¹¹¹In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 34, 1617–1626.
- Chinol, M., Hnatowich, D.J., 1987. Generator-produced yttrium-90 for radioimmunotherapy. J. Nucl. Med. 28, 1465–1470.
- Filosofov, D.V., Loktionova, N.S., Rösch, F., 2010. A ⁴⁴Ti/⁴⁴Sc radionuclide generator for potential nuclear-medical application of ⁴⁴Sc-based PET-radiopharmaceuticals. Radiochim. Acta 98, 149–156.
- Gårdhammar, G., 1971. Thermodynamic properties of rare earth complexes VIII. Stability constants for oxalate complexes of Sc(III). Acta Chem. Scand. 25, 158–168.
- Greene, M.W., Hillman, M., 1967. A scandium generator. Int. J. Appl. Radiat. Isot. 18, 540-541.
- Hart, F.A., 1987. Scandium, yttrium and the lanthanides. In: Wilkinson, G., Gillard, R.D., McCleverty, J.A. (Eds.), Comprehensive Coordination Chemistry. The Synthesis, Reactions, Properties and Applications of Coordination Compounds. Vol. 3. Main Group and Early Transition Elements. Pergamon Press, Oxford, pp. 1060–1067.
- Hnatowich, D.J., 1975. A method for the preparation and quality control of ⁶⁸Ga radiopharmaceuticals. J. Nucl. Med. 16, 764–768.
 Hofmann, M., Maecke, H., Börner, A.R., Weckesser, E., Schöffski, P., Oei, M.L.,
- Hofmann, M., Maecke, H., Börner, A.R., Weckesser, E., Schöffski, P., Oei, M.L., Schumacher, J., Henze, M., Heppeler, A., Meyer, G.J., Knapp, W.H., 2001. Biokinetics and imaging with the somatostatin receptor PET radioligand ⁶⁸Ga-DOTATOC: preliminary data. Eur. J. Nucl. Med. 28, 1751–1757.
- Hosain, F., Syed, I.B., Spencer, R.P., 1977. The role of positron emitters in nuclear medicine with special reference to scandium-44. J. Labelled Compd. Radiopharm. 13, 272.
- Huclier-Markai, S., Montavon, G., Grambow, B., Faivre-Chauvet, A., Barbet, J., 2008. Scandium–DOTA complexes for a new PET/3G camera for medical applications and radio labeling studies. In: NRC-7—Seventh International Conference on Nuclear and Radiochemistry, Budapest, Hungary, 24–29 August, Book of Abstracts, p. 64.
- Itoh, H., Itoh, N., Suzuki, Y., 1984. Stability constants of scandium complexes. I. Monocarboxylate complexes species. Bull. Chem. Soc. Jpn. 57, 716–718.
- Mausner, L.F., Joshi, V., Kolsky, K.L., Meinken, G.E., Mease, R.C., Sweet, M.P., Srivastava, S.C., 1995. Evaluation of chelating agents for radioimmunotherapy with scandium-47. J. Nucl. Med. 36, 104p.
- Mikheev, N.B., Volkova, N.L., Popovich, V.B., 1975. An yttrium-90 generator. Radiokhimiya 16, 653–654.
- Mirza, M.Y., Aziz, A., 1969. A scandium generator. Radiochim. Acta 11, 43-44.

1641

- Perrin, D.D. (Ed.), 1979. IUPAC Chemical Data Series—No. 22. Stability Constants of Metal-ion Complexes. Part B. Organic Ligands. Pergamon Press, Oxford.
- Rösch, F., Knapp (Russ), F.F., 2003. Radionuclide generators. In: Rösch, F. (Ed.), Handbook of Nuclear Chemistry. Radiochemistry and Radiopharmaceutical Chemistry in Life Sciences, vol. 4. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 90.
- Schumann, D., Horn, S., Neuhausen, J., 2007. Design of a ⁴⁴Ti/⁴⁴Sc generator system. Annual Report 2006, Paul Scherrer Institut & Universitaet Bern, January 2007, Villigen, Switzerland, p. 41.
- Villigen, Switzerland, p. 41.
 Seidl, E., Lieser, K.H., 1973. Die Radionuklidgeneratoren ¹¹³Sn/^{113m}In, ⁶⁸Ge/⁶⁸Ga und ⁴⁴Ti/⁴⁴Sc. Radiochim. Acta 19, 196–198.
- Skraba, W.J., Arino, H., Kramer, H.H., 1978. A new ⁹⁰Sr/⁹⁰Y radioisotope generator. Int. J. Appl. Radiat. Isot. 29, 91–96.
- Smith, R.M., Martell, A.E., 1976. Critical stability constants. Other Organic Ligands, vol. 3. Plenum Press, New York, p. 94.
- Strelow, F.W.E., Victor, A.H., Van Zyl, C.R., Eloff, C., 1971. Distribution coefficients and cation exchange behavior of elements in hydrochloric acid–acetone. Anal. Chem. 43, 870–876.
- Zhernosekov, K.P., Filosofov, D.V., Baum, R.P., Aschoff, P., Bihl, H., Razbash, A.A., Jahn, M., Jennewein, M., Rösch, F., 2007. Processing of generator-produced ⁶⁸Ga for medical application. J. Nucl. Med. 48, 1741–1748.