# Country presentation SLOVENIA

Research Reactor Operating Group 2019 14 – 17 May, Mainz, Germany

Anže Jazbec, Jožef Stefan Institute, Ljubljana



## JSI TRIGA Mark II Reactor

- Operator: Jožef Stefan Institute
- 1st criticality: 1966
- Power:
  - Steady state: 250 kW
  - Pulse mode: 1 GW
- Staff:
  - Head of centre
  - Head of reactor
  - 4 operators
  - 2 administrative workers







#### **Operating Performance Indicators 2018**

|                | 2017      | 2018      |
|----------------|-----------|-----------|
| Operation days | 151       | 143       |
| EFPH           | 438       | 464       |
| Total energy   | 109.5 MWh | 116 MWh   |
| Pulse mode     | 46 pulses | 27 pulses |
| Core changes   | 7         | 10        |

Energy released during reactor operation in last 10 years





#### **Operating Performance Indicators 2018**

|                                                                                                                                                                              | 2018                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| AVALIABILITY<br>A1 - Number of hours of scheduled<br>operation) / (Number of hours of<br>scheduled operation + number of hours<br>of unscheduled shutdown)                   | 1; since we operate on demand<br>0.34; if we are available 8h/working day |
| A2 - Annual operating time in hours                                                                                                                                          | 682                                                                       |
| UNSCHEDULED SHUTDOWNS<br>B1 - Number of unscheduled shutdowns<br>initiated by the reactor protection system<br>or by the operator due to external events<br>or other reasons | 3 – Due to operator mistake                                               |
| B2 - Number of unscheduled shutdowns initiated by experiments or by the operator due to experiment                                                                           | 0                                                                         |
|                                                                                                                                                                              |                                                                           |



## **Radiation** Doses

|                                                                                | 2017 | 2018 |
|--------------------------------------------------------------------------------|------|------|
| D1a - Collective radiation dose to reactor operating staff (mSv)               | 0.53 | 1.08 |
| D1b - Number of reactor operating staff                                        | 4    | 4    |
| D2a - Collective radiation dose to all staff at the reactor related work (mSv) | 1.15 | 2.31 |
| D2b - Number of staff involved                                                 | 26   | 32   |
| D3a - Maximum individual dose for operating staff member (mSv)                 | 0.16 | 0.41 |
| D3b - Maximum individual dose for any person at the reactor (mSv)              | 0.20 | 0.41 |



## Radioactivity Released Annually

|                                                                 | 2017  | 2018  |
|-----------------------------------------------------------------|-------|-------|
| <b>E1</b> - Noble gas released to the atmosphere (GBq) Ar-41    | 1200  | 1260  |
| E2 - Iodine released to the atmosphere (MBq)                    | 0     | 0     |
| E3 - Liquid effluents released from reactor (m3)                | 15    | 20    |
| <b>E3* -</b> Liquid effluents released from laboratories (m3)   | 258   | 268   |
| <b>E3** -</b> Liquid effluents released from laboratories (MBq) | < MDA | < MDA |
| E4 - Solid radioactive waste generated (m3)                     | 0.20  | 0.20  |



#### **Operating Performance Indicators 2018**

|                                         | 2018                                                                                                                                                                                                 |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Emergency preparedness                  | <ul> <li>1 exercise for operating staff –<br/>contamination in air</li> </ul>                                                                                                                        |
| Unplanned maintenance of safety systems | <ul> <li>Announcement system failure</li> <li>failed probe on contamination monitor</li> <li>fingerprint sensor failure</li> <li>pneumatic transfer system failure - vacuum pump replaced</li> </ul> |
| Work permits issued                     | 7 (+4 in Hot cell facility)                                                                                                                                                                          |
| Regulatory inspections                  | 1                                                                                                                                                                                                    |
| QA audits                               | 1                                                                                                                                                                                                    |



## 2018 Highlights

- Submersible ROV test
  - Designed at University of Lancaster
  - It will investigate damaged Fukushima reactors
  - Low cost
  - Can carry
    - Gamma probe
    - Neutron probe
    - Gamma spectrometer
    - Camera
    - Sonar







## 2018 Highlights

#### Practical exercises course for MIT students





# 2018 Special topic – Ageing Management

- Based on SSC classification and qualification
  - There are 103 SSC that we recognized as safety relevant
  - Each one is visually checked and if possible, tested
    - One page report
  - Possible corrective actions
    - Some are done during inspection and noted
    - For others, action plan
  - Visual check also for ageing mechanisms

| Oznaka po planu nadzora:                                                                                                    | 9.1              | Datum<br>pregleda:                | Datum nasi.<br>pregleda: |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------|--------------------------|--|--|--|--|
| Tip pregleda:                                                                                                               | Preizkus grablic | Preizkus grabilcev                |                          |  |  |  |  |
| Pogostost pregleda:                                                                                                         | Pred vsako upo   | Pred vsako uporabo all vsaj 1 x L |                          |  |  |  |  |
| Zadolžen:                                                                                                                   | IJS-RIC          | US-RIC                            |                          |  |  |  |  |
| Pregledal:                                                                                                                  |                  |                                   |                          |  |  |  |  |
| Po postopku:                                                                                                                | Pregledati delov | anje grablica                     |                          |  |  |  |  |
| Prediagani ukrepi:                                                                                                          |                  |                                   |                          |  |  |  |  |
| Predlagani ukrepi:<br>Analiza korektivnih akcij:                                                                            |                  |                                   |                          |  |  |  |  |
| Prediagani ukrepi:<br>Anailiza korektivnih akcij:<br>Podpi6 pregledovalca:                                                  |                  |                                   | Dne:                     |  |  |  |  |
| Predlagani ukrepi:<br>Analiza korektivnih akcij:<br>Podpis pregledovalca:<br>Naročeno za popravlio:                         |                  |                                   | Dne:<br>Dne:             |  |  |  |  |
| Predlagani ukrepi:<br>Analiza korektivnih akcij:<br>Podpis pregledovalca:<br>Naročeno za popravilo:<br>Izvajalec popravila: |                  |                                   | Dne:<br>Dne:             |  |  |  |  |

Podpis naročnika popravila



## Annual fuel elements inspection





Research Reactor Operating Group

- Performed by operators:
  - Nuclear instrumentation calibration
    - All 5 nuclear channels (steady state operation and pulse mode operation)
    - Fuel temperature sensors
    - Coolant temperature sensors
    - Coolant level sensors
    - Control rod drop time
  - Radiation instrumentation calibration
    - All detector inside reactor hall, reactor basement, reactor stack, hot cell facility and environment.



- Performed by operators:
  - Reactor tank cleaning







Research Reactor Operating Group

#### Performed by operators:

- Ion exchange resin replacement
- Regular filter replacement





Maintenance planned every few years

Beam tube

Reactor tank inspection (VT + UT)





MEH 1 Welds





Research Reactor Operating Group

Wall of the tank

#### Thermalizing column

#### Maintenance planned every few years

Beam tube inspection







Research Reactor Operating Group

#### External companies

- Reactor ventilation system
- Crane
- Compressed air supply
- UPS
- Fire protection system
- Physical protection system



# 2018 Special topic -Decommissioning

- Preliminary decommissioning programme in 2007, revised in 2016
  - Complete inventory including mass and activity after shutdown
  - Concrete activity study performed by JSI in cooperation with TUW
- DACCORD project conducted by IAEA
  - Systematic approach to decommissioning International Structure for Decommissioning Costing (ISDC) of Nuclear Installations
  - Identified steps for our decommissioning case (costing model)
    - Cost Estimation for Research Reactor Decommissioning (CERREX -D2 code)
    - Probabilistic and deterministic calculation of contingency estimation, time line of investment, waste partitioning, risk assessment etc.



## 2018 Special topic -Decommissioning

| ISDC<br>No.: | ISDC Actions                                                       | Austrian<br>TRIGA | Brazilian<br>TRIGA | Indonesian<br>TRIGA | Korean<br>TRIGA | Malaysian<br>Puspati<br>TRIGA | Philippines<br>TRIGA | Slovenian<br>TRIGA |
|--------------|--------------------------------------------------------------------|-------------------|--------------------|---------------------|-----------------|-------------------------------|----------------------|--------------------|
| 1            | Pre-decommissioning<br>actions                                     | 15%               | 9%                 | 13%                 | 17%             | 9%                            | 0%                   | 12%                |
| 2            | Facility shutdown activities                                       | 17%               | 13%                | 17%                 | 0%              | 13%                           | 0%                   | 16%                |
| 3            | Additional activities for safe enclosure or entombment             | 0%                | 13%                | 0%                  | 0%              | 0%                            | 0%                   | 0%                 |
| 4            | Dissmantling activities within the controlled area                 | 22%               | 15%                | 20%                 | 17%             | 28%                           | 3%                   | 18%                |
| 5            | Waste processing, storage<br>and disposal                          | 17%               | 14%                | 18%                 | 9%              | 15%                           | 16%                  | 15%                |
| 6            | Site infrastructure and operation                                  | 11%               | 9%                 | 13%                 | 0%              | 9%                            | 0%                   | 9%                 |
| 7            | Conventional dismantling<br>and demolition and site<br>restoration | 0%                | 10%                | 13%                 | 0%              | 13%                           | 0%                   | 0%                 |
| 8            | Project management,<br>engineering and support                     | 9%                | 9%                 | 13%                 | 17%             | 9%                            | 0%                   | 9%                 |
| 9            | Research and development                                           | 0%                | 9%                 | 13%                 | 17%             | 9%                            | 0%                   | 9%                 |
| 10           | Fuel and nuclear material                                          | 0%                | 13%                | 13%                 | 0%              | 13%                           | 0%                   | 0%                 |
| 11           | Miscellaneus expenditure                                           | 5%                | 0%                 | 0%                  | 0%              | 0%                            | 1%                   | 9%                 |



#### Thank you for your attention.





Research Reactor Operating Group