

IAEA Activities in Support of Research Reactors

Ram Sharma Head, Research Reactor Section

RROG 2019, 30th Annual Meeting 14-17 May, Institut für Kernchemie, TRIGA Forschungsreaktor Mainz (FRMZ)

Outline

- Introduction
- Current Status of Research Reactors
- IAEA activities:
 - Objectives
 - RR infra-structure and capacity building
 - Operation, Maintenance, Upgrades
 - Utilization and Application
 - Fuel Cycle and HEU minimization
 - IAEA Safety Program for Research Reactors
- Conclusions

IAEA RRDB Overview

<mark>21 Sep 2018</mark>

Status	Developed Countries	Developing Countries	All Countries	
Planned	2	12	13	818 built
Under construction	4	5	9	
Operational	140	86	226	
Temporary shutdown	8	5	13	
Extended shutdown	5	8	13	
Permanent shutdown	42	14	56	
Under decommissioning	63	4	67	
Decommissioned	413	29	443	
Total	677	163	840	

IAEA RRDB Overview

IAEA RRDB Overview

Ageing status

60% of operating RRs are over 40 years old.

43 % of operating RRs are more than 50 years old.

IAEA 21 Sep 2018

Old RRs: Difficult to manage and or replace

Ageing Management, Modernization and refurbishment

New RR Projects: tentative overview

Phase 1 (Consideration)	Phase 2 (Preparatory Work)		
Azerbaijan Ethiopia Ghana Kenya Malaysia Mongolia Myanmar Tajikistan Philippines Nigeria Saudi Arabia (Multipurpose RR)	Bangladesh Belarus Belgium Bolivia China (2) Japan The Netherlands Tajikistan Thailand USA Total:13 Viet Nam Zambia		
South Africa	Phase 3 (Implementation)		
Sudan Tanzania Tunisia	Argentina (2) Brazil Total:12 France		

Total:16

tina (2) Total:12 India (2) **Republic of Korea Russian Federation (3)** Saudi Arabia (Low Power RR) Ukraine (subcrit)

2019

New RR more geared towards Education and Training or Radioisotope production

RR stakeholders and users

Objectives

- To support Member States in ensuring sustainable operation and effective utilization of existing research reactors on long term basis with enhanced safety, availability and reliability
- To support Member States in nuclear capacity building based on the use of and access to RRs
- To support Member States in planning and implementing new research reactor projects, including the development of their national infrastructure

Organization for IAEA RR Program

IAEA Activities for RRs

- Consultancy Meetings specific focus
- Technical Meetings
- Training Workshops / Training Courses
- International Conferences and Symposia
- Coordinated Research Projects (CRP)
- Peer Review Missions and Expert Missions
- Establishment of networks and coalitions
- Technical Cooperation projects related to RRs
- NDE and ISI support
- Publications (standards, guidance, and other documents)
- IAEA Databases
 - ✓ RRDB (Research Reactors Database)
 - ✓ RRADB (Research Reactors Ageing Database)
 - ✓ RRMPDB (Research Reactors Material Properties Database)
- Technical Working Group on RRs

IAEA Activities for RRs

- Peer Review Missions to provide advice and assistance to MSs
 - ✓ OMARR

(Operations and Maintenance Assessment of Research Reactors)

✓ INIR-RR

(Integrated Nuclear Infrastructure Review of Research Reactors)

✓ INSARR

(Integrated Nuclear Safety Assessment of Research Reactors)

✓ IRRUR

٠

(Integrated Research Reactors Utilization Review)

Establishment of networks and coalitions;

- ✓ Nuclear safety networks,
- ✓ Regional advisory safety committees,
- ✓ Internet Reactor Laboratory (IRL),
- ✓ Int'l Centres based on Research Reactors (ICERR)
- ✓ EERRI group fellowship course
- ✓ Regional Research Reactor Schools

Operation, Maintenance, Upgrade

Bases:

- Adequate life management programmes (ageing management and refurbishment/upgradation programmes).
- Adequate O&M plans & management system.
- Funding reduction for such facilities and limited succession planning, development, implementation of sound O&M, life management programmes.
- Two thirds of the RRs are in permanent shut-down state and need decommissioning.

Objectives; To assist MSs in developing and implementing

Operation and Maintenance plans to improve facility's operational performances and in establishing Integrated Management Systems

DACCORD

Project

 Ageing Management and Renovation/Upgrade programmes for facility's life management

Decommissioning

Ageing Management Data Base

Age Distribution of Research Re

OMARR and

INSARR reviews

Number of Reactors

Technical Meetings

- Ageing Management, Refurbishment and Modernization of research reactors (every two-years, held in Oct 2017, next in 2020 with IGORR)
- Upgrades to Digital Instrumentation and Control Systems for Research Reactors (every two years, held in Jul 2017, next in July 2019)
- Good Operating Practices and sharing of experience (held in Oct, 2018; next 2019/2020)
- International Conference on Research Reactors: Addressing Challenges and Opportunities to Ensure Effectiveness and Sustainability (25–29 November 2019, Buenos Aires, Argentina)
- ISI, NDE and On Line Monitoring (OLM) techniques (every two-year; June 2018)
- Integrated Management Systems (IMS) (every two-year; planned in 2019)
- Planning for decommissioning / Managing transition from permanent shut down to decommissioning

OMARR review missions

- Provides advice to Member States in enhancing the performance of research reactors by identifying areas for improvement, addressing specific operational challenges and creating a space for sharing experiences and good practices.
- Pre-OMARR A preparatory Mission of 2–3 days
- Main OMARR main mission of 5–7 days
- Post-OMARR follow up mission of 3-5 days if required by the facility
- Outcome: More efficient and reliable long-term operation of a research reactor with improved safety culture and optimum utilization of human and financial resources.

Support to Infrastructure Development

Bases:

- Planning or building the first RR in several MSs.
- Establishment of national infrastructure to ensure that national and international commitments and obligations, particularly regarding safety, security, safeguards and emergency preparedness, are met during construction, operation and decommissioning

Objectives:

 planning and implementing new RR projects, including the assessment and development of their national nuclear infrastructure, Milestones approach, INIR – RR peer review mission and follow-up

Step Wise Approach

From Considering a new RR to Decommissioning

FIG. 1. Research reactor project and infrastructure development programme.

Access to Research Reactor Nuclear Capacity Building based on Research Reactors

<u>Distance Training</u>: Internet Reactor Laboratory (IRL)

Basic Training: Regional Research Reactor Schools

To support Member States,
to operate Research Reactors
to develop nuclear competences
to embark into a national nuclear programme.

Intermediate Training: EERRI Group Fellowship Course

Advanced Training at International Centres based on Research Reactors (ICERRs)

- Connects through internet an operating research reactor Host reactor to Guest institutions, generally Universities within the same region.
- Opportunity to add a practical component to academic programmes in nuclear engineering and nuclear physics, when access to an operating research reactor in the country is not feasible.
- 5 or 6 half day sessions broadcasted every year (Approach to criticality, rod calibration, temperature effect, ...)
- Sessions broadcasted 2016, 2017 & 2018 (in 3 years, 175 students form 7 MSs),
- Latin America, CNEA-RA6 (Argentina) to Colombia, Cuba, Ecuador
- Europe + Africa, CEA-ISIS (France) to Belarus, Lithuania, Tanzania, Tunisia

Activities Planned in 2019:

 VR-1 in Czech Republic to Replace CEA-ISIS (shut down since Dec 2018, termination of agreement under processing)

- signing of agreements between new host and old guests (Lithuania, Belarus, Tanzania, Tunisia)
- Shifting of equipment from ISIS to VR-1 or new one
- First Transmission in Q4/2019
- Africa: MA1 in Morocco as host and Kenya and South Africa as Guests
 - Agreements signed (2018)
 - Equipment and Software delivered
 - Orientation workshop and first Transmission during Q3 2019
- Far East: AGN-201 K in Republic of Korea as host and Mongolia, Azerbaijan and Philippines as guests
 - Agreements signed (2017 and 2018)
 - Equipment and Software delivered
 - Orientation workshop and first Transmission during Q3 2019.

Activities Planned in 2019:

- South East Asia and Pacific: Indonesia
 - Universities within the country
 - Probable Hosts in future
 MEPhI (Russian Fed)
 - Probabale Guests in Future
 - Bolivia, Bulgaria, Poland, Niger, Senegal, Zambia, Niger, Sudan, Ethiopia, Tanzania, Rwanda, Ghana, Myanmar, Tajikistan, Uruguay, Jamaica, Spain, Senegal

ICERR Scheme

ICERRs

- Designated ICERRs (Four):
 - CEA (France) in 2015
 - SSC RIAR (Russian Federation) in 2016
 - SCK-CEN (Belgium)
 - US DOE ORNL-INL (USA) at GC 2017,
- Under Consideration:
 - KAERI, Republic of Korea
 - ICN in Pitesti, Romania

Utilization and Applications

Bases:

- Efficient utilization and well management for sustainable operations.
- Strategic planning and Considerations on repurposing a RR

⁹⁹Mo → ⁹⁹mTc

Objectives:

- Enhancing RR utilization for applications, such as isotope production, use of neutron beams, irradiation and analytical services, material characterization and testing, nuclear education and training,
- To assist RR centres in development of user communities and industrial partnership

Addressing Fuel Cycle Issues

Objectives:

- Assurance of fresh fuel supply
- Development and qualification high density LEU fuel (for high power RR core conversion from HEU to LEU).
- Assistance to MSs, upon request, with the Core conversion from HEU to LEU Fuel and repatriation of SNF to its country of origin.
- Safe, reliable and economic management of Spent Nuclear Fuel (SNF) and back end options.

Safety issues

- Identification of safety issues and challenges.
- Update of programme and activities.

Main sources of information;

- Feedback from 'Code of Conduct' meetings;
 - Self-assessments by 40 countries International Meeting on Code of Conduct (2017) and the areas needing improvements are identified.
 - Main areas needing improvements: Resources (human and financial); Safety assessment; Decommissioning planning; Ageing management; Management system, and Culture for safety.
- Feedback from IAEA safety reviews.
- Feedback from the IRSRR;
 - Human Factors and Component Ageing are the two most important root causes of the incidents reported to the IRSRR.

IAEA Safety Program for RRs

- Application of the IAEA Safety Standards will help for the highest level of safety.
- The IAEA programme on the safety of RRs gives priority to the development and promotion of proper use of the IAEA Safety Standards through:
 - Maintaining and expanding worldwide application of the Code of Conduct and the IAEA safety standards;
 - Supporting on ageing management and fuel cycle facilities;
 - Enhancing regulatory effectiveness, including infrastructure for the first research reactor projects;
 - Monitoring safety under Project and Supply Agreements 27 research reactors in 23 countries;
 - Supporting on safety reassessments following the Fukushima accident;
 - Improving management of the interface between safety and security;
 - Improving exchange of operating experience through Incident Reporting System for Research Reactors (IRSRR) and networking.

Conclusions

- RRs are indispensable tools to support R&D, applications in industry, medicine and agriculture, and human resource development - needed for the next 50 years or more.
- Agency support available to Member States in all aspects of RRs starting from Design to Decommissioning
- The focus will be on
 - Enhancing safety, operational performance and utilization of RRs.
 - Managing transition between permanent shut down and decommissioning
 - Decommissioning of permanently shut-down RRs
 - Enhancing regional cooperation, networking and sharing of available resources and experience.

Only One Option

Increase international cooperation

Facilitate access to research reactor

Ensure best use of existing limited assets

The IAEA is committed to help !

Thank you!

