The influence of low-frequency, high amplitude vibrations on UCN

C. Siemensen^a, C. Plonka-Spehr^a, D. Brose^a, N. Schneider^a

^aInstitute for Nuclear Chemistry, University of Mainz, Germany

Abstract

We investigated the influence of acoustical vibrations at high amplitudes and low frequencies (as generated e.g. by vacuum pumps) on UCN reflections in a beam experiment. It turned out that this influence is not negleglibe for high-sensitivity experiments as e.g. test of the neutron charge. The loss probability for UCN per bounce is on a level of about 10 %.

So far, the influence of vibrations has been investigated with respect to UCN-storage experiments [1], at a large number of reflections of the neutrons. We recently determined the phenomena in a beam experiment. Figure 1 shows the setup which was installed in November 2011 at the ILL. The neutrons enter the vacuum chamber via an entrance guide (1), followed by a grating (2), hit a cylindrical, nickel-coated mirror (3) and are projected on two stacked detectors (5), covered by an equivalent grating as (2). As the neutrons pass through the apparatus, some of them bounce on a horizontal mirror, made of Fomblin-oil (Perfluoropolyether, PFPE). The Fomblin is filled into a basin (4). By shifting the detector, one obtains modulation curves in the UCN counting rate.

Figure 1: External exitation of vibrations with a speaker.

First, we investigated the dominating vibrations at our experimental place with an accelerometer. The main vibration has a frequency of about 73 Hz and is caused by the vacuum pumps near the experiment. We now applied acoustical vibrations of 73 Hz with a speaker mounted below the vacuum chamber (see Figure 1). We applied vibrations with amplitudes on the horizontal mirror of about 1×10^{-3} m, which is a factor of 100 larger than the vibrations produced by the pumps. In figure 2, the result of such a measurement is presented for the upper detector A. The modulation of detector A is decreased by a factor of 0.88(1), compared to the case without vibrations. The modulation of detector B is decreased by a factor of 0.93(1). Monte-Carlo simulations revealed that UCN hitting the upper detector A bounced 1.18(47) times on the horizontal mirror, and those hitting the lower detector B bounced 1.49(89) times. Thus, our experimental data could be explained by a loss probability per bounce of $\approx 10\%$ for detector A and $\approx 5\%$ for detector B.

Figure 2: Measured influence of vibrations on the modulation.

In 1975, a mathematical framework was developped by V. K. Ignatovich, based on first order pertubation theory [2]. It describes the influence of vibrations on the loss probability of UCN. Within this framework, we deduced an equation describing the influence of our low-frequency vibrations on UCN:

$$\mu(\vec{k}_0) \propto \frac{k_{0\perp}^3}{u_0} (a\omega_a)^2, \qquad (1)$$

where u_0 is the UCN potential of the reflecting surface, $k_{0\perp}$ is the wavenumber of the incoming neutron, perpendicular to the surface, *a* and ω_a is the the amplitude and the frequency of the vibrating surface. Thus, UCN must be scattered at extreme high harmonics of order 1×10^5 on the liquid PFPE surface with amplitudes of about 2×10^{-8} m to reach the above loss rates. Detector B is below detector A. Neutrons hitting detector A have more kinetic energy and therefore a higher $k_{0\perp}$. Thus, Eq. (1) explains the difference between the loss rates of A and B:

Within the simulation, the fraction $k_{0\perp}^{\rm A}/k_{0\perp}^{\rm B}$ was calculated to ≈ 1.23 . Assuming that $\mu^{\rm A}(\vec{k}_0) \approx 10\%$, one obtains $\mu^{\rm B}(\vec{k}_0) \approx 5\%$, which is consistent with our measurement.

Email address: c.siemensen@uni-mainz.de (C. Siemensen)

^[1] L. Bondarenko et al., *Cooling and heating of ultracold neutrons during storage*, Physics of Atomic Nuclei 11 (2002) 65

^[2] V. K. Ignatovich, *The Influence of Low-Frequency Oscillations on the Storage Time of Ultracold Neutrons*, phys. stat. sol. (b) 477 (1975) 71