

Contents lists available at ScienceDirect

Applied Radiation and Isotopes

journal homepage: www.elsevier.com/locate/apradiso

⁶⁸Ge content quality control of ⁶⁸Ge/⁶⁸Ga-generator eluates and ⁶⁸Ga radiopharmaceuticals – A protocol for determining the ⁶⁸Ge content using thin-layer chromatography

Elisabeth Eppard, Natalia S. Loktionova, Frank Rösch*

Institute of Nuclear Chemistry, University of Mainz, D-55128 Mainz, Germany

HIGHLIGHTS

• ⁶⁸Ga is analytically separated from ⁶⁸Ge using TLC.

• ⁶⁸Ge-breakthrough can be determined in ⁶⁸Ga-eluate and radiopharmaceutical.

• ⁶⁸Ge breakthrough determination takes place within 1 h.

A R T I C L E I N F O

Article history: Received 26 November 2013 Received in revised form 5 May 2014 Accepted 16 May 2014 Available online 24 May 2014

Keywords: ⁶⁸Ge/⁶⁸Ga-generator Breakthrough Separation TLC Ga-68-radiopharmaceutical Ga-68-DOTATOC

1. Introduction

Commercially available 68 Ge/ 68 Ga-generators offer initial activities of 0.74 (20 mCi), 1.11 (30 mCi), 1.85 (50 mCi) or more GBq of 68 Ge. During the first few weeks of use, the 68 Ga elution yield of these generators is typically 60–90%, which includes 68 Ge break-through between 10^{-2} % and 10^{-4} % (Roesch and Riss, 2010; Loktionova et al., 2011). The breakthrough refers to the actual 68 Ge content of the eluate, and is reported as the 68 Ge activity in the eluate relative to that on the generator column (other values express this as the co-eluted 68 Ge activity relative to 68 Ga in the eluate (Breeman et al., 2011)). Many consider the problem of 68 Ge-breakthrough to be one of the more significant challenges to the wider clinical acceptance and application of 68 Ga and its generator. 68 Ge-breakthrough is a sensitive parameter for 68 Ga-radiopharmaceuticals considering the quality control requirements

* Corresponding author. E-mail address: frank.roesch@uni-mainz.de (F. Rösch).

ABSTRACT

⁶⁸Ge breakthrough from a ⁶⁸Ge/⁶⁸Ga-generator appears to be one of the most critical parameters for the routine clinical application of this generator and ⁶⁸Ga-radiopharmaceuticals. We report a TLC-based (thin-layer chromatography) protocol which allows the ⁶⁸Ge breakthrough of a generator to be determined within 1 h post-initial elution. The protocol can also be adapted to allow the ⁶⁸Ge content of a ⁶⁸Ga-radiopharmaceutical preparation to be determined prior to in vivo application.

© 2014 Elsevier Ltd. All rights reserved.

governing their routine clinical application (Breeman and Verbruggen, 2007; Breeman et al., 2011). A recent report by Velikyan et al. proposed that the ⁶⁸Ge content in a ⁶⁸Ga-radiopharmaceutical is already below the toxic level for humans (Velikyan et al., 2013). In spite of this, current European Pharmacopeia Standards stipulate that the ⁶⁸Ge content in generator eluate should not exceed 0.001% (European Pharmacopeia, 2013). Therefore, not only must ⁶⁸Ge be removed, but a method is required to quantify the ⁶⁸Ge content of a ⁶⁸Ga-radiopharmaceutical.

⁶⁸Ge decays exclusively via electron capture and is therefore only detectable (using radiochemical means) indirectly by the positron emission of its daughter nuclide, ⁶⁸Ga. However, using this method it is not possible to detect ⁶⁸Ge in the presence of an excess of ⁶⁸Ga. Recently, we reported a protocol that allowed the ⁶⁸Ge breakthrough to be isolated online, through the use of strong cation-exchanger resins, and quantified via the decay of its daughter radionuclide, ⁶⁸Ga (Eppard et al., 2013). Using this protocol it was possible to determine the ⁶⁸Ge-breakthrough within one (or 1\2) half-life of ⁶⁸Ga after the initial elution. For a "fresh" 1.11 GBq (30 mCi) generator, the ⁶⁸Ge activity in the eluate is between 111.00 and 1.11 kBq (3000–30 nCi) (for breakthrough levels of 10^{-2} – 10^{-4} %) within 0.67–1.00 GBq (18–27 mCi) of ⁶⁸Ga. The eluted ⁶⁸Ga decay according to Eq. (1) based on its half-life ($t_{1/2}$ of ⁶⁸Ga=67.71 min) is given as follows:

$$A_{\rm Ga}^t = A_{\rm Ga}^0(e^{-\lambda t}) \tag{1}$$

Using $\lambda = (\ln 2)/(t_{1/2})$ leads to

$$\ln(A_{Ga}^{t}) = \ln(A_{Ga}^{0}) - \frac{\ln 2}{t_{1/2}}t$$
(2)

$$\approx \ln(A_{\rm Ga}^0) - 0.01t \tag{3}$$

where $A_{Ga}^0 = {}^{68}Ga$ activity immediately after elution and $A_{Ga}^t = {}^{68}Ga$ activity at time *t* (in minutes) after elution, and $\lambda = (\ln 2)/t_{1/2}$.

The total ⁶⁸Ga activity in the generator eluate is represented by both the eluted ⁶⁸Ga decay and ⁶⁸Ga generation from the co-eluted ⁶⁸Ge. Thus, the equation is applied as follows:

$$A_{Ga}^{t} = A_{Ga}^{0}(e^{-\lambda_{Ga}t}) + \frac{\lambda_{Ga}}{\lambda_{Ga} - \lambda_{Ge}} A_{Ge}^{0}(e^{-\lambda_{Ge}t} - e^{-\lambda_{Ga}t})$$

$$(4)$$

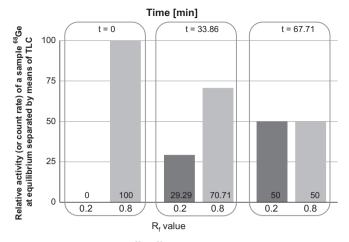
where $A_{Ge}^0 = {}^{68}$ Ge activity co-eluted (=breakthrough), $A_{Ga}^t = {}^{68}$ Ga activity at time *t* after elution. If there is no 68 Ga present ($A_{Ga}^0 = 0$) with the 68 Ge-breakthrough

If there is no ⁶⁸Ga present ($A_{Ga}^{\circ} = 0$) with the ⁶⁸Ge-breakthrough (i.e. ⁶⁸Ga in the eluate is removed), then Eq. (4) simplifies to Eq. (5). In this case increasing ⁶⁸Ga activities are measured, due to decay of ⁶⁸Ge-breakthrough, according to the secular radionuclide generator equilibrium (Rösch and Knapp, 2003)

$$A_{Ca}^{t} = A_{Ce}^{0} (1 - e^{-\frac{\ln 2}{t_{1/2}}t})$$
⁽⁵⁾

The saturation point or equilibrium is reached when

$$A_{Ca}^{equ} = A_{Ce}^{equ} \tag{6}$$


Therefore, the 68 Ga activity from an initially pure 68 Ge sample measured at 28.10 and 67.71 min will represent 14 and 12 of the total initial 68 Ge activity, respectively. Therefore, it is possible to determine the amount of 68 Ge present by multiplying the measured 68 Ga activities at 28.10 and 67.71 min by a factor of 4 and 2, respectively.

For the quality control of 68 Ga-radiopharmaceuticals, TLC is commonly used to analyze the labeling yield and product purity of 68 Ga species based on the different R_f values of individual 68 Ga species. Similarly, Ge(IV) and Ga(III) species may behave differently depending on the chosen stationary and mobile phases (Mirzadeh and Lambrecht, 1996). Provided that there is sufficient separation between the different species on a TLC plate, it is possible to determine the 68 Ge content easily and quickly.

Of course, the ⁶⁸Ge species is not visible directly after TLC plate development. It requires time to decay to its daughter radionuclide via electron capture before the positron emission of generated ⁶⁸Ga is detectable. Thus, the ⁶⁸Ge TLC 'spot' is allowed to develop for a known amount of time (1\4 or 1\2 of a ⁶⁸Ga half-life) to generate ⁶⁸Ga before analyzing the TLC plate. 'Spots' pertaining to the different metallo-radionuclides are easily identified because the ⁶⁸Ga species exhibits decreasing radioactivity, while the ⁶⁸Ge species TLC spot increases in activity for ~10 h past generator elution (assuming perfect separation of these species).

Fig. 1 shows a theoretical decay profile of a sample containing equal activities of ${}^{68}\text{Ge}/{}^{68}\text{Ga}$ analyzed by TLC. The ${}^{68}\text{Ge}$ and ${}^{68}\text{Ga}$ species were assigned arbitrary $R_{\rm f}$ values of 0.2 and 0.8, respectively. The calculated activities of each spot are shown at t=0, 33.85 (1/2 of a single ${}^{68}\text{Ga}$ half-life) and 67.7 min (one ${}^{68}\text{Ga}$ half-life) post-elution. There is a relationship between the rate at which ${}^{68}\text{Ge}$ decays for the ${}^{68}\text{Ge}$ spot and the initial ${}^{68}\text{Ge}$ amount.

This approach can also be applied to determine the ⁶⁸Ge content of a ⁶⁸Ga-labeled compound, such as ⁶⁸Ga-labeled

Fig. 1. Theoretical profile of a ⁶⁸Ge/⁶⁸Ga sample at equilibrium analyzed by TLC. The ⁶⁸Ge and ⁶⁸Ga species are assigned arbitrary $R_{\rm f}$ values of 0.2 and 0.8, respectively. At t=0, there is no activity for the ⁶⁸Ge spot and maximum activity for the ⁶⁸Ga spot (=100%). [*Note*: this neglects nuclear transformations that occur during the TLC development and scanning (~10 min)]. Approximately 33.9 min later, a second scan detects ⁶⁸Ga activity at the ⁶⁸Ge species spot equal to 29% saturation (Eq. (2)), whereas the activity originating from the initial ⁶⁸Ga spot ($R_{\rm f}$ =0.8) decreases to 71% of its initial value. A final scan of the TLC plate at t=67.71 min represents equal activities, i.e. the ⁶⁸Ga activity detected at the ⁶⁸Ge spot equals 1/2 of the initial ⁶⁸Ge present.

Table 1

TLC mobile phases and R_f-values for ⁶⁸Ga, ⁶⁸Ge and ⁶⁸Ga-DOTATOC.

	Mobile phase	R _f -values		
		⁶⁸ Ga(III)	⁶⁸ Ge(IV)	⁶⁸ Ga-DOTATOC
(a)	0.1 M citric buffer (pH=4)	1	1	0.1-0.2
(b)	5% NaCl:MeOH:25% NH ₃ (3:1:1)	0	0.4-0.6	0.1-0.2
(c)	2 M HCl:acetone (1:1)	1	0.1	0.4
(d)	0.01 M NaC ₄ H ₅ O ₆ :MeOH (3:1)	0	0.4-0.9	0.1-0.2
(e)	Cyclohexanone:2 M HCl (20:1)	0.4–0.5	0.1	0

peptides, to determine ⁶⁸Ge traces remaining in the final injectable solution. A TLC system capable of discriminating between the ⁶⁸Ge, the ⁶⁸Ga-radiopharmaceutical and uncomplexed ⁶⁸Ga, is required. This approach may not be universal in terms of the conditions used for TLC, with different radiopharmaceuticals requiring tailor-made TLC systems. In this report ⁶⁸Ga-DOTATOC, which is used for the diagnostic imaging of neuroendocrine tumors, was selected as a proof-of-principle study.

2. Methods

 $^{68}Ge/^{68}Ga$ generator: A two-year old $^{68}Ge/^{68}Ga$ generator (Eckert & Ziegler Strahlen- und Medizintechnik AG, Berlin, Germany) with a ^{68}Ga yield of \sim 100 MBq and ^{68}Ge breakthrough of \sim 85 kBq was used. The generator was eluted with 5 mL of 0.1 N HCl in all cases. Another generator was used as a source of ^{68}Ge activity, and to obtain a stock solution of $^{68}Ge/^{68}Ga$ at equilibrium (1.35 MBq $^{68}Ge/^{68}Ga$ in 5 mL 0.1 N HCl).

Synthesis of ⁶⁸Ga-DOTATOC: DOTATOC (21 nmol) was labeled using 0.4 mL of the ⁶⁸Ge/⁶⁸Ga generator eluate (not post-processed) and 0.6 mL of 0.2 M CH₃COONa buffer (pH=4) for 10 min at 95 °C. The ⁶⁸Ga-labeled DOTATOC $R_{\rm f}$ value was determined for solvents a)–e).

Thin-layer chromatography: Table 1 shows the five mobile phases investigated for separating ⁶⁸Ge and ⁶⁸Ga on TLC plates (65 mm, Silica Gel 60 TLC strips, MERCK, Darmstadt, Germany).

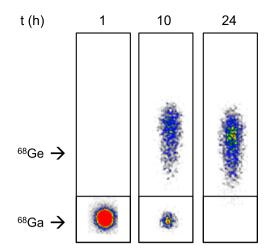
The four mobile phases recommended by Mirzadeh and Lambrecht (1996), and the widely used 0.1 M citrate buffer (pH=4) were used. Freshly prepared solutions were used in all cases, which is especially important for mobile phases c) and e), due to self-condensation of the organic components.

For TLC analyses, 4 μ L aliquots from either the generator eluate or solution with the ⁶⁸Ga-labeled product were spotted on TLC plates. Following TLC elution, the ⁶⁸Ge and ⁶⁸Ga distributions were detected using an instant-imager (Instant Imager[®], Packard Canberra, Schwadorf, Austria) at 0, 1, 2, 3, 4, 5, 10, 15, 20, 25, and 30 h after TLC development.

Radioactivity measurements: For the quantitative analysis of low ⁶⁸Ge activities, a sensitive detection system and short acquisition time are mandatory. Therefore, the detection limits of two different instant imagers (Instant Imager[®], Packard Canberra and Rita Star[®], Raytest-Isotopenmessgeräte GmbH, Straubenhardt, Germany) were investigated. Ten dilutions were made from a stock solution containing 0.118 MBq ⁶⁸Ge in 5 mL (Table 2). The assessment was performed by spotting known activities of ⁶⁸Ge on a cellulose strip and recording the ⁶⁸Ge activity, using both imagers, after 10 and 30 min. For this aliquots 4 µL were taken from each dilution and spotted on a single cellulose strip (150 mm × 10 mm). The cellulose strip was not developed.

3. Results and discussion

A TLC system to differentiate between ⁶⁸Ga (30–50 kBq for this setup) and the relative small amount of ⁶⁸Ge (~34 Bq for this setup) present in the generator eluate is required to allow the ⁶⁸Ge content to be determined. With the exception of 0.1 M citrate buffer, all of the investigated mobile phases could be used to separate the ⁶⁸Ga and ⁶⁸Ge species on TLC plates. The recorded $R_{\rm f}$ values of the different species using each mobile phase are summarized in Table 1. Fig. 2 shows the positions of the ⁶⁸Ge and ⁶⁸Ge and ⁶⁸Ga species on a TLC plate developed using mobile phase b). As expected, the measurements directly after TLC plate development almost exclusively show the initial ⁶⁸Ga activity (not shown). To detect ⁶⁸Ge, follow-up scans are required. These follow-up scans were recorded at 1 (L1), 10 (L2) and 24 h (L3) after TLC development.


While the activity of the ⁶⁸Ga spot decreased, that of the ⁶⁸Ge spot increased consistent with the generation, and subsequent decay, of its daughter radionuclide. The activity level 67.7 min after the TLC plate development represents half of the total ⁶⁸Ge activity at the start. Therefore, using the calibration between absolute activity and observed count rate, it is possible to quantify the ⁶⁸Ge breakthrough relatively quickly, i.e. approximately 1 h after generator elution or labeling.

When this protocol is applied to determine the ⁶⁸Ge content of a prepared radiopharmaceutical, the chosen TLC system should

Table 2

Dilutions of the ^{68}Ge stock solution. An aliquot represents $4\,\mu L$ from 400 μL of ^{68}Ga (=1%).

Nr	Aliquot (Bq)	Aliquot (mol)
1	47.200	2.647×10^{-15}
2	23.600	1.324×10^{-15}
3	11.8.00	6.617×10^{-16}
4	5.900	3.309×10^{-16}
5	2.950	1.655×10^{-16}
6	1.475	8.272×10^{-17}
7	0.738	4.136×10^{-17}
8	0.369	2.068×10^{-17}
9	0.184	1.034×10^{-17}
10	0.092	5.170×10^{-18}

Fig. 2. The same TLC plate with 68 Ge and 68 Ga developed using mobile phase (c) and measured at 1, 10 and 24 h after TLC development.

provide sufficient separation of ⁶⁸Ge species, uncomplexed and complexed ⁶⁸Ga (the radiopharmaceutical). In the case of ⁶⁸Ga-DOTATOC, which can be prepared with a radiochemical yield of 99%, this translates to activity rations of 1:100:10,000 for the three species. As shown in Fig. 3, mixtures b), c) and d) were most suitable for the resolution of ⁶⁸Ga (L1), ⁶⁸Ga-DOTATOC (L2) and ⁶⁸Ge (L3), respectively.

Fig. 4 depicts a population distribution map of a TLC plate, spotted with a solution containing ⁶⁸Ga-DOTATOC and ⁶⁸Ge (0.5 mL of stock solution), imaged at 0, 2, 4 and 6 h after TLC development with mobile phase c). The activity of the ⁶⁸Ga-DOTATOC spot (R_f =0.4) decreased at a rate corresponding to the ⁶⁸Ga half-life. In parallel, the ⁶⁸Ge spot (R_f =0.1) showed an increasing count rate, corresponding to the half-life of ⁶⁸Ga generation in situ. The calibration between the observed activity (on the TLC) and the absolute activity of ⁶⁸Ge allowed the ⁶⁸Ge content in the ⁶⁸Ga-DOTATOC sample to be quantified 1 h after labeling.

The Packard Canberra Instant Imager[®] detected ⁶⁸Ge levels as low as 5.90 and 2.95 Bq (10^{-16} mol) after 10 and 30 min, respectively. By comparison, the Raytest-Isotopenmessgeräte GmbH Rita Star[®] was considerably more sensitive, detecting activities of 0.74 and 0.36 Bq (10^{-17} mol) at the same time points. For each imager, linear regression was used to determine a unique linear calibration equation, which allows the ⁶⁸Ge content to be quantified (Fig. 5).

The linear regression from the Instant Imager[®] (Packard Canberra) calibration, after 10 min measurement, yields the following equation:

$$y = 2.6344x + 0.4167 \tag{7}$$

$$x = \frac{y - 0.4167}{2.6344} \tag{8}$$

where y = counts per minute measured over 10 min and x = activity in Bq spotted onto the TLC plate.

4 μL sample from the initial ⁶⁸Ga eluate was spotted onto a TLC plate and developed with mobile phase b). Fig. 6a shows the TLC measured directly after development. Uncomplexed ⁶⁸Ga remains at the starting point (R_f =0). The TLC was then cut at R_f =0.3 and the upper section re-measured for 10 min (Fig. 6b). The upper section contains the ⁶⁸Ge species, and is detected via the decay of its daughter radionuclide. The measured value for counts per minute is inserted in Eq. (8), which leads to value of 12.75 Bq ⁶⁸Ge in 4 μL aliquot, which corresponds to 15.93 kBq ⁶⁸Ge in the initial eluate (5 mL). Inserting this value into Eq. (5) gives the absolute ⁶⁸Ge-breakthrough in the initial eluate as 147.83 kBq.

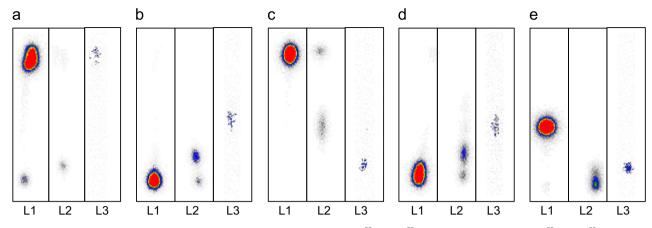


Fig. 3. TLC plates developed using mobile phases (a)–(e) (Table 1). Lanes: $L1=^{68}$ Ga; $L2=^{68}$ Ga-DOTATOC and uncomplexed 68 Ga; $L3=^{68}$ Ge.

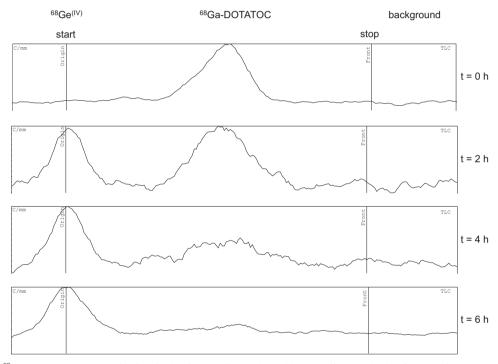
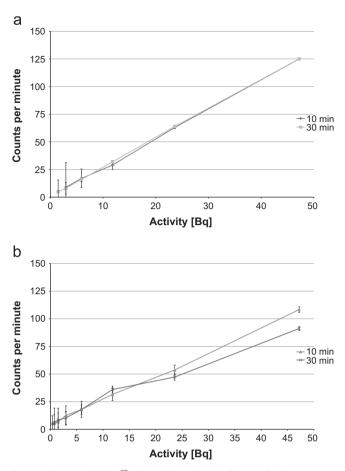
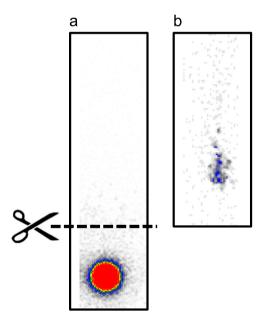


Fig. 4. TLC analysis of a ⁶⁸Ga-DOTATOC preparation developed using the TLC solvent mixture (c), 2 M HCl/acetone (1:1) and measured at 0, 2, 4 and 6 h after development. The *y*-axis represents the maximum relative count-rates.

To evaluate the usefulness of this protocol for determining the ⁶⁸Ge content of a ⁶⁸Ga-DOTATOC preparation, 1 mL solution of the radiopharmaceutical was spiked with 0.4 mL of the ⁶⁸Ge stock solution. 4 mL aliquot was spotted onto a TLC plate and developed using mobile phase d). Due to regular fluctuations in the ⁶⁸Ge breakthrough and dilution effects, a known amount of ⁶⁸Ge was added to the ⁶⁸Ga-DOTATOC solution instead of measuring the ⁶⁸Ge breakthrough directly.


Fig. 7a shows the entire TLC plate scanned immediately after development. ⁶⁸Ga-DOTATOC remained near the starting point at $R_{\rm f}$ =0.1. The TLC plate was then cut at $R_{\rm f}$ =0.3–0.35, and scanned for 10 min (Fig. 7b) to measure the activity resulting indirectly from spotted ⁶⁸Ge. The measured counts per minute was inserted into Eq. (8) to give a ⁶⁸Ge content in 4 µL aliquot of 106.42 Bq. Using the dilution factor this translates to an initial ⁶⁸Ge content of 37.25 kBq in the 1 mL ⁶⁸Ga-DOTATOC solution.

The actual ⁶⁸Ge breakthrough contained in the original ⁶⁸Ga-DOTATOC solution is 1.41 kBq, which was calculated by subtracting the 68 Ge spike (35.84 kBq) from the actual 68 Ge content. Inserting this value into Eq. (5) gives an absolute 68 Ge content of 13.01 kBq.


The ⁶⁸Ge breakthrough in the generator eluate and ⁶⁸Ga-DOTATOC solution was determined under standard conditions. The overall protocol, which includes TLC development and measurement, takes less than 30 min. Therefore, it is possible to quantify the ⁶⁸Ge content in a generator eluate or radiopharmaceutical preparation prior to their further application.

4. Conclusions

A TLC based protocol has been developed which allows the ⁶⁸Ge content of generator eluates and ⁶⁸Ga-DOTATOC preparations to be determined half an hour after TLC development. The method relies on the resolution of the ⁶⁸Ge and ⁶⁸Ga species on TLC with ⁶⁸Ge quantification made possible via the decay of its daughter radionuclide. This novel protocol allows for the rapid and reliable

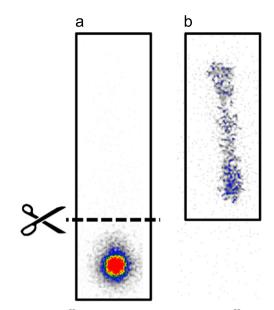


Fig. 5. Calibration of the 68 Ge-breakthrough quantification for the a) Instant Imager[®] (Packard Canberra) and b) Rita Star[®] (Raytest – Isotopenmessgeräte GmbH) after 10 and 30 min duration measurements.

Fig. 6. TLC analysis of the initial eluate developed using the mobile phase (b), 5% NaCl:MeOH:25% NH₃ (3:1:1) and measured (a) directly after TLC development and (b) directly after cutting the TLC at $R_{\rm f}$ =0.3.

determination of 68 Ge activity levels in a 68 Ge/ 68 Ga-generator eluate without the use of γ -spectroscopy. The protocol may also

Fig. 7. TLC analysis of ⁶⁸Ga-DOTATOC preparation (containing ⁶⁸Ge spike) developed in mobile phase (d), 0.01 M NaC₄H₅O₆:MeOH (3:1), measured (a) directly after TLC development and (b) directly after cutting the TLC plate at R_f =0.3–0.35.

suitable for the quality control for ⁶⁸Ge content of individual radiopharmaceutical preparation. This has been demonstrated for ⁶⁸Ga-DOTATOC, where the ⁶⁸Ge content can be determined prior to administration of the radiopharmaceutical. Therefore, this novel protocol permits the analytical quantification of the ⁶⁸Ge content in a ⁶⁸Ge/⁶⁸Ga-generator eluate and ⁶⁸Ga-radiopharmaceutical within a time frame suitable for their further application.

References

- Breeman, W.A.P., de Blois, E., Chan, H.S., Konijnenberg, M., Kwekkeboom, D.J., Krenning, E.P., 2011. ⁶⁸Ga-labeled DOTA-peptides and ⁶⁸Ga-labeled radiopharmaceuticals for positron emission tomography: current status of research, clinical applications, and future perspectives. Semin. Nucl. Med. 41. 314–321.
- clinical applications, and future perspectives. Semin. Nucl. Med. 41, 314–321. Breeman, W.A.P., Verbruggen, A.M., 2007. The ⁶⁸Ge/⁶⁸Ga generator has high potential, but when can we use ⁶⁸Ga-labeled tracers in clinical routine? Eur. J. Nucl. Med. Mol. Imaging 34, 978–981.
- Eppard, E., Loktionova, N.S., Rösch., F., 2013. Quantitative online isolation of ⁶⁸Ge from ⁶⁸Ge/⁶⁸Ga-generator eluates for purification and immediate quality control of breakthrough. Appl. Radiat. Isot. 82, 45–48.
- European Directorate for the Quality of Medicines and Healthcare, The European Pharmacopoeia, 7.8th ed., 2013.
- Loktionova, N.S., Belozub, D.B., Filosofov, D.V., Zhernosekov, K.P., Wagner, T., Türler, A., Roesch, F., 2011. Improved column-based radiochemical processing of the generator produced ⁶⁸Ga. Appl. Radiat. Isot. 69, 942–946.
- Mirzadeh, S., Lambrecht, R.M., 1996. Radiochemistry of germanium. J. Radioanal. Nucl. Chem. 202, 7–102.
- Rösch F., Knapp F.F., Radionuclide generators: Radiochemistry and Radiopharmaceutical Chemistry in Life Sciences, Handbook of Nuclear Chemistry 4, Kluwer Academic Publishers: Dordrecht, 2003.
- Roesch, F., Riss, P.J., 2010. The renaissance of the ⁶⁸Ge/⁶⁸Ga radionuclide generator initiates new developments in ⁶⁸Ga radiopharmaceutical chemistry. Curr. Top. Med. Chem. 10, 1633–1668.
- Velikyan I., Antoni G., Sörensen J., Estrada S., Organ biodistribution of Germanium-68 in rat in the presence and absence of [⁶⁸Ga]Ga-DOTA-TOC for the extrapolation to the human organ and whole-body radiation dosimetry, Am. J. Nucl. Med. Mol. Imaging 3, 2013, 154–165.