Production and Decay Properties of 266Bh and its daughter nuclei by using the 248Cm(23Na,5n)266Bh Reaction

Kouji Morimoto
RIKEN, Nishina Center for Accelerator Based Science

aK. Morita, aD.Kaji, aH. Haba, aK. Ozeki, aY. Kudou, abN. Sato, acT. Sumita, aA. Yoneda, aT. Ichikawa, dY. Fujimori, eS. Goto, fE. Ideguchi, aY. Kasamatsu, aK. Katori, hY. Komori, gH. Koura, eH. Kudo, hK. Ooe, iA. Ozawa, dF. Tokanai, gK. Tsukada, iT. Yamaguchi and aA. Yoshida

aRIKEN, bTohoku Univ., cTokyo Univ. of Science, dYamagata Univ., eNiigata Univ., fUniv. of Tokyo, gJAEA, hOsaka Univ., iUniv. of Tsukuba, jSaitama Univ.

7th Workshop on the Chemistry of the Heaviest Elements Oct. 2009, MAINZ
Table of Contents

Introduction
 Motivation of this work

Experiments
 Experimental Setup
 Experimental Conditions

Experimental results

Summary

Future Plan
 New element search at RIKEN
Introduction

Motivation of this work

Until now, two decay chains of $^{278}_{113}$ were observed by using $^{209}_{97}$Bi + $^{70}_{28}$Zn. Both Chain consist of four alpha decays and ended by spontaneous fission of $^{262}_{113}$Db.

Because the decays of $^{266}_{113}$Bh and $^{262}_{113}$Db are known nuclei already reported, we claimed that the $^{278}_{113}$ were clearly determined with Z and A.

However

The statistics of the report of $^{266}_{113}$Bh are not enough.

1 events: ($^{249}_{97}$Bk + $^{22}_{10}$Ne -> $^{266}_{113}$Bh), LBNL, P. A. Wilk et al., Phys. Rev. Lett. 85, (2000)

4 events: ($^{243}_{95}$Am + $^{26}_{13}$Mg -> $^{266}_{113}$Bh), IMP, Z. Qin et al., Nucl. Phys. Rev. 23 (2006) (Chinese journal in English)

Motivation of this work is to increase the statistics of the decay of $^{266}_{113}$Bh and $^{262}_{113}$Db. Confirm the connection to the known nuclei for element 113.

Candidate of the reactions

- $^{249}_{97}$Bk, $^{243}_{95}$Am target: Not available in RIKEN
- $^{205}_{81}$Tl($^{70}_{28}$Zn, n)$^{274}_{113}$Rg: small cross section 1 event/30days
- $^{248}_{95}$Cm($^{23}_{12}$Na, 5n)$^{266}_{113}$Bh: rotating $^{248}_{95}$Cm target was just available large cross section 10 events / 30days
\[^{209}\text{Bi} + ^{70}\text{Zn} \rightarrow ^{278}\text{113} + \text{n} \]

23-July-2004 18:55 (JST)

1st chain

<table>
<thead>
<tr>
<th>E1/MeV</th>
<th>t1/s</th>
<th>E2/MeV</th>
<th>t2/s</th>
<th>E3/MeV</th>
<th>t3/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{266}\text{Bh})</td>
<td>9.29</td>
<td>(^{262}\text{Db})</td>
<td>34</td>
<td>(^{258}\text{Lr})</td>
<td>3.9</td>
</tr>
<tr>
<td>Ref.1</td>
<td>8.989</td>
<td>1.13</td>
<td>8.459</td>
<td>33.62</td>
<td></td>
</tr>
<tr>
<td>Ref.2</td>
<td>9.071</td>
<td>0.79</td>
<td>8.604</td>
<td>34.14</td>
<td></td>
</tr>
<tr>
<td>Ref.2</td>
<td>8.959</td>
<td>0.51</td>
<td>8.542</td>
<td>29.23</td>
<td>8.641</td>
</tr>
<tr>
<td>Ref.2</td>
<td>9.106</td>
<td>1.52</td>
<td>8.518</td>
<td>53.09</td>
<td></td>
</tr>
</tbody>
</table>

\[\sigma = 23 \text{ fb} \]

2-APRIL-2005 2:18 (JST)

2nd chain

Ref.1

\[^{249}\text{Bk}(^{22}\text{Ne,5n})^{266}\text{Bh} \]

Ref.2

\[^{243}\text{Bk}(^{26}\text{Mg,3n})^{266}\text{Bh} \]
Cross section systematics

![Graph showing cross section systematics](image)
Experimental setup

GARIS (Gas-filled recoil ion separator)

Primary beam
Differential pumping
He inlet
He gas

Primary beam
Beam stopper (Ta)

Rotating Cm targets
Beam Intensity monitor

D1 Q1 Q2 D2

Evaporation Residues

0 1 2 (m)

SSD box
PSD
Focal plane setup

- small recoil energy \rightarrow remove TOF detector (impossible to passing through Mylar foils)
- large counting rate during Beam-On \rightarrow use beam ON/OFF method

- Z=113 search (Cold fusion)
 - $L = 29.5$ cm
 - Full-time beam on

- 266Bh search (Hot fusion)
 - Beam ON/OFF (3s)
Beam ON/OFF structure

Macro structure

ON
Beam ON
Beam OFF
OFF

3s
3s
100s

266 Bh like

100s extended Beam OFF

Micro structure

ON
5.5 ms
2 ms
OFF

100 mm
Rotating 248Cm target

- Purification with ion exchange
- Electrodeposition
 - 0.54 mg of 248Cm in 20 μL of 0.2 M HNO$_3$ + 5.5 mL 2-propanol
 - 1000 V x 11 mA/cm2 for 10 min
 - \rightarrow 350 μg/cm2 248Cm$_2$O$_3$
 - on 2.0 μm Ti backing foil

- Water-cooled cell for electrodeposition

- Deposition area: 2.04 cm2

- 248Cm$_2$O$_3$ target

- 248Cm$_2$O$_3$ target
Summary of Experimental conditions and Experimental results

Experimental conditions:

- **Method:** Focal plane Silicon Box + Beam On/Off method
- **Target:** ^{248}Cm, $350 \mu \text{g/cm}^2$, 10cm diameter, 1000rpm
- **Beam intensity:** ^{23}Na, 4.4 p μ A, average 1p μ A (duty 27.5%)
- **Beam Energy:** 126, 130, 132 MeV
- **On/Off:** 3s On – 3s OFF
- **Daughter mode:** 100sec
- **GARIS pressure:** 33 Pa
- **GARIS (B ρ):** 2.07, 2.19 Tm, (estimated by the results of $^{248}\text{Cm}^{(^{22}\text{Ne},5n)^{265}\text{Sg}}$ exp.)

Experimental results:

- **Total beam dose:** 1.9×10^{19}
- **Counting rate:**
 - Beam ON: 3×10^4 /s
 - Beam OFF: 5-10 /s
- **Observed events:** 32 (Correlated events)
- **Cross section:** 50pb for ^{266}Bh and ^{267}Bh (included the events of tentative assignment)
Decay chains observed in this experiment
(result of ±2 mm and 300 s correlation analysis)

<table>
<thead>
<tr>
<th>ID</th>
<th>E_{beam} (MeV)</th>
<th>Strip</th>
<th>E(M) (MeV)</th>
<th>FWHM E(M) (MeV)</th>
<th>E(D) (MeV)</th>
<th>FWHM E(D) (MeV)</th>
<th>dPos min</th>
<th>τ(D) (s)</th>
<th>E(GD) (MeV)</th>
<th>FWHM E(GD) (MeV)</th>
<th>dPos min</th>
<th>τ(GD) (s)</th>
<th>Group</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>126^a</td>
<td>2</td>
<td>9.05</td>
<td>0.11</td>
<td>8.71^s</td>
<td>0.18</td>
<td>-0.45</td>
<td>54.91</td>
<td>8.71</td>
<td>0.11</td>
<td>0.95</td>
<td>1.93</td>
<td>AC</td>
<td>266^b Db → 264^b Db → 258^b Lr</td>
</tr>
<tr>
<td>2</td>
<td>130^b</td>
<td>11</td>
<td>9.12</td>
<td>0.16</td>
<td>8.74^s</td>
<td>0.16</td>
<td>3.53</td>
<td>13.76</td>
<td>8.60</td>
<td>0.09</td>
<td>-7.16</td>
<td>9.36</td>
<td>AC</td>
<td>266^b Db → 264^b Db → 258^b Lr</td>
</tr>
<tr>
<td>3</td>
<td>132^c</td>
<td>7</td>
<td>9.20</td>
<td>0.07</td>
<td>8.67</td>
<td>0.07</td>
<td>0.86</td>
<td>13.71</td>
<td>8.70^s</td>
<td>0.14</td>
<td>-0.22</td>
<td>4.72</td>
<td>AC</td>
<td>266^b Db → 264^b Db → 258^b Lr</td>
</tr>
<tr>
<td>4</td>
<td>132^c</td>
<td>7</td>
<td>8.82</td>
<td>0.07</td>
<td>8.54^s</td>
<td>0.14</td>
<td>1.45</td>
<td>95.45</td>
<td>8.69</td>
<td>0.07</td>
<td>-1.45</td>
<td>3.94</td>
<td>BC</td>
<td>266^b Db → 264^b Db → 258^b Lr</td>
</tr>
<tr>
<td>5</td>
<td>132^c</td>
<td>13</td>
<td>8.84^s</td>
<td>0.12</td>
<td>8.42</td>
<td>0.05</td>
<td>-0.12</td>
<td>11.95</td>
<td>169.5^s</td>
<td>-0.53</td>
<td>27.22</td>
<td>DGI</td>
<td>267^b Db → 265^b Db → 257^b Lr</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>130^b</td>
<td>3</td>
<td>9.14</td>
<td>0.12</td>
<td>8.70</td>
<td>0.12</td>
<td>-0.06</td>
<td>66.23</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>7</td>
<td>132^c</td>
<td>6</td>
<td>9.23</td>
<td>0.07</td>
<td>8.65</td>
<td>0.07</td>
<td>0.43</td>
<td>22.04</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>8</td>
<td>132^c</td>
<td>8</td>
<td>9.14^s</td>
<td>0.13</td>
<td>8.60</td>
<td>0.06</td>
<td>3.50</td>
<td>7.29</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>9</td>
<td>132^c</td>
<td>12</td>
<td>9.22^s</td>
<td>0.11</td>
<td>8.01</td>
<td>0.04</td>
<td>-0.06</td>
<td>60.40</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>10</td>
<td>130^b</td>
<td>10</td>
<td>8.60^s</td>
<td>0.17</td>
<td>8.70</td>
<td>0.10</td>
<td>-1.72</td>
<td>6.93</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>11</td>
<td>130^b</td>
<td>6</td>
<td>8.55</td>
<td>0.09</td>
<td>8.57</td>
<td>0.09</td>
<td>0.12</td>
<td>2.53</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>12</td>
<td>130^b</td>
<td>10</td>
<td>8.40</td>
<td>0.11</td>
<td>8.80^s</td>
<td>0.18</td>
<td>2.99</td>
<td>3.73</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>13</td>
<td>132^c</td>
<td>4</td>
<td>8.43</td>
<td>0.10</td>
<td>8.69</td>
<td>0.10</td>
<td>-0.08</td>
<td>5.69</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>14</td>
<td>133^d</td>
<td>8</td>
<td>8.84</td>
<td>0.04</td>
<td>8.51</td>
<td>0.04</td>
<td>0.77</td>
<td>82.15</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>15</td>
<td>126^a</td>
<td>1</td>
<td>9.07</td>
<td>0.07</td>
<td>154.6^s</td>
<td>0.52</td>
<td>0.52</td>
<td>5.67</td>
<td>E</td>
<td>266^b Db → 264^b Db tentative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>130^b</td>
<td>9</td>
<td>9.09^s</td>
<td>0.15</td>
<td>157.9</td>
<td>-0.56</td>
<td>0.54</td>
<td>5.34</td>
<td>E</td>
<td>266^b Db → 264^b Db tentative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>132^c</td>
<td>8</td>
<td>9.23</td>
<td>0.06</td>
<td>180.4</td>
<td>1.89</td>
<td>121.53</td>
<td>10/22</td>
<td>E</td>
<td>266^b Db → 264^b Db tentative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>126^a</td>
<td>7</td>
<td>8.99</td>
<td>0.09</td>
<td>185.8^s</td>
<td>0.16</td>
<td>8.42</td>
<td>F</td>
<td>266^b Db → 264^b Db tentative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>126^a</td>
<td>11</td>
<td>8.97</td>
<td>0.05</td>
<td>157.1</td>
<td>1.53</td>
<td>141.86</td>
<td>F</td>
<td>266^b Db → 264^b Db tentative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>126^a</td>
<td>12</td>
<td>8.95^s</td>
<td>0.13</td>
<td>162.8</td>
<td>-1.56</td>
<td>68.35</td>
<td>F</td>
<td>266^b Db → 264^b Db tentative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>126^a</td>
<td>7</td>
<td>8.93</td>
<td>0.08</td>
<td>173.9^s</td>
<td>-0.61</td>
<td>84.30</td>
<td>F</td>
<td>266^b Db → 264^b Db tentative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>126^a</td>
<td>7</td>
<td>8.97</td>
<td>0.08</td>
<td>131.1</td>
<td>1.20</td>
<td>43.99</td>
<td>F</td>
<td>266^b Db → 264^b Db tentative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>126^a</td>
<td>1</td>
<td>8.95</td>
<td>0.06</td>
<td>107.5</td>
<td>-0.06</td>
<td>151.36</td>
<td>F</td>
<td>266^b Db → 264^b Db tentative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>132^c</td>
<td>13</td>
<td>8.98</td>
<td>0.04</td>
<td>162.8</td>
<td>-0.72</td>
<td>156.99</td>
<td>F</td>
<td>266^b Db → 264^b Db tentative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>132^c</td>
<td>10</td>
<td>8.95^s</td>
<td>0.14</td>
<td>133.8</td>
<td>3.05</td>
<td>26.95</td>
<td>F</td>
<td>266^b Db → 264^b Db tentative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>126^a</td>
<td>4</td>
<td>8.76</td>
<td>0.10</td>
<td>124.3^s</td>
<td>0.14</td>
<td>112.21</td>
<td>H</td>
<td>267^b Db → 265^b Db tentative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>130^b</td>
<td>10</td>
<td>8.71</td>
<td>0.08</td>
<td>68.2</td>
<td>0.26</td>
<td>5.38</td>
<td>H</td>
<td>267^b Db → 265^b Db tentative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>132^c</td>
<td>11</td>
<td>8.75</td>
<td>0.07</td>
<td>138.9^s</td>
<td>0.49</td>
<td>55.57</td>
<td>H</td>
<td>267^b Db → 265^b Db tentative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>132^c</td>
<td>10</td>
<td>8.44</td>
<td>0.07</td>
<td>89.4</td>
<td>0.64</td>
<td>35.96</td>
<td>I</td>
<td>268^b Db or 258^b Lr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>130^b</td>
<td>12</td>
<td>8.84</td>
<td>0.04</td>
<td>173.8^s</td>
<td>0.76</td>
<td>167.77</td>
<td>G</td>
<td>267^b Db → 265^b Db or 259^b Lr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>132^c</td>
<td>7</td>
<td>8.09</td>
<td>0.07</td>
<td>161.7^s</td>
<td>-1.52</td>
<td>294.39</td>
<td>J</td>
<td>not assigned</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>132^c</td>
<td>14</td>
<td>8.09^s</td>
<td>0.13</td>
<td>164.8^s</td>
<td>0.28</td>
<td>208.30</td>
<td>J</td>
<td>not assigned</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Bp of GARIS was set to 2.19
^b Bp of GARIS was set to 2.07
^s Sum of PSD and SSD signals

Example of the observed decay chains of 266Bh

- 266Bh
 - 262Db
 - 258Lr
 - $E=8.60$ MeV (PSD)
 - $\tau=9.4$ s
 - $P=49.6$ mm
 - $E=8.74$ MeV (PSD)
 - $\tau=13.7$ s
 - $P=42.5$ mm
 - $E=9.12$ MeV (PSD+SSD)
 - $\tau=1.19$ s
 - $P=46.0$ mm

- $E=9.09$ MeV (PSD+SSD)
 - $\tau=4.23$ s
 - $P=26.3$ mm

α extension beam off timer = ON
Singles spectrum (beam off period)

16.4 h, 3.1×10^{17} beam dose
A: $^{266}\text{Bh} \rightarrow ^{262}\text{Db} \rightarrow \text{SF}$
B: $^{266}\text{Bh} \rightarrow ^{262}\text{Db}$
C: $^{262}\text{Db} \rightarrow ^{258}\text{Lr}$
D: $^{267}\text{Bh} \rightarrow ^{263}\text{Db}$

E_{SF} (Daughter) [MeV]

E_{α} (Daughter) [MeV]

E_{α} (Mother) [MeV]

$T_{1/2} = 31^{+41}_{-11}$ s
Ref.: 34±4 s

$T_{1/2} = 24^{+14}_{-7}$ s
Ref.: 34±4 s

Observed in $^{278}113$
Comparison of 266Bh decay, from 278113 and present data

Decays observed in 278113 synthesis
Decays observed in the present work

278113 + 70Zn \rightarrow 279113*

One n evaporation

266Bh \rightarrow five n evaporation

248Cm + 23Na \rightarrow 271Bh*

9.08, 9.77 MeV
8.82, 9.05 - 9.23 MeV
8.40 – 8.74 MeV (79 %)
$T_{1/2}$: 24.0$^{+14}_{-7}$s

8.57 – 8.80 MeV
$T_{1/2}$: 4.0$^{+22}_{-2.0}$s

S.F. (21%)

40.9s, 0.787s
Summary of result

32 correlation events were observed in total.
14 events were assigned to the decay from ^{266}Bh

^{266}Bh
- E_α: 8.82 and 9.05–9.23 MeV
- consistent with one of the E_α observed in the $^{278}\text{Hgl13}$ decay chain E_α

^{262}Db
- E_α: 8.40 – 8.74 MeV
- Branch: α-decay: 11 events (79%), S.F.: 3 (21%)
- consistent with the decay time observed in the $^{278}\text{Hgl13}$ decay chain

^{258}Lr
- E_α: 8.57 – 8.80 MeV, $T_{1/2}$: 4.0$^{+2.2}_{-2.0}$ s
- R. Dressler et al., 8.565, 8.595, 8.621 MeV, 3.92$^{+0.35}_{-0.42}$ s

A state in ^{266}Bh, which decays by α-emission with the energies ranging from 9.05 – 9.23 MeV, feeds a state in ^{262}Db, which decays by α-emission and by SF with a previously known half life.

The result provided a further confirmation of the production and identification of the isotope of the $^{278}\text{Hgl13}$, studied by RIKEN.
Future Plan of new element search

$^{76}\text{Ge} + ^{208}\text{Pb} \rightarrow ^{283}114 + n$

$^{209}\text{Bi} + ^{70}\text{Zn} \rightarrow ^{278}113 + n$

P. A. Wilk et al., PRL85, 2697 (2000)

$^{249}\text{Bk}^{(^{22}\text{Ne},5n)}^{266}\text{Bh}$

Z. Qin et al., Nucl.Phys.Rev.23(2006)

$^{243}\text{Bk}^{(^{26}\text{Mg},3n)}^{268}\text{Bh}$

and