Separation of 90Nb from zirconium target for application in immuno-PET

Abstract: Fast progressing immuno-PET asks to explore new radionuclides. One of the promising candidates is 90Nb. It has a half-life of 14.6 h that allows visualizing and quantifying biological processes with medium and slow kinetics, such as tumor accumulation of antibodies and antibodies fragments or drug delivery systems. 90Nb exhibits a positron branching of 53% and an average kinetic energy of emitted positrons of $E_{\text{mean}} = 0.35$ MeV. Currently, radionuclide production routes and NbV labeling techniques are explored to turn this radionuclide into a useful imaging probe. However, efficient separation of 90Nb from irradiated targets remains in challenge.

Ion exchange based separation of 90Nb from zirconium targets was investigated in systems AG 1×8 – HCl/H$_2$O$_2$ and UTEVA-HCl. 95Nb (t$_{1/2} = 35.0$ d), 95Zr (t$_{1/2} = 64.0$ d) and 92Nb (t$_{1/2} = 10.15$ d) were chosen for studies on distribution coefficients. Separation after AG 1×8 anion exchange yields 99% of $^{90/95}$Nb. Subsequent use of a solid-phase extraction step on UTEVA resin further decontaminates $^{90/95}$Nb from traces of zirconium with yields 95% of $^{90/95}$Nb.

A semi-automated separation takes one hour to obtain an overall recovery of $^{90/95}$Nb of 90%. The amount of Zr was reduced by factor of 10^8. The selected separation provides rapid preparation (< 1 h) of high purity 90Nb appropriate for the synthesis of 90Nb-radiopharmaceuticals, relevant for purposes of immuno-PET. Applying the radionuclides obtained, 90,95Nb-labeling of a monoclonal antibody (rituximab) modified with desferrioxamine achieved labeling yields of > 90% after 1 h incubation at room temperature.

Keywords: Niobium-90, Niobium-95, Ion exchange, UTEVA, Monoclonal antibody, Desferrioxamine, Labeling.

1 Introduction

Molecular imaging plays a key role in tumour diagnosis as well as in evaluation of new drugs for tumour treatment [1, 2]. The advantage of molecular imaging techniques over more conventional readouts is that they can be performed in vivo with sufficient spatial and temporal resolution and high sensitivity and selectivity. In particular, positron emission tomography (PET) offers sensitivity with unlimited depth penetration imaging on a picomolar level of concentrations, which is not achievable by other techniques so far [3].

18F-fluoro-desoxy-D-glucose (FDG) is the most widely used tracer for PET imaging in oncology and has been extensively evaluated and established in clinical routine for initial staging, assessment of response to therapy, and diagnosis of recurrent disease in many tumors including lymphoma, non-small-cell lung cancer, head and neck cancer, and colorectal cancer. However, 18F-FDG is not a specific tracer and e.g. not able to discriminate cancer or inflammation and infection. In addition, many tumours do not exhibit high metabolic rates and thus are not properly diagnosed with 18F-FDG. Therefore, there is an urgent need for new PET-radiopharmaceuticals for the specific detection of cancer which address tumour specific targets. In this context antibodies are appropriate candidates [4].

Although a rather low number of all antibodies developed make it to a worldwide use in clinics, more than
20 antibodies are currently approved by the US Food and Drug Administration [5]. A variety of engineered monoclonal antibodies (mAb) and antibody fragments for difference targets of interest is currently under preclinical investigation [6–8]. Immuno-PET, which is tracking and quantifying of mAbs with PET, can be of great value in several stages of mAb development and application [9]. For faster pharmacokinetics, antibody fragments with lower size have been developed [10]. Their enhanced clearance dramatically reduces the interval between radiotracer injection and the actual imaging to hours instead of days. Positron-emitting radionuclides with medium-long half-lives of interest for the PET-imaging with antibody fragments are, for example, 64Cu ($t_{1/2} = 12.7$ h) [11–13], 86Y ($t_{1/2} = 14.7$ h) [14, 15], 76Br ($t_{1/2} = 16.0$ h) [16, 17].

Several crucial factors and characteristics apply to radionuclide candidates for immuno-PET. The most important ones are: i) a physical half-life paralleling the biological half-life of the mAb or antibody fragment; ii) a high positron branching with no or weak accompanying other radiation (β^+, γ) to offer high-sensitive PET imaging while reducing the radiation burden of the patient; iii) a preferably low β^+-energy to allow high-resolution PET imaging; and iv) the availability of the radionuclide, i.e. an efficient production and radiochemical separation route.

In previous reports we proposed 90Nb as promising candidate for application in immuno-PET [18, 19]. Its intermediate half-life of 14.6 h and a high positron branching of 53% may make 90Nb an ideal candidate for application with antibody fragments, monoclonal antibodies, drug delivery systems and nanoparticles. A recent work described efficient labeling of a proof-of-principle monoclonal antibody (rituximab) with 90Nb [20]. The in vitro stability of the 90Nb-Df-mAb was high. These promising results urge us to continue investigation on 90Nb. In the present study an improved rapid separation strategy of 90Nb from zirconium targets was developed. A reliable, fast and efficient separation process is mandatory to continue to investigate the preparation of 90Nb-labeled monoclonal antibody on a more routine scale.

2 Materials and methods

2.1 Materials

Reagents where purchased from Sigma-Aldrich (Germany) and used without further purification unless otherwise stated. Deionized water (18 MΩ cm$^{-1}$) and ultra pure HCl solution were used. No further special measures were taken regarding working under strict metal-free conditions. The mAb rituximab (MabThera®, 10 mg/mL) directed against CD20 was purchased from Roche Nederland BV (Woerden, The Netherlands). For purification of conjugated and labeled antibodies, PD-10 columns (GE Healthcare Life Science) were applied, for ion exchange chromatography resins AG 1 × 8 (200–400 mesh) (BioRad, USA,) and DOWEX 50 × 8 (200–400 mesh) (BioRad, USA) were used and for solid extraction UTEVA (diamyl, amylphosphonate) resin (100–150 μm) (Triskem, France) was applied.

Distribution coefficients as well as the production yield, radionuclidic purity, radiochemical purity and separation yield of $^{90}/^{95}$Nb were determined by γ-ray spectroscopy. The γ-ray spectroscopy was performed using an Ortec HPGe detector system and Canberra Genie 2000 software. The dead time of the detector was always kept below 10%. The detector was calibrated for efficiency at all positions with the certified standard solution QCY48, R6/50/38 (Amersham, UK).

The decontamination factor Zr/Nb was measured by inductively coupled plasma mass spectrometry (ICP-MS) and gamma-ray spectroscopy. 90Nb-labeled N-suc-Df-mAb were analyzed by instant thin-layer chromatography (ITLC), and by high-performance liquid chromatography (HPLC) for radiolabeling efficiency and radiochemical purity. ITLC analyses of 90Nb-labeled N-suc-Df-mAb was performed on chromatography strips (Biodex, NY). As mobile phase, 0.02 M citrate buffer (pH 5.0) was used. HPLC monitoring of the final products was performed on a Waters HPLC system using a BioSep-SEC-S 2000 size exclusion column (Phenomenex®). As eluent, a mixture of 0.05 M sodium phosphate and 0.15 M sodium chloride (pH 6.8) solution was used at a flow rate of 0.5 mL/min.

2.2 Production of $^{90}/^{92m}/^{95}$Nb and 95Zr isotopes

2.2.1 Radionuclides for measurement of distribution coefficients

For determination of distribution coefficients 92mNb ($t_{1/2} = 10.12$ d) and 95Zr ($t_{1/2} = 64.0$ d) were applied.

For production of 92mNb, natural zirconium target foils (1.9 mg, 18 × 26 mm, 0.1 mm thickness) were irradiated for 1 h at the Phasotron facility at the Joint Institute of Nuclear Research (JINR), Dubna, Russian Federation, at 100 MeV proton energy and 3 μA current.

92Zr was extracted from thorium metal target (1.2 g) irradiated at Phasotron facilities in JINR with protons energy 300 MeV and current 5 μA for 5 h.
Table 1: Main gamma emission energies of radionuclides used in this work [21].

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>$t_{1/2}$ (days)</th>
<th>Main γ emission energies (keV)</th>
<th>Abundance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>92mNb</td>
<td>10.2</td>
<td>934.5</td>
<td>99.0</td>
</tr>
<tr>
<td>90Nb</td>
<td>0.61</td>
<td>1129.0</td>
<td>82.0</td>
</tr>
<tr>
<td>95Zr</td>
<td>64.0</td>
<td>724.2</td>
<td>44.2</td>
</tr>
<tr>
<td>95Nb</td>
<td>35.0</td>
<td>765.8</td>
<td>100.0</td>
</tr>
</tbody>
</table>

2.2.2 Radionuclides for development of separation strategies

To optimize a radioniumbium/zirconium separation protocol, 90Nb and 95Nb were employed. 95Nb was produced via the 92Zr(n,γ) 95Zr(β^-, $t_{1/2} = 64$ d) 95Nb reaction from natural zirconium granules (1–3 mm, 99.8% ChemPur, Germany). Neutron irradiations were performed in the TRIGA reactor at the University of Mainz, Germany, and in the BR2 high-flux research reactor at the Belgian Nuclear Research Centre, Mol, Belgium. In the latter case (BR2), 404 mg of zirconium granules were irradiated in a thermal neutron flux of 3.5×10^{14} n cm$^{-2}$ s$^{-1}$ for 4 d to produce an activity of about 500 MBq of 95Zr at end of irradiation.

90Nb was produced via the 90Zr(p,η)90Nb reaction at the cyclotron MC32NI of the German Cancer Research Center Heidelberg. For irradiation, a stack of three discs of natural zirconium (natural abundance 51.45% 90Zr) foils of 10 mm diameter and a thickness of 0.25 mm each were used. Irradiation was performed at 20 MeV proton energy and a current of 5 μA for 1 h. This initial proton energy was decreased by using an aluminum holder cover of 0.5 mm thickness to 17.5 MeV entering the 1st foil of Zr. At 24 h after end of irradiation (EOB), activities of $^{90/92m}$Nb and 92Zr were measured by γ-ray spectroscopy and production yields and impurities were determined.

Main gamma lines of the radionuclides are listed in Table 1.

2.3 Determination of distribution coefficients and preliminary separation experiments

2.3.1 Preparation of stock solutions

92mNb was extracted from the irradiated zirconium target by anion exchange chromatography. In short, the zirconium target was placed into a plastic vial, and water (3 mL) and 28 M HF (1.5 mL) were added. For complete target dissolution an excess of conc. hydrofluoric acid (4 mL) was added. The mixture was loaded on a column filled with 500 mg of AG 1 \times 8 resin, 200–400 mesh in F$^-$ form. The column was washed with conc. HF (20 mL) and 92mNb was eluted with a mixture of 6 M HCl/1% H$_2$O$_2$ (2 mL).

The procedure for extraction of 95Zr from irradiated thorium target was described in [22].

Finally, fractions contained 92mNb and 95Zr were evaporated to dryness and dissolved in 6 M HCl (2 mL).

2.3.2 Preparation and conditioning of resins

For determination of distributions coefficients, the anion exchange resin AG 1 \times 8, 200–400 mesh (4 g) was applied. The resin was first washed with water (10 mL), and then transferred to the Cl$^-$ form via washing with 12 M HCl (20 mL). Finally, the resin was additionally washed with water (10 mL) to remove excess of Cl$^-$, and kept until drying for 48 h at room temperature.

The UTEVA resin was applied without further preconditioning.

2.3.3 Procedure for distribution coefficients determination

Distribution coefficients were determined by batch mode according to the following procedures: 50 mg of resin were placed in a 2 mL tube, then 1 mL of solution of appropriate concentrations of HF or HCl/H$_2$O$_2$ and 5 μL of the radionuclides stock solution were added. The mixture was vigorously stirred and allowed to stay for 24 h (4 h for mixtures contained hydrogen peroxide) at room temperature. Next, the mixtures were centrifuged and 900 μL of the solution was taken and measured by γ-ray spectroscopy. Distribution coefficient were calculated from equations (1),

$$K_d = \frac{C_{eq,phase1}}{C_{eq,phase2}} = \frac{A_{1\,g,(res.)}}{A_{1\,mL,(sol.)}} = \frac{A_{50\,mg,(res.)}}{A_{50\,\mu L,(sol.)}} \quad \text{cm}^3/\text{g} \quad (1)$$

2.4 Preliminary separation experiments

The K_d values determined in the batch mode served for understanding of the principle behavior of NbV and ZrIV
on anion exchange resins and on UTEVA in hydrofluoric and mixed hydrochloric and peroxide media. In addition, dynamic experiments were conducted.

2.4.1 Separation of Zr IV and Nb V on anion exchange column

500 mg of pre-conditioned anion exchange resin in F - form was placed in plastic column (1.5 × 7 cm). 260 mg of natural metallic zirconium spiked with 95 Zr and 92 m Nb was dissolved in 28 M hydrofluoric acid (5 mL) and passed through the column. The column was additionally washed with 28 M hydrofluoric acid (35 mL) to examine the breakthrough of Nb V. Elution of niobium was performed later on by using of mixture 6 M HCl/2.44% H 2 O 2 . Fractions of 1 mL were collected.

2.4.2 Dependence of concentration of hydrogen peroxide on elution of Nb V

The elution profile of Nb V was examined in the presence of various hydrogen peroxide concentrations. A procedure similar to one described in the previous chapter was applied until the step of niobium elution. Then the column was washed with 6 M HCl (11 mL) and later with 6 M HCl/0.5% H 2 O 2 (8 mL). Fractions of 1 mL were collected.

2.4.3 Separation of Zr IV and Nb V on UTEVA resin

The behavior of Zr IV and Nb V on UTEVA resin was evaluated in HCl media. Separation profiles for no-carrier-added 95 Zr IV and 92 m Nb V were measured for UTEVA (100–150 μm) in 4×75 mm columns in HCl. Aliquots from the stock solution were loaded on the column in 9 M HCl (1 mL) and next the column was consistently washed with 5.5 M HCl (3 mL), 4.5 M HCl (3 mL) and 2 M HCl (6 mL).

2.5 Separation strategy

2.5.1 Target dissolution

The irradiated zirconium target, typically (260×3 mg), was placed into a 15 mL plastic vial and water (500 μL) was added. For dissolution, 28 M hydrofluoric acid (500 μL) was portionally added and after full dissolution concentrated hydrofluoric acid (1 mL) was added.

2.5.2 Crude separation

Based on the distribution coefficients and preliminary separations, the following separation strategy was established.

2 mL of 21 M hydrofluoric acid containing the irradiated zirconium target were passed through the cation exchange column (DOWEX 50 × 8 resin, 200–400 mesh, 10 × 5 mm, 100 mg) resin in F - form for removal of colloids, unsolved target particles and possible trace contamination of 2+ and 3+ charged metal cations, which may originate from target impurities. The column was additionally washed with concentrated hydrofluoric acid (1 mL). The solution (3 mL) which passed the cation exchange resin was transferred to an anion exchange column (300 mg, 25×5 mm) filled with AG 1 × 8 resin (200–400 mesh) resin in F - form. Nb V remained on this resin and the bulk amount of Zr IV passed through. The column was washed with concentrated HF (4.5 mL) to elute traces of Zr IV, while 90/95 Nb stays on the column. To completely remove traces of hydrofluoric acid prior to elution of Nb V, the column was washed with 1 M HCl (1 mL). Next 6 M HCl/1% H 2 O 2 (500 μL) were passed through the column and collected. Finally, 90/95 Nb was eluted with another 500 μL of the same mixture. To remove the hydrogen peroxide, this 90/95 Nb fraction was heated for 5 min at 120 °C.

2.5.3 Final purification of 90/95 Nb on UTEVA resin

A small column (100 mg, 10 × 5 mm) was filled with UTEVA resin. To 6 M HCl (700 μL) fraction containing 90/95 Nb, 12 M HCl (700 μL) were added. This 1.4 mL of solution was passed through the UTEVA which was next washed with 5 M HCl (5 mL). Traces of zirconium IV, and Nb V remain absorbed on the column. For elution of 90/95 Nb 1 M oxalic acid was applied. The column was washed with 200 μL and Nb eluted with another 400 μL of 1 M oxalic acid. The decontamination factor Zr/Nb was measured by inductively coupled plasma mass spectrometry (ICP-MS) and γ-ray spectroscopy.

2.5.4 Development of a semi-automated module

The manually performed process takes about 1.5–2 h. To shorten the separation time, a semi-automated module was developed, cf. Figure 1.

The transfer of solutions is carried out under pressure of argon (99.996 vol.%, Westfalen AG, Germany). All parts of the module were made from resistant to hydroflu-
oronic acid materials (polyethylene, polyether ether ketone (PEEK), teflon).

The irradiated zirconium target was placed into vial C with addition of water (500 μL). Hydrofluoric acid (500 μL) was added portionally through the tube, and after full target dissolution 1 mL HF was added. The two milliliters were passed through the cation and anion exchange columns (valves 3, 4 and 6). To vial C another 1 mL of hydrofluoric acid was added to pass by the same way. Subsequently, 4.5 mL of 28 M HF was passed through the anion exchange column (valves 4, 5 and 6). The anion exchange column was washed with 1 M HCl (1 mL) from vial B (valves 2 and 3). 95Nb was eluted from the anion exchanger with a mixture of 6 M HCl/1% H$_2$O$_2$. The first 500 μL were passed through and another 700 μL contained $^{90/95}$Nb. After 5 min heating at 120 °C another 700 μL of 12 M HCl were added. The mixture was loaded in vial B and passed through the UTEVA resin (valves 5 and 7). In vial B 5 M HCl (5 mL) was loaded and passed through the UTEVA resin. Finally, 1 M oxalic acid from vial

Fig. 1: Schematic view of semi-automated separation module.

Fig. 2: Df-conjugation via TFP-N-suc-Df-Fe and labeling with 90Nb.
was applied to elute $^{90/95}$Nb. The first 200 µL of oxalic acid were passed through the UTEVA resin (valves 1 and 2) and $^{90/95}$Nb was eluted with the following 400 µL into an external product vial.

2.6 Preparation of 90Nb-labeled N-suc-Df-rituximab

To demonstrate the potential of $^{90/95}$Nb separated as described, the Df-conjugated monoclonal antibody N-suc-Df-rituximab [23], Figure 2, was labeled with $^{90/95}$Nb in HEPES buffer at pH 7.0. The labeling procedure was similar to a previously developed protocol reported in [20]. In short, to 200 µL $^{90/95}$Nb (37 MBq for 90Nb) in 1 M oxalic acid a solution of 2 M Na$_2$CO$_3$ (90 µL) was added and the mixture was allowed to stay for 3 min. Next, 0.5 M HEPES buffer (300 µL) pH 7.2 and N-suc-Df-mAb (250 µg) were added. Finally, 0.5 M HEPES buffer (700 µL) were added. The overall volume of the reaction mixture was 2 mL. The mixture was incubated for 1 h at room temperature. At various time point’s kinetics was monitored by thin layer chromatography (TLC) and high pressure liquid chromatography (HPLC). After 1 h $^{90/95}$Nb-N-suc-Df-mAb was purified on a PD-10 column using 0.9% sodium chloride solution as mobile phase.

3 Results

3.1 Production of niobium and zirconium isotopes

92mNb: Two weeks after irradiation, the isotopic content of the irradiated zirconium target was evaluated by γ-ray spectroscopy. At this time point, the activity of 92mNb ($t_{1/2} = 10.15$ d) was 2.5 MBq. Radiochemical separation recovered more than 90% of 92mNb.

95Zr/95Nb: More than 500 MBq of 95Zr was produced at the BR2 reactor after 4 days of irradiation in a thermal neutron flux of 3.5×10^{14} n cm$^{-2}$ s$^{-1}$. The maximum daughter activity of 95Nb as generated from 95Zr was obtained at ~ 67 d after EOB.

90Nb: The overall 90Zr (ρ, n) irradiation yield of 90Nb for 1 h and 5 µA irradiations was 720 ± 50 MBq, i.e. 145 ± 10 MBq/µAh under the given irradiation parameters. The isotopic purity of 90Nb after EOB was more than 97%. Minor isotopic impurities found were: 92mNb = 1.64%, 95Nb = 0.08%, 95mNb ($t_{1/2} = 3.6$ d) = 0.29% and 96Nb ($t_{1/2} = 23.35$ h) = 0.88%.

3.2 Determination of distribution coefficients

Distribution coefficients to understanding the behaviour of ZrIV and NbV on anion exchange resin and UTEVA in HCl/H$_2$O$_2$ media in a static system are shown in Figs. 3, 4 and 5 respectively.

However, determination of K_d values in HCl/H$_2$O$_2$ were accompanied with some complicity. Incubation time is needed to setup equilibrium between tracers, resin and media, but this equilibrium is disturbed because hydrochloric acid reacts with hydrogen peroxide and with time changes its concentration. Therefore 4 hours was found to be an optimum incubation period for equilibrium and for low concentration changes. Errors in samples with-

![Fig. 3: K_d values for NbV in the system AG 1 \times 8 (200–400 mesh) – HCl.](image1)

![Fig. 4: K_d values for ZrIV and NbV in system AG 1 \times 8 (200–400 mesh) – HCl – 0.5% H$_2$O$_2$.](image2)
out hydrogen peroxide were below 10% and in presence of hydrogen peroxide up to 30%.

3.2.1 ZrIV and NbV distribution coefficients in the system AG 1×8 – HCl/H₂O₂

Distribution coefficients in various hydrochloric acid concentrations and mixtures of HCl and hydrogen peroxide are illustrated in Figure 3 for the anion exchange process. Significant differences in presence of hydrogen peroxide were not observed. However, K_d values are slightly higher with H₂O₂. With increasing concentration of hydrochloric acid, distribution coefficients decrease especially at HCl concentrations (between 2 and 4 M). From 6–10 M HCl differences are insignificant. Such relation is in good agreement with previous data [25].

Slightly different behaviour of ZrIV and NbV in presence of 0.5% peroxide was observed. K_d values for ZrIV are lower than for NbV, and maximal differences can be seen at low HCl concentrations (0–4 M) (Figure 4). This represents an advantageous option for additional decontamination of niobium from zirconium.

3.2.2 ZrIV and NbV distribution coefficients in the system UTEVA-HCl

Studies on sorption of zirconium and niobium on UTEVA resin in hydrochloric acid are shown in Figure 5.

At low HCl concentration, ZrIV and NbV show a similar distribution. However, with increasing concentration of hydrochloric acid significant differences in K_d appear. Between 6 and 8 M HCl, K_d values are much higher for NbV.

3.3 Preliminary separation experiments

To transfer data on distribution coefficients from static condition to “real” situations, several preliminary separation experiments were conducted to determine optimal parameters for a final separation procedure.

3.3.1 Separation of ZrIV and NbV on anion exchange column

The separation profile of ZrIV and NbV (Figure 6) allow a crude separation of radioniobium from bulk amounts of zirconium.

The first fraction (40 mL) contained > 99% of the ⁹⁵Zr while no breakthrough of NbV was measured. Subsequent washing the column with a mixture of 6 M HCl/2.44% H₂O₂ elutes ⁹²mNb. Most of its activity (≥ 99%) was found in fractions 5–7 (3 mL), with no activity of ⁹⁵Zr detected.

3.3.2 Effect of H₂O₂ on the elution of NbV

Despite the K_d values which did not show sufficient differences in presence of hydrogen peroxide and without, there is a significant effect when eluting ⁹²mNb from the anion exchange column. 6 M HCl elutes radioniobium as broad peak (fractions f10–f20, 10 mL) and allows eluting ≤ 50% of the ⁹²mNb activity. However, after applying a mixture of 6 M HCl/0.5% H₂O₂ from fraction f21, the remaining ⁹²mNb was eluted in 1.5 mL of that mixture (Figure 7). Such disagreement between column separation and distri-
3.4 Final separation strategy

The overall separation proceeds with a separation yield of more than 99% of $^{90/95}$Nb after anion exchange. The final fraction of 1 M oxalic acid (400 μL) contains more than 95% of $^{90/95}$Nb. The whole separation procedure takes around 1.5 h, which is almost 4 times faster than the previous separation method [19]. The decontamination factor for Zr after anion exchange was 1×10^5 and after UTEVA purification 3×10^8. This decontamination factor equals 0.77 ng of zirconium presented in final fraction for a 260 mg zirconium target.

This procedure was adapted to a semi-automated separation module. The separation yield of $^{95/90}$Nb in the final fraction was somewhat lower (90%) what can be explained by losses on valves and tubes during the separation procedure. However, this takes even shorter time (1 h) and allows remote operation that is very important factor in case of high activity irradiations.

3.5 Proof-of-principle labeling of N-suc-Df-rituximab

The $^{90/95}$Nb labeling kinetics indicate that the radiochemical yield reached 60% already after 15 min and increased to more than 90% after 50 min (95% analyzed by instant thin layer chromatography (ITLC) and 93% by size exclusion chromatography (SEC)). After SEC separation on a PD-10 column, the $^{90/95}$Nb-Df-mAb was of 99.0% purity.

4. Discussions

Our aim was to develop an improved separation protocol. Isolation of 90Nb should be fast, effective and less complicated compared to known protocols. It should provide a reliable source of 90Nb with appropriate properties for following labelling reactions.

Previously reported work indicates effective separation of ZrIV and NbV in mixed hydrofluoric acid media on anion exchange resins [26]. Fluoro complexes of niobium are well studied. Therefore we initially designed our new separation strategy on the very different behaviour of ZrIV and NbV in hydrofluoric acid media. Due to future application of 90Nb for medical purposes, however, the absence of traces of hydrofluoric acid in the final product is obligatory. Therefore we decided to prefer a two-step separation procedure, where the first step allows crude removal of the target material, followed by a second step for addi-
tional purification and conditioning for following medical application.

Compared to previous separation methods [19], including multistep separations by liquid-liquid extraction and anion exchange, the alternative separation strategy developed is: i) decreased separation time by a factor of four (from 4 to 1 h); ii) increased separation yield to 90%–95% (instead of 76%–81% for previous strategy); iii) 10 fold improved decontamination factor for Zr/Nb (>,108), that will allow preparation of radiopharmaceuticals with higher specific activity (in case of a standard target setup, just 0.77 ng of Zr will be presented in final fraction); and iv) designed and tested in a semi-automated separation module for remote separation.

The final elution of Nb\(^\gamma\) in 1 M oxalic acid allows keeping radio-Nb in an appropriate species for subsequent labeling and prevents possible hydrolyzation. The \(90/95\) Nb fraction obtained is adequate to subsequent radiolabeling.

The purified \(90/95\) Nb proved excellent labelling of a N-suc-Df conjugated for purposes of immuno-PET. Thus developed separation strategy provides a reliable source of \(90\) Nb for application in immuno-PET.

Acknowledgement: The authors thank the teams of TRIGA reactor Mainz, Germany, and the BR2 high-flux research reactor at the Belgian Nuclear Research Centre in Mol, Belgium, for production of \(90\) Zr, and the team of Phasotron operators at JINR for production of Nb and Zr isotopes.

Specially thanks to Dr. Happel for providing of UTEVA resin.

Thanks to Danielle Vugts, VU University Medical Centre in Amsterdam, for providing of premodified antibody for labeling.

Received June 21, 2013; accepted September 11, 2013.

References