Decay properties of ²⁶⁹Hs and evidence for the new nuclide ²⁷⁰Hs

A. Türler, Ch.E. Düllmann, H.W. Gäggeler, S. Soverna (Univ. Bern & PSI), R. Dressler, B. Eichler, F. Glaus,

D.T. Jost, D. Piguet (PSI), T.N. Ginter, K.E. Gregorich, U. Kirbach, D.M. Lee, R. Sudowe, (LBNL), D.C.

Hoffman, H. Nitsche, J.B. Patin, P. Zielinski (UC Berkeley & LBNL), W. Brüchle, R. Eichler, E. Jäger, V.

Pershina, M. Schädel, B. Schausten, E. Schimpf, H.-J. Schött, G. Wirth (GSI), S.N. Timokhin, A.B.

Yakushev (FLNR), K. Eberhardt, P. Thörle, N. Trautmann (Univ. Mainz), Z. Qin (IMP Lanzhou), A. Vahle (FZ Rossendorf)

Three decays of the nuclide ²⁶⁹Hs were observed by Hofmann et al. [1,2] as grand daughter of ²⁷⁷112. The deduced relatively long half-life of about 10 s makes ²⁶⁹Hs an ideal candidate for first chemical experiments with hassium (element 108). ²⁶⁹Hs can be produced directly in the reaction ²⁴⁸Cm(²⁶Mg, 5n). In the 4n de-excitation channel, the new nuclide ²⁷⁰Hs is produced, which was predicted to be the next heavier "doubly-magic" nucleus after ²⁰⁸Pb [3]. Its decay properties are of great interest to nuclear physics.

In order to investigate the chemical properties of Hs, the gas chromatographic separation system IVO (In situ Volatilization and On-line detection) [4] and the cryo on-line detector (COLD) [5] were set up at the rotating target- and window irradiation facility of the UNILAC at GSI Darmstadt. Hs is expected to belong to group 8 of the periodic table of the elements and should thus form very volatile HsO₄ molecules. Test experiments with short-lived Os isotopes, the lighter homologue element of Hs, showed that OsO₄ molecules were formed when the recoiling Os nuclei were stopped in a mixture of He and O₂.

In the course of the experiment, data was collected during 64.2 h and a beam integral of $1.0 \times 10^{18} \, {}^{26}$ Mg ions was accumulated. The count rate in all detectors was very low. Only the nuclides 219 Rn, 220 Rn, 211 At and their decay products were identified after chemical separation. While 211 At (and its decay product 211 Po) was deposited mainly in the first two detectors, 219 Rn and 220 Rn and their decay products accumulated in the last three detectors, where the temperature was low enough to condense Rn. Due to a defect, one side of detector sandwich 1 was not operating and was therefore excluded from the data analysis. The average count rate per detector pair was 0.6 h⁻¹ in the relevant α -decay energy window E_{α} =8.0-9.5 MeV in detectors 2 through 9.

The data analysis revealed one four-member- and 4 threemember decay chains (Fig. 1) which all occurred within a time period of less than 70 s and which all have random probabilities of less than 7×10^{-5} . Since only about 77% of the inner surface of the COLD channel consisted of active detector surface, detection of a few incomplete decay sequences is expected. Two α -SF correlations were observed in detectors 3 and 4 that still have a rather low random probability, but could not be assigned with certainty to ²⁶⁹Hs or ²⁷⁰Hs. Also, 4 uncorrelated SF decays with fragment energies >50 MeV were registered in detectors 2, 3, and 4. Only for one SF both fragments were observed. All other detectors 5 through 12 registered zero SF events. The 4-member and the 3-member α -decay chains were attributed to the decay of the nuclide ²⁶⁹Hs, since these almost perfectly match the decay properties observed previously by Hoffman et al. [1] (except for the low α -decay energy of ²⁶⁹Hs in the three member decay chain). Three decay chains were

terminated by spontaneous fission. From the previously known decay data such a signature would be expected only for the decay of the new nuclide ²⁷⁰Hs. But, one of the terminating SF events had a rather long life-time of 7.9 s, which is not very likely for ²⁶²Rf with a half-life of 2.1 s. A similar decay sequence has also been observed in one of the decay chains assigned to ²⁷⁷112 [2]. Therefore, this chain was attributed to ²⁶⁹Hs. Noteworthy are the very unusual decay properties of ²⁶¹Rf [6]. We tentatively assigned the remaining two decay chains to the new nuclide ²⁷⁰Hs. From the measured E_{α} =9.16±0.03 MeV an α -decay half-life of 2-7 s was estimated.

Fig. 1: Decay chains attributed to the decay of Hs-nuclides.

References

- [1] S. Hofmann et al., Z. Phys. A354, 229 (1996).
- [2] S. Hofmann et al., Rev. Mod. Phys. 72, 733 (2000).
- [3] Z. Patyk et al., Nucl. Phys. A533, 132 (1991).
- [4] Ch.E. Düllmann et al., Nucl. Instrum. Meth. A479, 631 (2002)
- [5] Ch.E. Düllmann et al., this Annual Report
- [6] R. Dressler et al., PSI Scientific Report 2001, Vol. I (2002).