Quantitative determination of ⁶⁸Ge breakthrough of ⁶⁸Ge/⁶⁸Ga generators via TLC

E. Eppard, N. L. Loktionova, F. Rösch

Institute of Nuclear Chemistry, Johannes Gutenberg-University, Mainz

⁶⁸Ge/⁶⁸Ga generators contain initial activities of 20, 30 or more mCi of ⁶⁸Ge, respectively ⁶⁸Ga. In the first period of generator usage the breakthrough levels of ⁶⁸Ge are between 10^{-4} % and 10^{-2} %. This is a critical parameter in the context of clinical use of ⁶⁸Ga-radiopharmaceuticals. Due to the lack of sufficiently distinctive radiation, ⁶⁸Ge is "invisible" within the excess of ⁶⁸Ga activity. Therefore, ⁶⁸Ga solutions (e.g. eluate, product) usually have to be kept in storage for several hours or even days before a detection of ⁶⁸Ge is possible. This work aims for an easy and instant analysis of ⁶⁸Ge, i.e. prior to the release of ⁶⁸Ga-radiopharmaceuticals. The concept was used to discriminate between ⁶⁸Ge and ⁶⁸Ga and even ⁶⁸Galabeled peptides (e.g. ⁶⁸Ga-DOTATOC) on a TLC plate in order to determine the ⁶⁸Ge content in ⁶⁸Ga-pharmaceutical preparations within one hour post elution.

A ⁶⁸Ge/⁶⁸Ga Obninsk generator was used with a ⁶⁸Ga yield of 100 MBq and a ⁶⁸Ge breakthrough of 85 kBq. It was eluted with 5 mL of 0.1M HCl through a cation exchange resin (Biorad: AG 50W-X8, -400 mesh) to adsorb ⁶⁸Ga from the eluate. DOTATOC was labeled according to standard protocol. For the separation of ⁶⁸Ge from ⁶⁸Ga and ⁶⁸Ga-DOTATOC on TLC plates, various solvent mixtures and different stationary phases were investigated. The distribution of ⁶⁸Ge, ⁶⁸Ga and ⁶⁸Ga-DOTATOC was detected at instant imagers. The radio-activity detection on the TLC plate was performed at various time-points after the development of the TLC.

Using 220 mg of AG 50 W-X8 or a combination with additionally 120 mg of SCX provided a quantitative separation of ⁶⁸Ge from ⁶⁸Ga. Accordingly, radioactivity in the processed eluate started to increase immediately, indicating the radioactivity represented by ⁶⁸Ge. The count rate increased according to the secular characteristics of the ⁶⁸Ge/⁶⁸Ga radionuclide equilibrium. ⁶⁸Ge radioactivity was easily quantified within one hour, just letting ⁶⁸Ga grow for one (or a half) half-life of 67.7 min in the purified ⁶⁸Ge-fraction. Four mobile phases in accordance to Mirzadeh and Lambrecht [1] and the generally used 0.1M citric buffer were analyzed with regard to R_f-values of ⁶⁸Ge, ⁶⁸Ga and ⁶⁸Ga-DOTATOC. Four potential TLC-systems were identified, in which ⁶⁸Ge, ⁶⁸Ga and ⁶⁸Ga-DOTATOC show sufficiently different R_f values (Table.1).

While the radioactivity of ⁶⁸Ga and ⁶⁸Ga-DOTATOC spots decreased according to the ⁶⁸Ga decay, the ⁶⁸Ge spot showed an increasing count rate. Using the count rates and the absolute radioactivity for calibration of the imager, the breakthrough of ⁶⁸Ge can be quantified

momentarily, i.e. already in the first hour after generator elution

Table 1: Investigated mobile phases for TLC separation of ⁶⁸Ga, ⁶⁸Ga, ⁶⁸Ga-DOTA-TOC and resulting R_f-values.

Mobile phase	R _f (Ga)	R _f (Ge)	R _f Ga- DOTATOC
0.1 M citric buffer	1	1	0.1 – 0.2
5% NaCl : MeOH : 25% NH ₃ (3:1:1)	0	0.4 - 0.6	0.1 – 0.2
2 M HCl : acetone (1:1)	1	0	0.4
0.01 M NaC ₄ H ₅ O ₆ : MeOH (3:1)	0	0.4	0.1 – 0.2
Cyclohexanone : 2 M HCl (20:1)	0.4 - 0.5	0.1 - 0.2	0

⁶⁸Ge was quantitatively separated from ⁶⁸Ga using cation exchange columns AG 50 W-X8 and SCX, either separately or in combination. ⁶⁸Ge can be quantified directly within one hour after initial elution of the generator.

We successfully developed an instant method of measuring ⁶⁸Ge activity levels in a ⁶⁸Ge/⁶⁸Ga generator eluate and even in ⁶⁸Ga-radiopharmaceuticals without the need of γ -spectroscopy. All investigated TLC-systems are applicable for sufficient separation of ⁶⁸Ge from ⁶⁸Ga or ⁶⁸Ga-DOTA-TOC to quantify the amount of ⁶⁸Ge in an eluate within the first hour post elution.⁶⁸Ge levels of up to 10⁻⁴ are detectable. Thus, a new and fast method of measuring ⁶⁸Ge radioactivity levels in ⁶⁸Ge/⁶⁸Ga generator eluates without using γ -spectroscopy has been developed. With minor modifications, the same approach can be used to quantify the content of ⁶⁸Ge in ⁶⁸Ga-radiopharmaceutical preparations.

References

[1] Mirzadeh, S.; Lambrecht, R. M.; J. Radioanal Nucl. Chem. **1996**, 202, 7-102