[¹⁸F]Fluoroethylflumazenil: A Novel Tracer for PET Imaging of Human Benzodiazepine Receptors

Gerhard Gründer¹, Thomas Siessmeier², Christian Lange-Asschenfeldt¹, Ingo Vernaleken¹, Hans-Georg Buchholz², Peter Stoeter³, Alexander Drzezga⁵, Hartmut Lüddens¹, Frank Rösch⁴, Peter Bartenstein²

Departments of Psychiatry¹, Nuclear Medicine², Neuroradiology³, and Institute for Nuclear Chemistry⁴, University of

Mainz; Department of Nuclear Medicine⁵, Technical University of Munich, Germany

Introduction: $5-(2'-[^{18}F]$ fluoroethyl)flumazenil ($[^{18}F]$ FEF) is a 18 F-labeled PET tracer for central benzodiazepine receptors. Compared to the established $[^{11}C]$ flumazenil, it has the advantage of the longer halflife of the fluorine-18 label. After optimization of its synthesis and determination of its in vitro receptor affinities we performed first PET studies in humans.

Subjects and Methods: PET studies in seven healthy human volunteers were performed on a Siemens ECAT EXACT whole-body scanner after injection of 100-280 MBq [¹⁸F]FEF. In two subjects, a second PET scan was conducted after pre-treatment with unlabeled flumazenil (1 mg or 2.5 mg I.V., respectively, 3 min before tracer injection). A third subject was studied both with [¹⁸F]FEF and with [¹¹C]flumazenil. Brain radioactivity was measured for 60-90 min p.i. and analyzed with a ROI-oriented approach and on a voxelwise basis with spectral analysis. Plasma radioactivity was determined from arterial blood samples and metabolites were determined by HPLC.

Results: In human brain, maximum radioactivity accumulation was observed $4\pm 2 \text{ min p.i.}$ with a fast clearance kinetics resulting in 50% and 20% of maximal activities at about 10 and 30 min, respectively. [¹⁸F]FEF uptake followed the known central benzodiazepine receptor

distribution in the human brain (occipital cortex > temporal cortex > cerebellum > pons). Pre-treatment with unlabeled flumazenil resulted in reduced tracer uptake in all brain areas except for receptor-free reference regions like the pons. Parametric images of distribution volume and binding potential generated on a voxelwise basis revealed 2- to 3-fold lower in vivo receptor binding of [¹⁸F]FEF compared to [¹¹C]flumazenil, while relative uptake of [¹⁸F]FEF was higher in the cerebellum, which is most likely due to its relatively higher affinity for benzodiazepine receptors containing the α 6 subunit. Metabolism of [¹⁸F]FEF was very rapid. Polar metabolites represent about 50-60% of total plasma radioactivity at 5 min. and 80-90% at 20 min. p.i.

Conclusion: Although [¹¹C]flumazenil has some advantages over [¹⁸F]FEF (higher affinity, slower metabolism, slower kinetics), our results indicate that [¹⁸F]FEF is a suitable PET ligand for quantitative assessment of central benzodiazepine receptors, which can be used independently of an on-site cyclotron.

Publication: *European Journal of Nuclear Medicine*, 2001, 28: 1463-1470

[¹⁸F]FEF-Summenbild und Verteilungsvolumen nach Spektralanalyse