An EC-branch in the decay of 27-s ²⁶³Db: Evidence for the new isotope ²⁶³Rf

J.V. Kratz¹, A. Nähler¹, U. Rieth¹, A. Kronenberg¹, B. Kuczewski¹, E. Strub¹, W. Brüchle², M. Schädel², B.

Schausten², A. Türler³, H. Gäggeler³, C. Laue⁴, R. Sudowe⁴, P.A. Wilk⁴

¹Institut für Kernchemie, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany

²Gesellschaft für Schwerionenforschung, 64291 Darmstadt, Germany

³Paul Scherrer Institut, 5232 Villigen, Switzerland

⁴Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

The first hint for ²⁶³Rf was reported by Czerwinski et al. who detected 7 spontaneous fission (SF) events with a half life of 500^{+300}_{-200} s in rutherfordium fractions separated by manual TTA extractions from the ²⁴⁸Cm(¹⁸O, 3n) reaction at 92.5 MeV [1]. No α events could be attributed to ²⁶³Rf.

In 1990, we discovered the new isotope 27-s 263 Db in the 249 Bk(18 O, 4n) reaction at 93 MeV by eluting element 105 from cation exchange columns in unbuffered 0.05 M α -HiB [2].

In 1993, a rutherfordium fraction was milked from ²⁶³Db, and 22 SF events were registered in that fraction. Of these, 8.8 events had to be assigned to a contamination by ²⁵⁶Fm. A twocomponent decay curve with the ²⁵⁶Fm fixed gave a half life of 10^{+5} . min for the isotope ²⁶³Rf [3]. Based on the effective production cross section, an EC-branch in ²⁶³Db on the order of 5% was deduced [3]. Two α particles at 7.9 MeV were discussed as possibly being associated with the decay of ²⁶³Rf giving an upper limit for the α -decay branch of 30%.

A search for ²⁶³Rf in the ²⁴⁸Cm(²²Ne, α 3n) reaction at 122 MeV by Dressler et al. [4] involving a chemical separation of Rf as the volatile tetrachloride yielded two α particles at 7.8 and 7.9 MeV and four SF events with very long life times. Another search using the same reaction and aqueous chemistry with fluoride complexes of Rf [5] yielded two α events near 7.9 MeV with unusually long life times. This was not considered to present conclusive evidence for ²⁶³Rf [4],[5].

We have attempted to add further evidence for an EC-branch in the decay of ²⁶³Db and for ²⁶³Rf in an experiment at the Paul Scherrer Institute (PSI), Switzerland, producing again ²⁶³Db in the ²⁴⁹Bk(¹⁸O, 4n) reaction at 93 MeV. The activity was transported by a He/KCl jet and collected for 15 min on a Ta disc. It was dissolved in 2 x 20 μ l of unbuffered 0.5 M α -HiB and added on top of a 3 x 50 mm cation-exchange column (AG 50Wx8). The α -HiB solution contained ⁸⁸Zr tracer for the determination of the chemical yield for group-4 elements. These were eluted from the column with 1 ml 0.5 M α -HiB. The eluate was mixed with 3 ml 12 M HCl yielding a solution being 9 M in HCl. This was subject to liquid-liquid extraction with 200 µl of 20 vol% TBP/Cyclohexane which, after phase separation, was evaporated to dryness on a Ta disc. The Ta discs were assaved for α and SF activity starting about 8 min after the end of collection. The He/KCl jet efficiency was about 50%, the chemical yields were 70% on the average. The decontamination factor for Fm was on the order of 10^4 .

In some 200 experiments, a total of 9 SF events was registered of which 2 have to be considered a long-lived background. The life times are consistent with a half life of 263 Rf of about 22 min with an uncertainty of ±5 min. Relative to the measured cross section for production of 263 Db in the 249 Bk(18 O, 4n) reaction at 93 MeV, 10±6 nb [2], the new experiments give an EC-branch in the decay of 263 Db of

$$3^{+4}_{-1}\%$$

and provide additional evidence for the new isotope ²⁶³Rf. The latter decays predominantly by spontaneous fission with a long half life of tens of minutes. In principle, the observation of α particles from the α -decay daugther of ²⁶³Rf, ²⁵⁹No (7.472 – 7.689 MeV), could help to fix the α -decay branch in the decay of ²⁶³Rf. However, this part of the spectrum is masked by a contamination with the naturally occuring ²¹⁴Po (7.687 MeV). The picture that consistently emerges from [3] and the present work is shown in Fig.1.

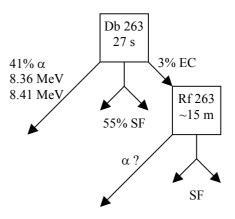


Fig.1 Decay scheme for ²⁶³Db and ²⁶³Rf

References

[1] K.R. Czerwinski et al., Annual Report 1991 LBL-32855, p.54

[2] J.V. Kratz et al., Phys.Rev. <u>C45</u>, 1064 (1992)

[3] K.E. Gregorich et al., GSI Scientific Report 1994, GSI 94-1, p.14

- [4] R. Dressler, Doctoral thesis, Universität Bern 1999
- [5] D. Schumann et al., PSI Annual Report 1999, p.7