

Production of Positron-emitting ^{110m}In via the ¹¹⁰Cd(³He, 3n)¹¹⁰Sn \rightarrow ^{110m}In Process

FRANK RÖSCH¹, SAYED M. QAIM¹, ALEXANDER FEDOROVITCH NOVGORODOV² and YING-MING TSAI^{*3}

Institut für Nuklearchemie, Forschungszentrum Jülich GmbH, P.O. Box 1913, D-52425 Jülich, Germany, ²Joint Institute for Nuclear Research, Dubna, Russia and ³Institute for Nuclear Energy Research, Taipeh, Taiwan, Republic of China

(Received 15 November 1995; in revised form 28 February 1996)

Positron-emitting ^{110m}In was produced in a two-step process. Irradiation of highly enriched ¹¹⁰Cd with ³He-particles over an energy range of 36–25 MeV led to the formation of ¹¹⁰Sn, which after its fast radiochemical separation from the target material was used to prepare a ¹¹⁰Sn→^{110m}In generator. The radiochemical separation consisted of a thermochromatographic volatilization of ¹¹⁰SnCl₄ from metallic ¹¹⁰Cd targets in a small quartz apparatus at 800 ± 10°C within 20 min, followed by its removal from the quartz tube via dissolution in hydrochloric acid. The ¹¹⁰Sn separation yield was > 98% and the fraction contained only < 10^{-4%} of the target material. The solution was then transferred to a small Kieselgel 40 column to prepare a ¹¹⁰Sn→¹¹⁰In elution generator. The ¹¹⁰In was eluted quantitatively within 1 ml of 0.02 M hydrochloric acid. The only detectable isotopic impurity was ¹¹¹In, generated from the co-formed ¹¹¹Sn-contamination. Its percentage decreased from about 0.8% at 1 h after the end of bombardment to <0.01% at 7 h. The final solution was free of any traces of Cd. In the first experiments more than 15 mCi of ^{110m}In was delivered per generator. Copyright © 1997 Elsevier Science Ltd

Introduction

Most of the isotopes routinely applied in nuclear medicine for clinical diagnosis, especially via single photon emission tomography (SPET) are single photon-emitting isotopes of metals. The corresponding radiometal-labelled radiopharmaceuticals provide important diagnostic information. For some special purposes, however, more quantitative data are needed, which are available in general using positron emission tomography (PET). One approach consists of the incorporation of a positron-emitting radioisotope of the same element as that used in the SPET radiopharmaceutical. This bridging of SPET and PET may provide more quantitative information on the diagnostic potential of a given radiopharmaceutical as well as on the in vivo quantification of the uptake kinetics of that radiopharmaceutical in individual patients.

Some of these SPET-PET pairs such as ${}^{123}I-{}^{124}I$ (see for example Langen *et al.*, 1990), have already been studied; others such as ${}^{99m}Tc \rightarrow {}^{94m}Tc$ (Nickles *et al.*, 1993; Rösch *et al.*, 1994) or ${}^{123}I \rightarrow {}^{120}I$ (Zweit *et al.*, 1995) are only just coming under investigation. Another pair available for bridging SPET and PET is ¹¹¹In \rightarrow ^{110m}In. Various radiopharmaceuticals labelled with the single-photon emitter ¹¹¹In ($t_{1/2} = 2.81$ d) are used in the diagnosis of cancer and other diseases. In particular for receptor-type studies, the quantification of the uptake of the pharmaceutical via PET measurements may be important. The corresponding indium isotope of choice is ^{110m}In. It has a half-life of 69.1 min and decays 62% via positron emission with $E_{\beta^+, max} = 2.3$ MeV.

The direct production of ^{110m}In via ¹¹⁰Cd(p,n)-, ${}^{107}Ag(\alpha, n)$ - and ${}^{109}Ag({}^{3}He, 2n)$ -processes leads to the co-formation of the isomer ^{110g}In ($t_{1/2} = 4.9$ h). This co-formation increases with increasing projectile energy. Isotopically pure 110mIn could only be prepared via the generator system ¹¹⁰Sn ($t_{1/2} = 4.11$ h; EC) \rightarrow ^{110m}In. The principal routes for producing ¹¹⁰Sn consist of the following reactions: (i) $^{108}Cd(\alpha, 2n)$; (ii) ¹¹⁰Cd(³He, 3n); and (iii) ¹¹³In(p, 4n). Nuclear reaction cross-section data for route (ii) over the ³He particle energy range of 27-16 MeV in irradiation of ^{nat}Cd have been reported (Szelecsényi et al., 1991), and the first experiments on the production of ^{110m}In via the generator route have been performed by irradiating natural indium at $E_p = 80$ MeV (Lundqvist *et al.*, 1991).

^{*}To whom all correspondence should be addressed.

The aim of the present work was to determine the production yield and the isotopic purity for route (ii), i.e. the ¹¹⁰Cd(³He,3n)-process on enriched ¹¹⁰Cd. Moreover, a radiochemical separation should be developed which would lead to high yield and radiochemical purity of ¹¹⁰Sn, and allow a quantitative recovery and cyclic use of the highly enriched and rather expensive ¹¹⁰Cd material. Previous attempts to evaluate the production of ^{110m}In via the ¹¹⁰Sn \rightarrow ^{110m}In generator system involved the separation of ¹¹⁰Sn either from macroscopic indium targets (Lundqvist et al., 1991) or from cadmium targets (Szelecsényi et al., 1991). Both groups applied wet chemical techniques using anion or cation exchangers and HBr or HF solutions, respectively, as eluents. Recently a direct separation of ^{110m}In was reported by Lundqvist et al. (1995), making use of the diffusion of ^{110m}In in metallic cadmium targets.

Experimental

Target material

In preliminary studies on chemical separations, Cd of natural isotopic composition was irradiated in the form of a foil or as CdO powder. The targets were prepared either by rolling metallic cadmium to thin foils (200 mg, foil diameter 13 mm, 0.14 mm thickness) or by pressing 200 mg of CdO powder at 10 ton/cm² to pellets (13 mm \emptyset , 0.17 mm thickness). 110 Cd However, 200 mg of highly enriched 106 Cd = 0.02%, 108 Cd = 0.05%, $(^{110}Cd = 91.5\%)$ $^{111}Cd = 4.00\%$, $^{112}Cd = 1.99\%$, 113 Cd = 0.76%, $^{114}Cd = 1.45\%$, $^{116}Cd = 0.21\%$) in the form of a foil was used in production runs for experiments. The latter target was prepared from metallic ¹¹⁰Cd by pressing. Uniformity of the target (foil diameter 13 mm, foil thickness 0.14 mm) was measured to be ± 5%.

Irradiations

The targets were irradiated at the Jülich compact cyclotron CV28 with 36 MeV ${}^{3}\text{He}^{2}$ + particles for 1 h at beam currents of 1–5 μ A. For some investigations

on the behaviour of radioindium alone, Cd and CdO targets were irradiated with 20 MeV protons to obtain the radioisotopes of indium via the $^{nat}Cd(p, xn)$ reactions.

The degradation of the ³He particle energy in the 200 mg Cd foils was calculated using the stopping powers by Williamson *et al.* (1966).

Measurement of radioactivity

Table 1 summarizes the isotopes of tin and indium relevant to the study of (³He, xn)-reactions on enriched ¹¹⁰Cd.

In general, a HPGe detector was used which was coupled to an EG&G ORTEC MCA plug-in card, connected to an IBM-compatible PC-AT. The peak area analysis was done using Maestro II MCA emulation software. The efficiency of the detector was determined using known standards supplied by the Physikalisch-Technische Bundesanstalt Braunschweig. The count rates were corrected for pile-up losses as well as for y-ray abundances and the efficiencies of the detector. Since the distance between the sample and the detector was always > 10 cm, the correction for real coincidence losses was negligible. For some qualitative measurements, well-type NaI detectors were used.

Thermochromatographic isolation of ¹¹⁰Sn from Cd targets

In experiments to study the different absorption temperatures of the chlorides formed within this separation scheme, initially a horizontal quartz tube $(3 \times 300 \text{ mm})$ was inserted into an electric resistance oven. The maximum oven temperature at the place of the irradiated target was varied between 600 and 1100° C, while a moderate flow of chlorine (10–20 ml/ min) was led through the quartz tube. Experimental time was varied between 15 and 60 min. In these experiments about 5 mg of metallic cadmium or its oxide was used. Volatilization kinetics were measured on-line at the original place of the target material using a NaI detector. After the experiments, the distribution of the volatilized products along the

Table 1. Nuclear decay parameters of the relevant tin and indium^a isotopes (Browne and Firestone, 1986)

Reaction	Product isotope (decay mode; half-life)	Major γ-lines in keV (abundance)	Generated indium isotopes (decay mode; half-life)	Major y-lines in keV (abundance)
¹¹⁰ Cd (³ He, 4n)	¹⁰⁹ Sn (EC; 18.0 min) (30%)	649.9 (28%); 1099.3 (30%)	^{109m} In (IT; 1.34 min)	649.9 (93.7%)
11000	108n (EC: 411 h)	282 (07 09/)	1098 In (EC, 7.9% β^+ ; 4.2 h)	203.3 (73.5%); 426.2 (4.23%);
(³ He, 3n)	SII (EC, 4.11 II)	285 (97.076)	In (EC,0278 p + , 09.1 mm)	037.8 (3876)
¹⁰ Cd	¹¹¹ Sn (EC; 35.3 min)	762.0 (1.44%); 1153.2 (2.7%)	^{111m} In (IT; 7.7 min)	336.7 (87.0%); 171.3 (90.2%)
(пс, 21)			¹¹¹ gIn (IT: 2.81 d)	245.4 (94.0%):
¹¹² Cd (³ He, 2n)	¹¹³ Sn (EC; 115.1 d)	391.7 (64%)	^{113m} In (IT; 1.66 h)	391.7 (64.2%)

*The designation of the two isomers of ¹¹⁰In as ¹¹⁰mIn for the 69 min, 62% β^+ -emitting isomer and ¹¹⁰mIn for the 4.9 h, 100% EC isomer is due to a 62 keV higher level of the positron emitting isomer; see De Frenne and Jacobs, 1992; Bertschy *et al.*, 1995. inner surface of the quartz tube was measured γ -spectometrically using Ge(Li)-detectors.

For the separation of high activities of radiotin from larger amounts of ¹¹⁰Cd targets in a production scale experiment a vertical quartz tube system was designed according to a prototype developed recently for the thermochromatographic separation of ^{94m}Tc from ⁹⁴MoO₃ targets (Rösch *et al.*, 1994). It consisted of three quartz tubes of different diameters. After the separation the tubes were disconnected and analysed separately in order to determine the separation coefficients for all the three elements (Sn, In, Cd). The amount of cadmium in the separated radiotin fraction was determined via high resolution inductively coupled plasma source mass spectrometry (HR-ICP-MS).

$^{110}Sn \rightarrow ^{110m}In$ generator system

Elution generators have been described for the ¹¹⁰Sn \rightarrow ^{110m}In system (Szelecsényi *et al.*, 1991; Lundqvist et al., 1991) as well as for the ${}^{113}Sn \rightarrow {}^{113m}In$ system. In the present work, small glass columns of 4 mm inner diameter were filled with Kieselgel 40 (37-70 mesh; Merck); bed length 50 mm. The column was conditioned by washing with 10 ml of 0.02 M HCl. The radiotin fraction was evaporated to dryness and redissolved in 1 ml of 0.02 M HCl. This solution was then transferred to a small Kieselgel 40 column. The column was subsequently washed with another 5 ml of 0.02 M HCl. While radiotin remained at the top of the column, all the radioindium isotopes (mainly ¹¹¹In) as well as traces of cadmium were washed from the column. Elution was performed at low pressure at a rate of about 0.5 ml per min.

Recovery of the enriched target material, ¹¹⁰Cd, for cyclic use

In order to prepare new targets for further irradiations, the cadmium chloride is converted into the metal via electro-deposition. After dissolution of the condensed ¹¹⁰Cd chloride, the compound is converted into the sulphate. Electrolysis using this compound in an H₂SO₄-Na₂SO₄ electrolyte in a PTFE device (volume 10 ml) at 100 mA provides > 99% deposition of ¹¹⁰Cd on an aluminium cathode within a few hours. The amorphous cadmium metal can be pressed easily into metallic foils, which are ready for further irradiations.

Results and Discussion

Thick target yields of Sn-isotopes and isotopic composition of the radiotin

In the case of ^{nat}Cd targets weighing about 200 mg (foil diameter 13 mm, foil thickness 0.14 mm), the yield of ¹¹⁰Sn amounted to $\approx 9 \text{ MBq}/\mu\text{Ah}$. An extrapolation to 100% enrichment of ¹¹⁰Cd resulted in an expected yield of about 75 MBq/ μ Ah. No special efforts were made to increase the accuracy of these data. This result, however, was fairly well reproduced in the irradiation of the 91.5% enriched ¹¹⁰Cd target at 1 μ A, which yielded 81 MBq (2.2 mCi) ¹¹⁰Sn per μ Ah at EOB. This represents an amount of 20 \pm 5% of the total radioactivity of the isotopes at EOB. ¹⁰⁹Sn, ¹¹¹Sn and ¹¹³Sn represent 17 \pm 5, 61 \pm 10 and 0.4 \pm 0.1% of the total radioactivity at EOB, respectively. The percentage of ¹¹¹Sn could be reduced by choosing a somewhat higher energy range instead of the one used here (36–25 MeV). However, cross-section data of the corresponding nuclear reactions over this energy range of the ³He particles have not been measured in detail hitherto.

Thermochromatographic separation of chlorides of radiotin and radioindium from macroscopic cadmium

The results of the basic thermochromatographic experiments using a horizontal quartz tube are illustrated in Figs 1 and 2. They represent distributions of the corresponding chlorides as generated in a Cl₂ flow at $T_{max} = 900^{\circ}$ C and 20 min experimental time, starting from either metallic cadmium or CdO targets. According to the thermal properties of the most probable chlorides of these elements, one would expect adsorption zones as follows: CdCl₂:xH₂O (macroscopic), $T_{sub} = 568^{\circ}$ C; SnCl₄:xH₂O (no carrier added—n.c.a.), $T_{ads} < 80^{\circ}$ C; InCl₃ (n.c.a.), $T_{ads} < 400^{\circ}$ C.

This was true for the cadmium chloride fraction, which was detected (via γ -ray spectrometry using the co-produced ^{105,107}Cd isotopes) over a distance of 5-10 cm from the original place of the irradiated target material. This location corresponded to a temperature of $580 \pm 120^{\circ}$ C. The temperatures of adsorption of radiotin correspond to the values derived from the boiling temperature of SnCl₄. However, in order to avoid a further transport of the n.c.a. radiotin tetrachloride and to focus the adsorption zone, quartz wool was inserted at the end of the quartz tube at a temperature between about 50 and 20°C. Some differences in the adsorption behaviour of the chlorides were observed at the position between 13 and 19 cm of the quartz tube (corresponding to temperatures of $230 \pm 20^{\circ}$ C). In the case of CdO targets, about 15-25% of the radiotin was adsorbed at this zone. For Cd^o as target, however, this fraction amounted to about 1% only. Thus the separation of radiotin from the cadmium targets was quantitative.

For radioindium, which was formed directly during the irradiation as well as via the decay of the corresponding tin isotopes, two zones of adsorption were observed. The fraction at higher temperature of $230 \pm 20^{\circ}$ C can be easily attributed to InCl₃. Its amount is greater in the case of CdO targets than that in Cd^o targets. The major fraction, however, is adsorbed at a much lower temperature of about 50°C, or even less when no quartz wool was inserted into the quartz tube. This result is consistent with some

Fig. 1. Thermal adsorption of n.c.a. indium and tin chlorides as well as of macroscopic cadmium chlorides (all generated from Cd^{\circ} in a Cl₂ flow at $T_{max} = 900^{\circ}$ C and 20 min experimental time) on the inner surface of the horizontal quartz tube at different distances from the original target position. The temperature distribution within the quartz tube is also shown.

similar observations reported by Novgorodov *et al.* (1986), Rudstam and Grapengiesser (1973) and Westgaard *et al.* (1969), who also measured the thermochromatographic behaviour of indium chlorides. This fraction occurs in the case of n.c.a. radionuclidic species and is usually denoted as $InCl_x$. Schomäcker *et al.* (1988) even observed the coexistence of different chemical forms of n.c.a. radioindium chlorides. The species were dissolved in 0.05 M HCl and identified by electrophoresis.

No difference was observed for Cd° and CdO targets regarding this zone of sublimation. The volatilization kinetics, however, were different. Whereas chlorination of metallic cadmium occurred fast and quantitatively, that of CdO target was slower. This was measured on-line with a NaI-detector, mounted at the place of the target material. Using this technique, the decrease in the overall radioactivity (represented by the sum of all the tin and indium isotopes produced in the nuclear reactions on ^{nat}Cd) was detected as a function of experimental time. In these experiments, volatilization yields were determined for 15 min heating periods at various but constant temperatures.

In order to distinguish between the thermal release of radioindium and radiotin, the individual be-

haviour of radioindium was measured using cadmium targets after irradiation with protons. In these experiments almost all the radioactivity measured on-line by a NaI(TI) szintillation detector is represented by radioindium. The targets were placed into the electric oven and the temperature was raised slowly from 0 to 800°C for Cd° and a bit faster from 0 to 860°C for CdO. The time to reach the final temperature was 60 min in both cases. The results are summarized in Fig. 3 for two separate experiments on metallic cadmium and one experiment on CdO. For Cd[•] the thermal release starts at about $570 \pm 10^{\circ}$ C. Temperatures of about $680 \pm 10^{\circ}$ C seem to be sufficient to volatilize radioindium quantitatively in relatively short experimental periods. For CdO, the release of radioindium only becomes measurable at about $640 \pm 20^{\circ}$ C, and even at 750° C the kinetics of its thermal volatilization from CdO targets is slow. A similar volatilization kinetics was measured in the case of Cd° or CdO targets immediately after irradiation with ³He particles, when the dominating radioactivity was represented by the radiotin isotopes.

In general, this behaviour is not due to the individual characteristics of radioindium (or radiotin) chlorides, but reflects the delayed chlorination kinetics of metals (Cd°) and metal oxides (CdO) when using a pure chlorine gas flow in the thermochromatographic studies. Although the volatilization kinetics were thus comparable for n.c.a. radioindium and radiotin chlorides, the separation efficiency is finally guaranteed by the different temperatures of adsorption of these compounds in different parts of the thermochromatographic apparatus.

Routine production of $^{110}Sn \rightarrow ^{110m}In$

For routine production, the ¹¹⁰Cd target foil was irradiated in a 2π water-cooled target system (cf. Blessing et al., 1982) for 4 h at a beam current of 3 μ A. The on-target energy of the ³He particles was 36-25 MeV. For subsequent chemical processing, a vertical quartz apparatus was designed (Fig. 4). The irradiated target was transferred to the outer quartz tube (20 mm diameter, 200 mm long) with a small inlet for a low chlorine gas flow (15 ml/min). Thereafter, a twin quartz tube system was connected to it. This consisted of a middle tube for sublimation of the cadmium chloride and a small inner quartz tube, filled with quartz wool, to adsorb the volatilized ¹¹⁰SnCl₄. The whole device was inserted into an electric resistance oven having its maximum temperature of $800 \pm 10^{\circ}$ C at the target position. In experiments with $T_{\text{max}} = 700^{\circ}$ C and $T_{\text{max}} = 800^{\circ}$ C and heating periods of 10 and 20 min, respectively, the separation yields of radiotin and radioindium were investigated. The results are given in Table 2. Almost all of the ¹¹⁰Sn-chloride was transported relatively fast into the inner quartz tube at 800°C, and the process can be terminated after 20 min. The inner tube was then disconnected and radiotin dissolved from the quartz surface using 3–4 ml of warm 2 M HCl (90 ± 5% recovery). Subsequently, the separation yields of radiotin and radioindium were determined γ -spectrometrically and the cadmium content in this separated fraction was analysed using HR-ICP-MS.

The results on the thermal volatilization of radiotin, i.e. its quantitative separation from the cadmium chlorides and its adsorption on the inner quartz tube at temperatures close to room temperature, are consistent with those obtained in the model experiments using the horizontal quartz tube system. This was, however, not the case for the radioindium fraction.

The major adsorption of radioindium chlorides was expected to be within the inner quartz tube (see Fig. 1). However, in the vertical quartz tube system a surprisingly low amount of only about 10% of radioindium was co-adsorbed with the radiotin

Fig. 2. Thermal adsorption of n.c.a. indium and tin chlorides as well as of macroscopic cadmium chlorides (all generated from CdO in a Cl₂ flow at $T_{max} = 900^{\circ}$ C and 20 min experimental time) on the inner surface of the horizontal quartz tube at different distances from the original target position. The temperature distribution within the quartz tube is also shown.

Fig. 3. Volatilization kinetics of radioindium from Cd^o and CdO targets in a slow chlorine gas flow of 15 ml/min at $T = 0-800^{\circ}$ C (Cd^o) and $T = 0-860^{\circ}$ C (CdO). In all experiments, a time of 1 h was fixed to reach slowly the maximum temperature. Cd^o no. 1 and Cd^o no. 2 denote two independent experiments.

fraction; the greater part being adsorbed with the sublimated cadmium chloride. Presumably, the increased gas volume of the vertical system $(\approx 200 \text{ cm}^3)$ compared to that of the horizontal $(\approx 2 \text{ cm}^3)$ provides a greater reservoir of air, which may create a characteristic pattern, more similar to that obtained for CdO targets. Additional contributing factors may be the formation of radioindium oxochlorides as well as the 'trapping' of radioindium species within the much higher mass of cadmium chloride (about 325 mg used in the production experiment as against about 8 mg cadmium chloride in the model experiments). Yet another possible explanation may lie in the increased amount of the cadmium target material which may lead to higher indium impurities, sufficient to form carrier-added InCl₃ (see Westgaard et al., 1969). Altogether, this effect is useful for the separation, since it facilitates the radiotin-radioindium separation, which would otherwise have to be managed subsequently in the preparation of the generator system.

Elution generator $^{110}Sn \rightarrow ^{110m}In$

The generator was allowed to stand for a given period (in these experiments 40–60 min) to accumulate the daughter ^{110m}In and was then eluted using

2 ml of 0.02 M HCl. The elution of the radioindium fraction was almost quantitative. Considering the half-lives of the two nuclides concerned, the relative maximum ^{110m}In activities were accumulated at $t_{\rm max} = 2.94$ h after every generator elution as derived from equation (1). For routine application the generator may be eluted in intervals of 2 h, thus reaching almost 90% of the corresponding maximum theoretical value, see equation (1):

$$t_{\max}(^{110m}\text{In}) = \frac{1}{\lambda(^{110m}\text{In}) - \lambda(^{110}\text{Sn})} \ln \frac{\lambda(^{110m}\text{In})}{\lambda(^{110}\text{Sn})} \quad (1)$$

Due to the co-formation of ¹¹¹Sn in the irradiation of ¹¹⁰Cd with ³He particles, ¹¹¹gIn was also detected in the eluted fraction over the first few hours after EOB. However, because of the lower activity and shorter half-life of ¹¹¹Sn, the ¹¹¹gIn contamination in ^{110m}In decreased significantly. The results are shown in Fig. 5, representing the percentage ¹¹¹gIn impurity in ^{110m}In for subsequent generator elutions. This radionuclidic impurity decreased continuously from about 0.76% at 1 h after EOB to about 0.008% at about 7 h after EOB, thereby reaching almost the lowest limit of detection.

Additionally, the amount of ¹¹⁰Sn co-eluted with 110m In was analysed γ -spectrometrically. On average a

Fig. 4. Apparatus for separation of ¹¹⁰Sn from irradiated ¹¹⁰Cd. Indication of zones of ¹¹⁰Sn adsorption and ¹¹⁰CdCl₂ condensation. (1) Inner quartz tube for the adsorption of ¹¹⁰Sn; (2) quartz tube for the condensation of ¹¹⁰CdCl₂ and the co-adsorption of radioindium chlorides; (3) outer tube (20×200 mm).

value of less than 0.003% was measured for the different elutions. This was almost the lowest detection limit. There was no ¹¹⁰Sn-breakthrough for the prepared column for at least up to 500 ml of elution volume. A γ -ray spectrometric analysis of the eluted indium fraction demonstrated the high isotopic purity of the positron-emitting indium isotope ^{110m}In. All the lines detected were due to this isotope.

The amount of inactive cadmium in the eluted indium fractions was determined by HR-ICP-MS. On

average, about < 0.1 ng of cadmium was found. This value, however, was already close to the detection limit of this method. It would correspond to a separation coefficient of $> 2 \times 10^{70}$ % with respect to the original mass of the ¹¹⁰Cd target used for the irradiation.

Recovery of the enriched target material, ¹¹⁰Cd, for cvclic use

The recovery of the enriched and expensive target material is an important aspect of the routine

Table 2. Separation	yields achieved	using the v	vertical quart	z apparatus	after 10 or
0 min separation p	eriods at T_{max} o	f 700 and 80	0°C and 15	ml/min chlori	ine gas flow

	$T_{\max}(^{\circ}\mathrm{C})$	t(min)	Distribution of chlorides in % in parts of the thermochromatographic device		
Nuclide			Inner tube	Middle + outer tube	
¹¹⁰ Sn	700 + 10	10	57 ± 5	43 ± 5	
¹¹¹ In	700 ± 10	10	2 ± 1	98 ± 1	
¹¹⁰ Sn	700 ± 10	20	71 ± 5	29 ± 5	
'''In	700 ± 10	20	5 ± 1	95 ± 1	
¹¹⁰ Sn	800 + 10	10	88 ± 3	12 ± 3	
¹¹¹ In	800 + 10	10	4 + 2	96 ± 2	
¹¹⁰ Sn	800 + 10	20	99 ± 1	1 ± 1	
l'In	800 ± 10	20	10 ± 1	90 ± 1	
^{105,107} Cd	800 + 10	20	< 0.01*	> 99.99	

^aThe value corresponds to $< 20 \ \mu g$ Cd detected in the dissolved radiotin fraction for a 200 mg Cd target.

Fig. 5. Amount of ^{111g}In co-eluted with ^{110m}In at different times after end of bombardment (expressed as percentage of ^{110m}In).

production of the ¹¹⁰Sn \rightarrow ^{110m}In generator, in particular because of the cost of highly enriched ¹¹⁰Cd. Fortunately, the thermochromatographic separation process provides a well-localized ¹¹⁰Cd chloride fraction, allowing an overall fractional recovery of the ¹¹⁰Cd mass of about 95%.

Conclusion

The ${}^{110}Cd({}^{3}He, 3n){}^{110}Sn \rightarrow {}^{110m}In$ -process on highly enriched ¹¹⁰Cd is suitable for the production of the positron emitter ^{110m}In. Detailed studies on the cross sections of this process in the 36-25 MeV ³He-energy range are not available. Practical experiments using 91.5% isotopically enriched ¹¹⁰Cd as target material, however, lead to a high ¹¹⁰Sn yield of 2.2 mCi (81 MBq) per μ Ah and high radionuclidic purity. Chemical separation mainly consists of an initial thermochromatographic step, providing almost 100% separation of ¹¹⁰Sn within 20 min. The ¹¹⁰SnCl₄ fraction is used to form a $^{110}Sn \rightarrow ^{110m}In$ elution generator. ^{111g}In is the only noticeable isotopic impurity, decreasing from about 0.8% (about 1 h after EOB) to < 0.01% (about 7 h after EOB). Batch yields of > 20 mCi ¹¹⁰Sn allow to run a clinical $^{110}Sn \rightarrow ^{110m}In$ generator for the whole day. The effective ($\approx 95\%$) recovery of the enriched ¹¹⁰Cd starts with the dissolution of the sublimated ¹¹⁰CdCl₂ deposited within the middle quartz tube, followed by its electrolytic reduction to Cd° for cyclic usage.

Finally, it should be noted that an identical procedure can be applied to produce the analogous $^{113}\text{Sn} \rightarrow ^{113\text{m}}\text{In generator via the } ^{113}\text{Cd}({}^{3}\text{He},3n)^{113}\text{Sn} \rightarrow ^{113\text{m}}\text{In process on highly enriched } ^{113}\text{Cd or even } {}^{\text{nst}}\text{Cd}.$

Acknowledgements—We thank Professor Dr G. Stöcklin for his active support of this research project. Our thanks are also due to the crew of the Compact Cyclotron CV 28 for irradiations and the Zentralabteilung für Chemische Analysen for the HR-ICP-MS analysis. This work was partly supported by the Deutsche Forschungsgemeinschaft by grant Ro 985/2-1.

References

- Bertschy M., Drissi S., Garrett P. E., Jolie J., Kern J., Mannanal S. J., Vorlet J. P., Warr N. and Suhonen J. (1995) Study of ¹¹⁰Cd from the ¹¹⁰In^m β decay. *Phys. Rev.* C51, 103.
- Blessing G., Weinreich R., Qaim S. M. and Stöcklin G. (1982) Production of ⁷⁵Br and ⁷⁷Br via the ⁷⁵As(³He, 3n)⁷⁵Br and ⁷⁵As(α ,2n)⁷⁷Br reactions using Cu₃As-alloy as a high-current target material. *Int. J. Appl. Radiat. Isot.* 33, 333.
- Browne E. and Firestone R. B. (1986) Table of Radioactive Isotopes (Shirley V. S., Ed.). Wiley, New York.
- De Frenne D. and Jacobs E. (1992) Nuclear data sheets update for A = 100. Nucl. Data Sheets 67, 809.
- Langen K. J., Coenen H. H., Roosen N., Kling P., Muzik O., Herzog H., Kuwert T., Stöcklin G. and Feinendegen L. E. (1990) SPECT studies of brain tumors with L-3-[¹²³]iodo- α -methyl tyrosine: comparison with PET, ¹²⁴IMT and first clinical results. J. Nucl. Med. 31, 281.
- Lundqvist H., Scott-Robson S., Einarsson L. and Malmborg P. (1991) 110 Sn \rightarrow 110 In—A new generator system for positron emission tomography. *Appl. Radiat. Isot.* 42, 447.
- Lundqvist H., Tolmachev V., Bruskin A., Einarsson L. and Malmborg P. (1995) Rapid separation of ¹¹⁰In from enriched Cd targets by thermal diffusion. *Appl. Radiat*. *Isot.* 46, 859.
- Nickles R. J., Nunn A. D., Stone C. K. and Christian B. T. (1993) Technetium-94m-teberoxime: synthesis, dosimetry and initial PET imaging studies. J. Nucl. Med. 34, 1058.
- Novgorodov A. F., Beyer G.-J., Selinzki A., Kolachkovski A., Rösch F. and Schomäcker K. (1986) A simple method for the separation of ¹¹¹In from silver by thermochromatography. *Appl. Radiat. Isot.* 37, 445.
- Rösch F., Novgorodov A. F. and Qaim S. M. (1994) Thermochromatographic separation of ^{94m}Tc from enriched molybdenum targets and its large scale production for nuclear medical application. *Radiochim. Acta* 64, 113.
- Rudstam G. and Grapengiesser B. (1973) Use of thermochromatography for rapid chemical separations. Part II. Determination of deposition temperatures. *Radiochim. Acta* 20, 97.
- Schomäcker K., Schwarzbach R., Beyer G.-J. and Novgorodov A. F. (1988) A further simplified method for the separation of ¹¹¹In from silver targets by thermochromatography. Appl. Radiat. Isot. 39, 483.
- Szelecsényi F., Kovács Z., Tárkányi F. and Tóth Gy. (1991) Production of ¹¹⁰In for PET investigation via ¹¹⁰Cd(³He,3n)¹¹⁰Sn→¹¹⁰In reaction with low energy cyclotron. J. Label. Compd Radiopharm. **30**, 98.
- Westgaard L., Rudstam G. and Jonsson O. C. (1969) Thermochromatographic separation of chemical compounds. J. Inorg. Nucl. Chem. 31, 3747.
- Williamson C. F., Boujot J. P. and Picard J. (1966) Tables of range and stopping power of chemical elements for charged particles of energy 0.5-500 MeV. Report CEA-R 3042.
- Zweit J., Luthra S. K., Brady F., Carnochan P., Ott R. J. and Jones T. (1995) Iodine-120, a new positron emitting radionuclide for PET radiopharmaceuticals. J. Label. Compd Radiopharm. 37, 823.