TRIĜA Vienna Austria

RROG 30TH ANNUAL MEETING 14th to 17th May 2019 Mainz

© 2006 Europa Technologies Image © 2006 DigitalGlobe

History of the TRIGA Mark II Reactor Vienna

- 250 kW TRIGA Mark II reactor at the Atominstitut in Vienna critical since March 7th, 1962.
- Initially started up with 66 TRIGA fuel elements type 102 (Al-cladding, LEU).
- Following years elements of type 104 (SST-cladding, LEU) were purchased.
- In 1972 fuel elements of type 110 (SST-cladding, 70% enriched) where acquired and placed in the core.
- The last 8 fresh fuel elements were acquired from the TRIGA reactor in Heidelberg.
- Core conversion in November 2012.
- Major Refurbishment from 2015 to 2017.

Fuel Inventory as per 01.01.2019

Date	Number of FE	Туре	Remarks
05.12.61	+ 66	Al, 20%	2 instrumented fuel elements
07.07.62	- 2 (retour)	Al, 20%	
19.02.65	+ 2	Al, 20%	
02.08.66	+ 3	SST, 20%	
21.10.68	+ 3	SST, 20%	1 instrumented fuel element 5284 TCE
19.10.72	+ 9	SST, 70%	
02.12.80	+1	SST, 20%	1 instrumented fuel element 8257 TCE
09.08.82	+ 3	SST, 20%	
15.02.83	+ 2	SST, 20%	2 instrumented fuel elements 8730, 8731 TCE
21.08.87	+ 3	SST, 20%	
19.10.88	+ 3	SST, 20%	
01.02.90	+ 3 (+ 2)	SST, 20%	
14.12.00	+ 8	SST, 20%	
30.10.2012	+ 77	SST, 20%	75 FE from Musashi and 2 FE from
07.11.2012	- 91 (retour)	SST 20% and 70%, Al 20%	Cornell 3 instrumented fuel elements
total:	90		

ATOMINSTITUT

Main technical Data of the TRIGA Mark-II Reactor Vienna (1)

1. Reactor

Fuel-moderator material

Uranium enrichment Active core volume

Core loading Amount of U-235 per fuel element Reflector Reactor control 8.5 wt% uranium 89.9 wt% zirconium 1.6 wt% hydrogen 19.8 % and 70% uranium-235 49.5 cm diameter 38.1 cm high 80 fuel elements, approx. 38 grams graphite 2 motor-driven control rods 1 pneumatic control rod material prompt negative temperature coefficient of the fuel

Main technical Data of the TRIGA Mark-II Reactor Vienna (2)

2. Steady state reactor operation mode

Maximum thermal power Maximum thermal neutron flux density Maximum fuel temperature Maximum primary water temperature

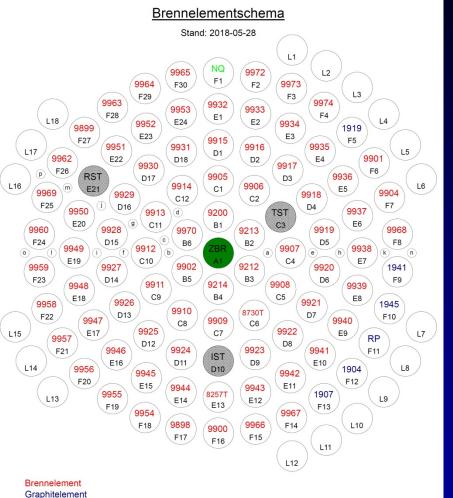
3. Transient reactor operation mode

Peak, power thermal Integrated energy production Total duration of power pulse Minimum reactor period Maximum fuel temperature 250 kW 1x10¹³ cm⁻²s⁻¹ 220 °C 35 °C

250 MW 12 MWs 40 ms 10 ms 360 °C

Specification of Fuel Elements

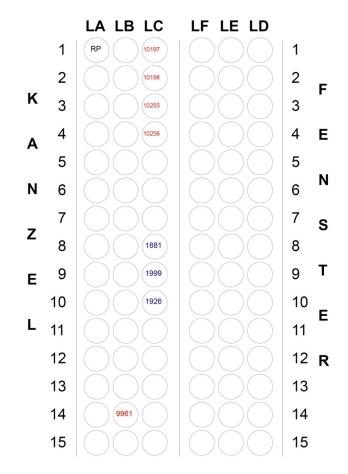
	Type 102	Type 104	Type 110 (FLIP)
Fuel moderator material			
H/Zr-ratio	1.0	1.65	1.65
Uranium content [wt%] 8.5		8.5	8.5
Enrichment [%]	20	20	70
Diameter [mm]	35.8	36.3	36.3
Length [cm]	35.6	38.1	38.1
Poisoning	SmO ₃ -disks	none	Er with 1.6 w/o
Graphite reflector			
Porosity	20	20	20
Diameter [mm]	35.8	36.3	36.3
Length [cm]	10.2	8.73	8.81
Fuel cladding			
Material	Al-1100 F	304 SS	304 SS
Wall thickness [mm]	0.76	0.51	0.51
Overall dimensions			
Outer diameter [mm]	37.5	37.5	37.5
Length [cm]	72.06	72.06	72.06



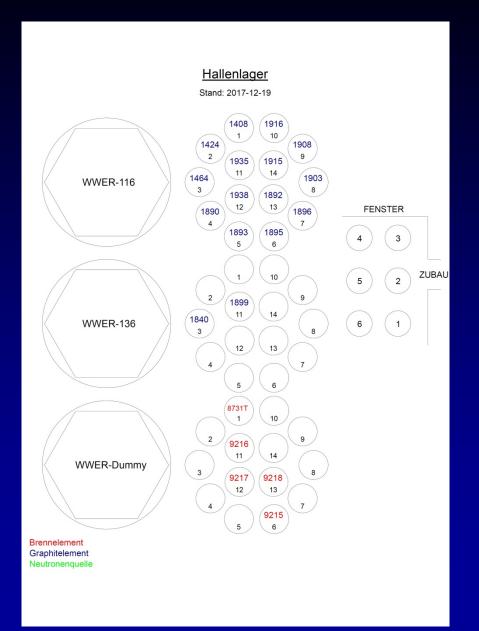
Fuel Element Situation as per 01.01.2019

Location	Cladding		Cladding Enrichment	
	Al	SST		
core	-	80	80 FE 20%	2 instr. FE
storage pits	-	5	5 FE 20%	
fresh fuel storage	-	5	5 FE 20%	1 instr. FE
spent fuel storage	-	-		
hot storage facility	1/3	-	1/3 part FE 20%	cut into 3 pieces
	1/3	90		
	core storage pits fresh fuel storage spent fuel storage hot storage	Alcorestorage pits-fresh fuel storagespent fuel storage-hot storage1/3facility	AlSSTcore-80storage pits-5fresh fuel storage-5spent fuel storagehot storage1/3-facility	AlSSTcore-8080 FE 20%storage pits-55 FE 20%fresh fuel storage-55 FE 20%spent fuel storagehot storage1/3-1/3 part FE 20%

Total uranium weight: 17 287.19 g U-235 weight: 3 436.33 g



Neutronenquelle


Lagertaschen

Stand: 2018-05-28

Brennelement Graphitelement Neutronenquelle

Staff

- Central facility "Reactor"
 - 1 reactor manager
 - 1 deputy reactor manager
 - 2 reactor operators (new operator since August 2018, the next on will come August 2019)
- Central facility "Nuclear Safety"
 - 1 nuclear security officer
 - 1 deputy security officer
- Central facility "Radiation Protection"
 - 1 radiation protection officer
 - 1 deputy radiation protection officer
 - 1 technician

Ongoing Activities

- Reactor was 2018 under "normal operation".
- The **new radiation protection** system works perfect.
- The new beam tube experiment "White beam" finished in march 2017 is utilized very well for neutron optics experiments and irradiation tests by the IAEA.
- Inspection of the government in June 2018, IRRS mission, by IAEA experts.
- 5 weeks practical courses for the TU Wien, 4 weeks for the IAEA safeguard trainings course, 3 weeks for the IAEA EERRI course and 1 week for the Belarus State University.
- 1 week scientific visitors from Bangladesh (Triga DHAKA).

TRIGA MARK II Atominstitut Vienna

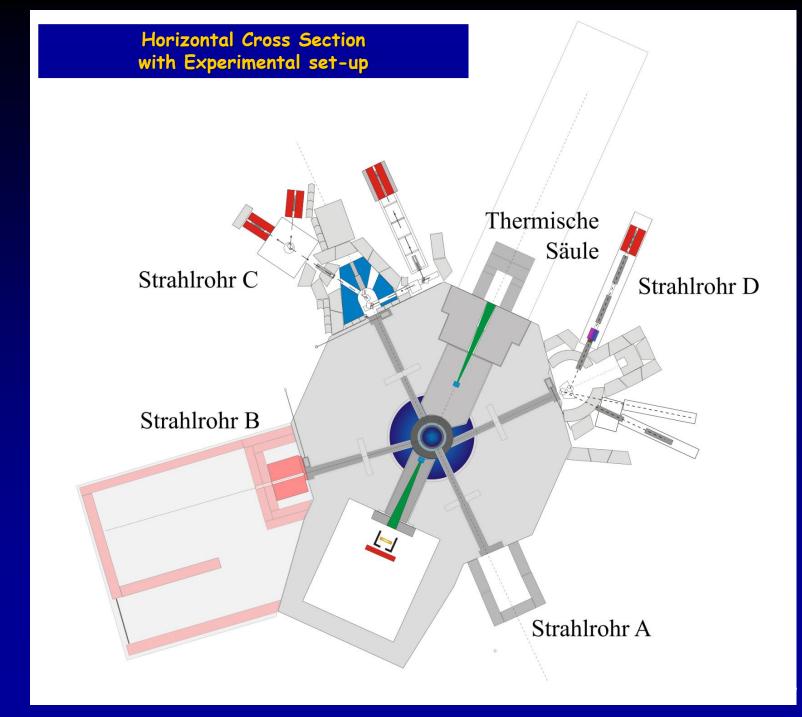
1962

2019

TRIGA Mark II Research Fields

Thermal white beam: general purpose neutron facility

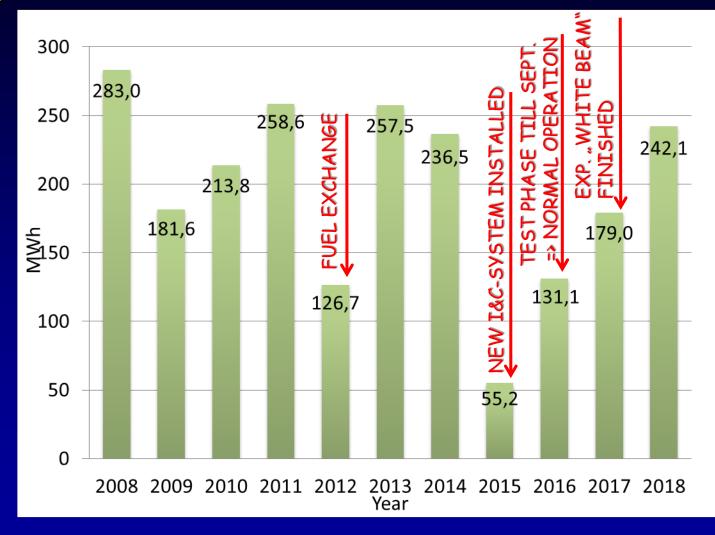
Neutron interferometry, material < science


Reactor physics, neutron activation in tubes, CIT

Fully automized ultra fast NAA (planned)

Neutron spin manipulations, uncertainty relations

Neutron radiography



Operational History for 2018

January	2018	12.5	MWh
February	2018	24.7	MWh
March	2018	26.7	MWh
April	2018	21.4	MWh
May	2018	20.8	MWh
June	2018	18.4	MWh
July	2018	27.4	MWh
August	2018	3.7	MWh
September	2018	25.3	MWh
October	2018	25.1	MWh
November	2018	17.5	MWh
December	2018	18.6	MWh
Total		242.1	MWh
Reactor in ope	ration	187	days

Operation Performance 2008 to 2018

Performance Indicators for 2018 (1)

Availa	ability	Unscheduled Shutdowns		
A1	A2	B1	B2	
[%]	[%]	[1]	[1]	
98.94	51.23	2	0	

A1 = Number of days at power Number of days at power + Number of days unscheduled shutdown

A2 = $\frac{\text{Number of days at power}}{365} \times 100$

B1: Number of unplanned reactor shutdowns initiated by reactor protection system or manual intervention

B2: Number of unplanned reactor shutdowns initiated by experiments under irradiation

Performance Indicators for 2018 (2)

Radiation Dose Exposure								
D1a	D1a D1b D1c D2a D2b D2c							
[mSv]	[Persons]	[mSv/Person]	[mSv]	[Persons]	[mSv/Person]			
4.28	5	0.86	18.19	20	0.91			

D1a: Collective radiation dose to reactor operation staff

D1b: Number of reactor operation staff

D1c: D1a / D1b

D2a: Collective radiation dose to all staff from reactor related work

D2b: Total number of staff involved

D2c: D2a / D2b

Performance Indicators for 2018 (3)

Radioactivity released						
E1 E2 E3 E4						
[TBq]	[TBq]	[MBq]	[MBq]			
0.81	n.a.	5.88	< 0.037*			

* below the limit of detection

- E1: Rare gas released to atmosphere (Ar-41)
- E2: Tritium released to atmosphere
- E3: Tritiated water discharged
- E4: Iodine released to atmosphere

Performance Indicators Summary (1)

Year	Availa	ability	Unscheduled Shutdowns		
	A1	A2	B1	B2	
	[%]	[%]	[1]	[1]	
2013	92.21	58.36	18	0	
2014	90.00	56.71	23	0	
2015	89.83	14.52	6	0	
2016	89.26	36.43	16	0	
2017	93.06	44.11	12	0	
2018	98.94	51.23	2	0	

Performance Indicators Summary (2)

Year	Radiation Dose Exposure					F	Radioactiv	vity release	ed	
	D1a	D1b	D1c	D2a	D2b	D2c	E1	E2	E3	E4
	[mSv]	[Persons]	[mSv/Person]	[mSv]	[Persons]	[mSv/Person]	[TBq]	[TBq]	[MBq]	[MBq]
2013	4.28	4	1.07	18.53	18	1.03	0.66	n.a.	24.00	< 0.037
2014	4.22	4	1.06	21.51	22	0.98	0.46	n.a.	11.90	< 0.037
2015	3.77	4	0.94	19.74	22	0.90	0.13	n.a.	4.16	< 0.037
2016	3.89	4	0.97	19.39	21	0.92	0.42	n.a.	25.12	< 0.037
2017	3.88	4	0.97	19.75	20	0.99	0.62	n.a.	4.26	< 0.037
2018	4.28	5	0.86	18.19	20	0.91	0.81	n.a.	5.88	< 0.037

Ageing management and decommissioning of research reactor (1)

- Periodic safety assessment performed in 2014.
- Description of the actual condition was based on the
 - Annually § 17 meeting with the regulatory body
 - Evaluation of the periodic maintenance schedule and in-service inspection.
 - Every relevant system and part of the research reactor was presented, any work performed on the system within the last 10 years was described and a conclusion to the current status of the system was drawn.
- Analysis of the operational experience is based on the evaluation of the last 53 years of records in the reactor log book:
 - All notes in the reactor log book were entered into a database and assigned to the categories defined in the IAEA safety standards.

Ageing management and decommissioning of research reactor (2)

- => major refurbishment starting in 2015, replacement of all reactor relevant parts.
- Service contracts with all companies involved in the refurbishment. Every year all major components are inspected and if necessary repaired or replaced. In addition the neutron channels of the I&C system are every 3 years calibrated by the company dataPartner.
- Maintenance in in-service inspection plan based on the operation experience of the last 57 years.
- Reactor operators collect every relevant values during operation two times per day. => trend analysis

Ageing management and decommissioning of research reactor (3)

- ATIB 1017 Entsorgungskonzept des Atominstituts, describes all relevant topics related to the decommissioning of the facility, the radiochemistry labs and all reactor relevant components. The expected waste in mass, volume and activity is described. This data is based on simulations and on the experience gathered during the decommissioning of the reactor in Seibersdorf.
- => the related costs based on the waste and the man power requirements add up to a total sum of 8 million €.

