- [13] M. Milanov, F. Rösch, V. A. Khalkin, J. Henniger, Tran Kim Hung, JINR E12-86-144, Dubna 1986
- [14] F. Rösch, Tran Kim Hung, M. Milanor, V. A. Khalkin, JINR [17] P12-86-272, Dubna 1986
- [15] F. Rösch, R. Herrmann, Tran Kim Hung, M. Milanov, V. A Khalkin, JINR P6-86-646, Dubna 1986
- [16] F. Rösch, M. Milanor, Tran Kim Hung, R. Ludwig, G. V. Buglanov, V. A. Khalkin, JINR P6-86-829, Dubna 1986
- [17] R. Pearson, Handbook of electrochemical constants, London: Butter-Worth. Sc. Publ. 1959
- [18] F. James, M. Roos, CERN Computer 6000 Series Program Library, Lond-Write-Up D506, D516 (1971)

Isotopenpraxis 24 (1988) 10, pp. 386-388

Electromigration of Carrier-Free Radionuclides. 7. ²⁰¹Tl-Thallium(I) Sulphate Complexes in Aqueous Solutions

F. Rösch, Tran Kim Hung, M. Milanov, V. A. Khalkin

Joint Institute for Nuclear Research Dubna, Laboratory of Nuclear Reactions, Head Post Office, P.O. Box 79, SU-101 000 Moscow, USSR

Dedicated to Academician G. N. Flerov on the Occasion of his 75th Birthday

Stoichiometric stability constants of the thallium (1) sulphate complex $[Tl(SO_4)]^-$ have been determined by measurements of the ²⁰¹Tl-Tl(1) ion mobility at 298.1 (1) K in solutions of Na₂SO₄/Na(H)ClO₄, $\mu = 0.1$, $pH \leq 4$, and Na₂SO₄/ H_2SO_4 , $0.1 \leq \mu \leq 0.48$, pH 2-2.5. The thermodynamic stability constant of this complex anion of $K_1^0 = 15.7(1.0)$ $1 \cdot$ mol⁻¹ has been calculated on the basis of experimental data.

Durch Messungen der ²⁰¹Tl·Tl(I)-Ionenbeweglichkeit in Lösungen des Typs Na₂SO₄/Na(H)ClO₄, $\mu = 0,1$, $pH \leq 4$, bzw. Na₂SO₄/H₂SO₄, $0,1 \leq \mu \leq 0,48$, pH 2-2,5, sind stöchiometrische Stabilitätskonstanten des Thallium(I)-Sulfat-Komplexes [Tl(SO₄)]⁻ bestimmt worden. Aus den experimentellen Daten sind thermodynamische Stabilitätskonstanten des Komplexanions zu K⁰₁ = 15,7 (1,0) 1 · mol⁻¹, T = 298,1 (1) K, berechnet worden.

Keywords

ion mobility; stability; thallium 201; thallium complexes; thallium sulfates; thermodynamic properties

1. Introduction

In our previous communication [1] one could find values of stoichiometric stayility constants for bromide and iodide complexes of thallium(I) cation in dilute halide/perchlorate solutions with varying halide concentration and constant overall ionic strength μ . The constants were calculated on the basis of electromigration measurements of carrier-free radiothallium(I) ²⁰¹Tl in Na(H)ClO₄ inert electrolytes. The electrophoretic method employed allowed well-reproducible experimental data exactly under those low overall ionic strength conditions when other methods yield relatively large errors for values of thallium(I) complex stability constants.

This paper continues investigations of monovalent thallium complexes. We have studied Tl(I) overall ion mobility $\overline{u}_{Tl(I)}$ in sulphate containing solutions with overall ionic strengthes μ less than 0.5. According to literature data, a thallium(I) sulphate anion $[Tl(SO_4)]^-$ is formed in these solutions [2-11]. The value of its thermodynamic stability constant K_1^0 is in the interval from 10 to 1001 · mol⁻¹, according to the recent measurements [9]. Such a noticeable spread makes it desirable to carry out additional determinations of thermodynamic and stoichiometric stability constants of the thallium(I) sulphate complex, respectively.

2. Experimental

²⁰¹*Tl*: The carrier-free radionuclide ²⁰¹*Tl* acquired through the firm "Isotope" has been used for investigations. Prepa-

ration of the radiothallium sample for the experiments is described in ref. [1]. Radiothallium in stock solutions of 10^{-2} mol $\cdot l^{-1}$ HClO₄/10⁻⁴ mol $\cdot l^{-1}$ N₂H₄ was injected into the migration cell. The injected volume was of about 1 to 3 µl.

Electrolytes: The overall ion mobility of radiothallium ²⁰¹Tl-Tl(I) (migration rate at the voltage gradient $1 \text{ V} \cdot \text{cm}^{-1}$) was determined at the temperature 298.1(1) K in solutions of background electrolytes Na(H)ClO₄ with constant or varying overall ionic strength μ : Na₂SO₄/ Na(H)ClO₄, $\mu = 0.1$, $p\text{H} \simeq 4$, and Na₂SO₄/H₂SO₄, $0.1 \leq \mu \leq 0.48$, $p\text{H} 2 \dots 2.5$. In all electrolytes the presence of $10^{-4} \text{ mol} \cdot 1^{-1} \text{ N}_2\text{H}_4$ stabilised radiothallium in the monovalent oxidation state.

Concentrations of sulphate ions at the given acidities were calculated with allowance for variation of dissociation constant $K = [SO_4^{2-}] \cdot [H^+] \cdot [HSO_4^{-}]^{-1}$, inversely proportional to the overall ionic strength of the solutions [12, 13].

All electrolytes are prepared with chemically pure agents and bidestilled water immediately before the experiments.

Electromigration method: Direct measurements of radiothallium ion mobilities were performed by means of a setup developed in our laboratory. It allows carrying out on line electrophoresis in electrolytes free of finely devided inert fillers, at constant voltage gradients, temperature and chemical composition of background solutions [14, 15].

3. Results and discussion

The experimental results of overall ion mobilities $\vec{u}_{\text{TI}(I)}$ of radiothallium(I) in solutions of Na(H)ClO₄ background electrolytes with $\mu = 0.1$ and sulphate concentrations $\leq 3.33 \cdot 10^{-2} \text{ mol} \cdot 1^{-1}$ are shown in Fig. 1.

The $\overline{u}_{Tl(I)}$ data decreased by approximately one third in the investigated interval of ligand concentrations, but it preserved its positive value, wich indicated formation of relatively weak thallium(I) sulphate complex.

When processing the experimental results we assumed, firstly, that in our case no thallium(I) disulphate complexes $[Tl(SO_4)_2]^3$ - exist. The assumption is based on the character of the function $\overline{u}_{Tl(I)} = f([SO_4^{2-}])$. Secondly, variation of perchlorate ion concentration in the electrolyte systems did not affect the ion mobilities of the Tl+ cation, since neutral associates with ClO₄ are not very stable [16-18].

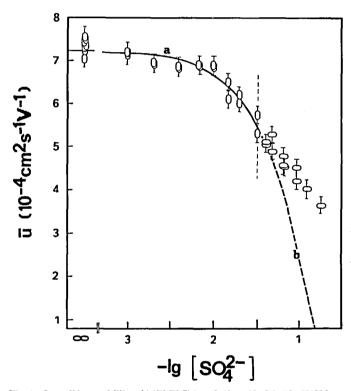


Fig. 1. Overall ion mobility of ²ⁿ¹Tl-Tl(I) in solutions Na₂SO₄/Na(H)ClO₄, $\mu = 0.1$, *p*H $\simeq 4$ (a); Na₂SO₄/H₂SO₄, $\mu = 0.1 \dots 0.48$, *p*H 2...2.5 (b), T = 298.1 (1) K, 10^{-4} mol·l⁻¹ N₂H₄

So changes in the Tl(I) overall ion mobility are only due to the complex formation

$$\mathrm{Tl}^{+} + \mathrm{SO}_{4}^{2-} \stackrel{\mathrm{A}_{1}}{\rightleftharpoons} [\mathrm{Tl}(\mathrm{SO}_{4})]^{-}.$$

$$\tag{1}$$

On the basis of reaction (1) one can formulate the function $\overline{u}_{Tl(I)} = f([SO_4^{2-}])$ in the following form:

$$u_{\text{TI}(1)} = \frac{u_{\text{TI}}^{0} + u_{(\text{TI}(\text{SO}_{4}))}^{0} \cdot K_{1} \cdot [\text{SO}_{4}^{2-}]}{1 + K_{1}[\text{SO}_{4}^{2-}]}$$
(2)

where $u_{\text{II}^*}^{\circ}$ is the individual ion mobility of the ²⁰¹Tl-thallium(I) cation equal to $+7.3(3) \cdot 10^{-4} \text{ cm}^2 \text{ s}^{-1} \text{ V}^{-1}$ in Na(H) ClO₄ electrolytes with $1.5 \cdot 10^{-3} \leq \mu \leq 0.5$ [1]; and $u_{(\text{Tl}(SO_4))^*}^{\circ}$ is the individual ion mobility of the complex anion of an unknown value. We took it equal to $-7(1) \cdot 10^{-4} \text{ cm}^2 \text{ s}^{-1} \text{ V}^{-1}$, because similare experiments [19-21] showed that there are close absolute values for individual ion mobilities of charge z = +1 and z = -1 complex ions of one and the same central cation.

The stoichiometric stability constant $K_1^{0,1} = [[\text{Tl}(SO_4)]^{-1} \cdot [\text{Tl}^+]^{-1} \cdot [SO_4^{2-}]^{-1} = 5.4(1) \cdot \text{mol}^{-1}$ is calculated by Eq. (2) with the use of the least squares method in the MINUIT [22] program. The solid curve in Fig. 1 is calculated on the basis of the fitted parameter K_1^{μ} and $u_{\text{Tl}^+}^{0} = +7.2(1) \cdot 10^{-4} \text{ cm}^2 \text{ s}^{-1} \text{ V}^{-1}$. Its good agreement with the experimental points can be considered as confirmation of our assumption on close absolute values of Tl⁺ and $[\text{Tl}(SO_4)]^-$ individual ion mobilities. The thermodynamic stability constant of the thallium(I) sulphate complex K_1^0 was calculated by the Eq. (3)

$$K_{1}^{0} = K_{1}^{\mu} \frac{\gamma_{[11(SO_{i})]}^{\mu}}{\gamma_{11^{+}}^{\mu} \cdot \gamma_{S}^{\mu} O_{4}^{2^{-}}}.$$
(3)

Since activity coefficients γ^{μ} of the single-charged Tl(I) ions have close values at the same overall ionic strength in dilute electrolyte solutions, $\gamma^{\mu}_{[TI(SO_4)]} \simeq \gamma^{\mu}_{TI^*}$ is assumed. The activity coefficient of the sulphate ion for $\mu = 0.1$ is known: $\gamma^{0.1}_{SO_7^*} = 0.355$ [23]; then

$$K_1^0 = K_1^{0,1} \cdot [\gamma_{\mathrm{SO}_4^2}^{0,1}]^{-1} = 15.2(3) \, \mathrm{l} \cdot \mathrm{mol}^{-1} \,. \tag{4}$$

When processing the experimental overall ion mobility data of ²⁰¹Tl-thallium(I) in sulphate containing solutions with $0.1 \le \mu \le 0.48$, Eq. (2) in the form of

$$K_{1}^{\mu} = \left\{ \frac{\overline{u}_{\mathrm{TI}(\mathrm{I})} - u_{\mathrm{TI}^{+}}^{0}}{u_{\mathrm{[TI}(\mathrm{SO}_{4})]^{-}}^{0} - \overline{u}_{\mathrm{TI}(\mathrm{I})}} \right\} \cdot [\mathrm{SO}_{4}^{2-}]^{-1}$$
(5)

was applied.

Tab. 1. Stoichiometric (K_1^{μ}) and thermodynamic (K_2^{η}) stability constants of the thallium (I) sulphate complex $[Tl(SO_4)]^-$; T = 29S.1 (1) K

[SO ₄ ²] [mol · l ⁻²]	uTl(1) [10-4 cm ² s ⁻¹ V ⁻¹]	μ	^a SO ₄ ^{2—} [mol·l ⁻¹]	$K_1^{\mu}(^{+})$ { $l \cdot mol^{-1}$ }	K ⁰ ₁ (++) [l · mol ⁻¹]	K ⁰ ₁ (*) [1 · mol ⁻¹]
$\leq 3.33 \cdot 10^{-2}$		0.10		5.1 (1) (†)	15.2 (3)	16.7
3.0 · 10-2	+5.04(16)	0.10	1.1 · 10-*	6.0	16.9	18.3
3.0 · 10-2	+5.10(16)	0.10	I.1 · 10-2	5.8	16.4	17.8
3.9 · 10-2	+4.86 (16)	0.13	$1.2 \cdot 10^{-2}$	5.1	16.0	17.4
3.9 • 10-*	+5.26(17)	0.13	$1.2 \cdot 10^{-2}$	4.1	12.9	14.0
5.7 · 10-2	+4.76(16)	0.18	1.5 · 10-2	3.6	13.9	15.1
$5.7 \cdot 10^{-2}$	+4.53(16)	0.18	1.5 · 10-2	4.0	15.5	16.8
8.6 · 10 ⁻²	+4.50(15)	0.27	$1.7 \cdot 10^{-2}$	2.7	14.1	14.6
8.6 · 10-2	+4.18 (15)	0.27	1.7 · 10-2	3.1	16.0	16.6
1.35 - 10-1	+4.00(15)	0.42	2.0 · 10-2	2.1	14.3	16.0
1.57 • 10-1	+3.63(15)	0.48	2.2 · 10-2	2.1	15.7	18.0

symbols: (*) according to Eq. (5)

(**) according to Eq. (5) containing sulphate ion activities; means value $K_1^0 = 15.2$ (1.0) $l \cdot mol^{-1}$ (*) according to Eq. (7); mean value $K_1^0 = 16.5$ (1.5) $l \cdot mol^{-1}$

(†) according to Eq. (2)

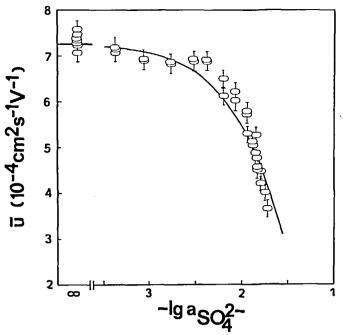


Fig. 2. Overall ion mobility of ²⁰¹Tl-Tl(I) in sulphate containing solutions as a function of sulphate ion activity

 $\mu = 0.1 \dots 0.48$, pH 2 ... 4, T = 298.1 (1) K, $10^{-4} \text{ mol} \cdot l^{-1} \text{ N}_2 \text{H}_4$

Value of K_1^{μ} inversely proportional to μ were obtained (Tab. 1).

This effect is evidently due to changing activities of sulphate ions $(a_{S0_4^2})$ in the electrolytes. To determine $a_{S0_4^2}$ in the solutions with known sulphate concentrations and overall ionic strengthes, sulphate activity coefficientes were approximated by Eq. (6) [24]:

$$\gamma_{\rm SO_4^2}^{\mu} = (\gamma_{\rm Na_2SO_4}^{\mu})^3 \cdot (\gamma_{\rm Na^+}^{\mu})^{-2} \,. \tag{6}$$

The values of $\gamma_{Xa_2SO_4}^{\mu}$ and $\gamma_{Xa^*}^{\mu}$ were obtained on the basis of known data [25] by their interpolation to the given values of μ . Dependence of the ²⁰¹Tl-Tl(I) overall ion mobility on the sulphate ion activity is shown in Fig. 2.

When sulphate ion concentrations are replaced by their activities in Eq. (5), the values of the thermodynamic stability constant become close to K_1^0 calculated by Eq. (4) (Tab. 1).

Final, the thermodynamic stability constant of the thallium(I) sulphate complex can be evaluated in a way different from the above one if one uses empiric equation (7) [26], extrapolating $(\mu; K_1^{\mu})$ data to hypothetical $\mu = 0$ solutions:

$$\lg K_1^0 = \lg K_1^{\mu} - \Delta z^2 A \left(\frac{\sqrt{\mu}}{1 + \sqrt{\mu}} - D \mu \right).$$
 (7)

Here Δz^2 equals -4 for the complex formation considered, A is the constant in the Debye-Hückel equation equal to 0.511, and the quantity D calculated by us is equal to 0.26. The values of K_1^0 calculated by Eq. (7) are listed in Tab. 1. They are in satisfactory agreement with K_1^0 obtained from Eq. (4) and using sulphate activities in Eq. (5).

Thus, closness of values of thermodynamic stability constants of thallium(I) sulphate complex obtained by three different methods of data processing allows, to our mind, a conclusion that mean value $K_1^0 = 15.7(1.0) \, \rm l \cdot mol^{-1}$ calculated on the basis of electromigration measurements of the ²⁰¹Tl-Tl(I) overall ion mobility in sulphate containing electrolytes is reliable.

Received September 15, 1987

References

- F. Rösch, Tran Kim Hung, M. Milanov, V. A. Khalkin, Isotopenpraxis 24 (1988) 383
- [2] E. C. Righellato, C. W. Davies, Trans. Faraday Soc. 26 (1930) 592
- [3] H. E. Blayden, C. W. Davies, J. Chem. Soc. (1931) 949
- [4] R. P. Bell, J. H. George, Trans. Faraday Soc. 49 (1953) 619
- [5] F. Fa. Kulba, Fu. B. Fakorler, V. E. Mironov, Zhur. Neorg. Khim. 10 (1965) 2014
- [6] F. L. Hunl, J. Amer. Soc. 33 (1911) 795
- [7] W. C. Bray, W. J. Winninghoff, J. Amer. Chem. Soc. 33 (1911) 1663
- [8] C. H. Brubaker, jun., J. E. Land, J. Inorg. Nucl. Chem. 4 (1957) 55
- [9] J. M. Creelh, J. Phys. Chem. 64 (1960) 920
- [10] D. Banerjen, I. P. Singh, J. Indian Chem. Soc. 39 (1962) 353
- [11] Yu. A. Kuzmin, L. P. Shulgin, V. D. Ponomaryer, Zhur. Neorg. Khim. 9 (1964) 2352
- [12] P. G. Daniele, C. R. Rigano, S. Sammrilano, Talanta 30 (1983) 81
- [13] R. M. Smith, A. E. Martell, Critical Stability Constants, Vol. 4,
- Inorganic Ligands. New York: Plenum Press 1976, p. 79 [14] M. Milanov, W. Doberenz, A. Marinov, V. A. Khalkin, J. Radio-
- anal. Nucl. Chem., Articles, 82 (1984) 101 [15] M. Milanor, Tran Kim Hung, D. Shoninski, F. Rösch, V. A. Khalkin, JINR P6-86-549, Dubna, 1986
- [16] P. A. Zagorez, G. P. Bulgakora, Zhur, Neorg, Khim, 12 (1967) 347
- [17] A. M. Bond, J. Phys. Chem. 74 (1970) 331
- [18] L. Johansson, Acta Chem. Scand. 27 (1973) 1832
- [19] F. Rösch, Tran Kim Hung, M. Milanov, V. A. Khalkin, Talanta 34 (1987) 375
- [20] F. Rösch, Tran Kim Hung, M. Milanov, N. A. Lebedev, V. A. Khalkin, J. Chromatogr. 396 (1987) 43
- [21] F. Rösch, M. Milanov, Tran Kim Hung, R. Ludwig, G. V. Buklanov, V. A. Khalkin, JINR P6-86-646, Dubna, 1986
- [22] F. James, M. Roos, CERN Computer 6000 Series Program Library, Long-Write-Up D506, D516 (1971)
- [23] D. Pelers, J. Hayes, G. Hifte, Chemical separation and measurement (russ), Vol. 1. Moscow: Khimiya 1978, p. 65
- [24] D. Dobos, Electrochemical constants (russ.). Moscow: Mir 1980, p. 173, 176
- [25] V. P. Vasiliyev, Thermodynamic data of electrolyte solutions (russ.). Moscow: Vyschaya Shkola 1982, p. 261